2
|
He S, Huang R, Townley J, Kretsch RC, Karagianes TG, Cox DBT, Blair H, Penzar D, Vyaltsev V, Aristova E, Zinkevich A, Bakulin A, Sohn H, Krstevski D, Fukui T, Tatematsu F, Uchida Y, Jang D, Lee JS, Shieh R, Ma T, Martynov E, Shugaev MV, Bukhari HST, Fujikawa K, Onodera K, Henkel C, Ron S, Romano J, Nicol JJ, Nye GP, Wu Y, Choe C, Reade W, Das R. Ribonanza: deep learning of RNA structure through dual crowdsourcing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581671. [PMID: 38464325 PMCID: PMC10925082 DOI: 10.1101/2024.02.24.581671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Prediction of RNA structure from sequence remains an unsolved problem, and progress has been slowed by a paucity of experimental data. Here, we present Ribonanza, a dataset of chemical mapping measurements on two million diverse RNA sequences collected through Eterna and other crowdsourced initiatives. Ribonanza measurements enabled solicitation, training, and prospective evaluation of diverse deep neural networks through a Kaggle challenge, followed by distillation into a single, self-contained model called RibonanzaNet. When fine tuned on auxiliary datasets, RibonanzaNet achieves state-of-the-art performance in modeling experimental sequence dropout, RNA hydrolytic degradation, and RNA secondary structure, with implications for modeling RNA tertiary structure.
Collapse
Affiliation(s)
- Shujun He
- Department of Chemical Engineering, Texas A&M University, TX, USA
| | - Rui Huang
- Department of Biochemistry, Stanford CA, USA
| | | | | | | | - David B T Cox
- Department of Biochemistry, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
| | | | - Dmitry Penzar
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Valeriy Vyaltsev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Elizaveta Aristova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Arsenii Zinkevich
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Artemy Bakulin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Hoyeol Sohn
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Daniel Krstevski
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | | | | | | | - Donghoon Jang
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
| | | | - Roger Shieh
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Tom Ma
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Eduard Martynov
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
| | - Maxim V Shugaev
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
| | | | | | | | | | - Shlomo Ron
- Department of Chemical Engineering, Texas A&M University, TX, USA
- Department of Biochemistry, Stanford CA, USA
- Eterna Massive Open Laboratory
- Biophysics Program, Stanford CA, USA
- Department of Medicine, Division of Hematology, and Department of Biochemistry, Stanford CA, USA
- Department of Mathematics, Stanford CA, USA
- AIRI, Moscow, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
- GO Inc., Tokyo, Japan
- Department of Electrical and Computer Engineering, Inha University, Incheon, Republic of Korea
- DeltaX, Seoul, Republic of Korea
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russian Federation
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904-4745, USA
- Vergesense, CA
- DeNA, Tokyo, Japan
- NVIDIA, Tokyo, Japan
- NVIDIA, Munich
- Howard Hughes Medical Institute
- Department of Bioengineering, Stanford CA, USA
- Kaggle, San Francisco CA, USA
| | - Jonathan Romano
- Eterna Massive Open Laboratory
- Howard Hughes Medical Institute
| | | | - Grace P Nye
- Department of Biochemistry, Stanford CA, USA
| | - Yuan Wu
- Department of Biochemistry, Stanford CA, USA
- Howard Hughes Medical Institute
| | | | | | - Rhiju Das
- Department of Biochemistry, Stanford CA, USA
- Biophysics Program, Stanford CA, USA
- Howard Hughes Medical Institute
| |
Collapse
|
5
|
Gumna J, Antczak M, Adamiak RW, Bujnicki JM, Chen SJ, Ding F, Ghosh P, Li J, Mukherjee S, Nithin C, Pachulska-Wieczorek K, Ponce-Salvatierra A, Popenda M, Sarzynska J, Wirecki T, Zhang D, Zhang S, Zok T, Westhof E, Miao Z, Szachniuk M, Rybarczyk A. Computational Pipeline for Reference-Free Comparative Analysis of RNA 3D Structures Applied to SARS-CoV-2 UTR Models. Int J Mol Sci 2022; 23:ijms23179630. [PMID: 36077037 PMCID: PMC9455975 DOI: 10.3390/ijms23179630] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023] Open
Abstract
RNA is a unique biomolecule that is involved in a variety of fundamental biological functions, all of which depend solely on its structure and dynamics. Since the experimental determination of crystal RNA structures is laborious, computational 3D structure prediction methods are experiencing an ongoing and thriving development. Such methods can lead to many models; thus, it is necessary to build comparisons and extract common structural motifs for further medical or biological studies. Here, we introduce a computational pipeline dedicated to reference-free high-throughput comparative analysis of 3D RNA structures. We show its application in the RNA-Puzzles challenge, in which five participating groups attempted to predict the three-dimensional structures of 5'- and 3'-untranslated regions (UTRs) of the SARS-CoV-2 genome. We report the results of this puzzle and discuss the structural motifs obtained from the analysis. All simulated models and tools incorporated into the pipeline are open to scientific and academic use.
Collapse
Affiliation(s)
- Julita Gumna
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Ryszard W. Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Pritha Ghosh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Jun Li
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
- Laboratory of Computational Biology, Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland
| | | | - Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Tomasz Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland
| | - Dong Zhang
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Sicheng Zhang
- Department of Physics, Department of Biochemistry, Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China
- Correspondence: (Z.M.); (A.R.)
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Agnieszka Rybarczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
- Correspondence: (Z.M.); (A.R.)
| |
Collapse
|