1
|
Bouys L, Vaczlavik A, Cavalcante IP, Violon F, Jouinot A, Berthon A, Vaduva P, Espiard S, Perlemoine K, Kamenicky P, Vantyghem MC, Tabarin A, Raverot G, Ronchi CL, Dischinger U, Reincke M, Fragoso MC, Stratakis CA, Chansavang A, Pasmant E, Ragazzon B, Bertherat J. The mutational landscape of ARMC5 in Primary Bilateral Macronodular Adrenal Hyperplasia: an update. Orphanet J Rare Dis 2025; 20:51. [PMID: 39910635 DOI: 10.1186/s13023-025-03554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Primary Bilateral Macronodular Adrenal Hyperplasia (PBMAH) is a rare cause of Cushing's syndrome due to bilateral adrenocortical macronodules. Germline inactivating variants of the tumor suppressor gene ARMC5 are responsible for 20-25% of apparently sporadic PBMAH cases and 80% of familial presentations. ARMC5 screening is now routinely performed for PBMAH patients and families. Based on literature review and own observation, this study aims to give an overview of both published and unpublished ARMC5 genetic alterations and to compile the available evidence to discriminate pathogenic from benign variants. RESULTS 146 different germline variants (110 previously published and 36 novel) are identified, including 46% missense substitutions, 45% truncating variants, 3% affecting splice sites, 4% in-frame variants and 2% large deletions. In addition to the germline events, somatic 16p loss-of-heterozygosity and 104 different somatic events are described. The pathogenicity of ARMC5 variants is established on the basis of their frequency in the general population, in silico predictions, familial segregation and tumor DNA sequencing. CONCLUSIONS This is the first extensive review of ARMC5 pathogenic variants. It shows that they are spread on the whole coding sequence. This is a valuable resource for genetic investigations of PBMAH and will help the interpretation of new missense substitutions that are continuously identified.
Collapse
Affiliation(s)
- Lucas Bouys
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Anna Vaczlavik
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isadora P Cavalcante
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Florian Violon
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Anne Jouinot
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Annabel Berthon
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Patricia Vaduva
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
- Department of Endocrinology, Diabetology and Nutrition, CHU Rennes, Rennes, France
| | - Stéphanie Espiard
- Department of Endocrinology, Diabetology, Metabolism and Nutrition, CHU Lille, Inserm U1190, Lille, France
| | - Karine Perlemoine
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Department of Endocrinology and Reproduction, Reference Center for Rare Pituitary Diseases, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Marie-Christine Vantyghem
- Department of Endocrinology, Diabetology, Metabolism and Nutrition, CHU Lille, Inserm U1190, Lille, France
| | - Antoine Tabarin
- Department of Endocrinology, Diabetology and Nutrition, Hôpital Haut-Lévêque, CHU Bordeaux, Bordeaux, France
| | - Gérald Raverot
- Department of Endocrinology, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Cristina L Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Ulrich Dischinger
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital of Würzburg, Würzburg, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Maria C Fragoso
- Department of Endocrinology, Adrenal Unit, University of Sao Paulo, Sao Paulo, Brazil
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
- Research Institute, ELPEN, Pikermi, Athens, Greece
- Human Genetics and Precision Medicine, IMBB, FORTH, Heraklion, Crete, Greece
| | - Albain Chansavang
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
- Department of Genomic Medicine of Tumors and Cancers, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Eric Pasmant
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
- Department of Genomic Medicine of Tumors and Cancers, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Bruno Ragazzon
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France
| | - Jérôme Bertherat
- Université Paris-Cité, Institut Cochin, Inserm U1016, CNRS UMR 8104, Paris, France.
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
2
|
Aoi Y, Iravani L, Mroczek IC, Gold S, Howard BC, Shilatifard A. SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition. SCIENCE ADVANCES 2025; 11:eadt5885. [PMID: 39854452 PMCID: PMC11758996 DOI: 10.1126/sciadv.adt5885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate. Using an unbiased proteomic screening approach, we identify armadillo repeat-containing 5 (ARMC5) as a CUL3 adaptor required for VCP/p97-dependent degradation of SPT5-depleted, chromatin-bound Pol II. Genome-wide analyses indicate that ARMC5 targets promoter-proximal Pol II in a BTB domain-dependent manner. Further biochemical analysis demonstrates that interaction between ARMC5 and Pol II requires the transcriptional cyclin-dependent kinase 9 (CDK9), supporting a phospho-dependent degradation model. We propose that defective, promoter-proximal Pol II that lacks SPT5 is rapidly eliminated from chromatin in a noncanonical early termination pathway that requires CDK9-dependent interaction with the CUL3-ARMC5 ubiquitin ligase complex.
Collapse
Affiliation(s)
- Yuki Aoi
- Corresponding author. (A.S.); (Y.A.)
| | | | - Isabella C. Mroczek
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Benjamin C. Howard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Nieman LK, Castinetti F, Newell-Price J, Valassi E, Drouin J, Takahashi Y, Lacroix A. Cushing syndrome. Nat Rev Dis Primers 2025; 11:4. [PMID: 39848955 DOI: 10.1038/s41572-024-00588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Cushing syndrome (CS) is a constellation of signs and symptoms caused by excessive exposure to exogenous or endogenous glucocorticoid hormones. Endogenous CS is caused by increased cortisol production by one or both adrenal glands (adrenal CS) or by elevated adrenocorticotropic hormone (ACTH) secretion from a pituitary tumour (Cushing disease (CD)) or non-pituitary tumour (ectopic ACTH secretion), which stimulates excessive cortisol production. CS is associated with severe multisystem morbidity, including impaired cardiovascular and metabolic function, infections and neuropsychiatric disorders, which notably reduce quality of life. Mortality is increased owing to pulmonary emboli, infection, myocardial infarction and cerebrovascular accidents. The clinical presentation is variable and because some CS signs and symptoms are common in the general population, the diagnosis might not be considered until many features have accumulated. Guidelines recommend screening patients with suspected CS with 24-h urine cortisol, bedtime salivary cortisol and/or 1 mg dexamethasone suppression test. Subsequently, determining the aetiology of CS is important as it affects management. The first-line therapy for all aetiologies of endogenous CS is surgical resection of the causal tissue, including corticotroph adenoma or ectopic tumour for ACTH-dependent CS or unilateral or bilateral adrenalectomy for adrenal CS. Second-line therapies include steroidogenesis inhibitors for any cause of CS, pituitary radiation (with or without steroidogenesis inhibitors) for CD, and bilateral adrenalectomy for ACTH-dependent causes of CS.
Collapse
Affiliation(s)
- Lynnette K Nieman
- Section on Translational Endocrinology, Diabetes, Endocrine and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| | - Frederic Castinetti
- Aix Marseille Univ, INSERM, UMR1251, Marseille Medical Genetics, Institut MarMaRa, Marseille, France
- APHM, Department of Endocrinology, French Reference Center on Rare Pituitary Diseases HYPO, Hôpital La Conception, Marseille, France
| | - John Newell-Price
- School of Medicine & Population Health, University of Sheffield, Sheffield, UK
| | - Elena Valassi
- Endocrinology Department, Germans Trias i Pujol Hospital and Research Institute, CIBERER Unit 747, Badalona, Spain
- Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jacques Drouin
- Laboratoire de génétique moléculaire, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, McGill University, Montreal, Québec, Canada
| | - Yutaka Takahashi
- Department of Diabetes and Endocrinology, Nara Medical University, Kashihara, Nara, Japan
| | - André Lacroix
- Endocrine Division, Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Québec, Canada
| |
Collapse
|
4
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Bentley DL. Multiple Forms and Functions of Premature Termination by RNA Polymerase II. J Mol Biol 2025; 437:168743. [PMID: 39127140 PMCID: PMC11649484 DOI: 10.1016/j.jmb.2024.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
Collapse
Affiliation(s)
- David L Bentley
- Dept. Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Blears D, Lou J, Fong N, Mitter R, Sheridan RM, He D, Dirac-Svejstrup AB, Bentley D, Svejstrup JQ. Redundant pathways for removal of defective RNA polymerase II complexes at a promoter-proximal pause checkpoint. Mol Cell 2024; 84:4790-4807.e11. [PMID: 39504960 DOI: 10.1016/j.molcel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The biological purpose of Integrator and RNA polymerase II (RNAPII) promoter-proximal pausing remains uncertain. Here, we show that loss of INTS6 in human cells results in increased interaction of RNAPII with proteins that can mediate its dissociation from the DNA template, including the CRL3ARMC5 E3 ligase, which ubiquitylates CTD serine5-phosphorylated RPB1 for degradation. ARMC5-dependent RNAPII ubiquitylation is activated by defects in factors acting at the promoter-proximal pause, including Integrator, DSIF, and capping enzyme. This ARMC5 checkpoint normally curtails a sizeable fraction of RNAPII transcription, and ARMC5 knockout cells produce more uncapped transcripts. When both the Integrator and CRL3ARMC5 turnover mechanisms are compromised, cell growth ceases and RNAPII with high pausing propensity disperses from the promoter-proximal pause site into the gene body. These data support a model in which CRL3ARMC5 functions alongside Integrator in a checkpoint mechanism that removes faulty RNAPII complexes at promoter-proximal pause sites to safeguard transcription integrity.
Collapse
Affiliation(s)
- Daniel Blears
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jiangman Lou
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nova Fong
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ryan M Sheridan
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Dandan He
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - A Barbara Dirac-Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Bentley
- RNA Bioscience Initiative, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
7
|
Cacioppo R, Gillis A, Shlamovitz I, Zeller A, Castiblanco D, Crisp A, Haworth B, Arabiotorre A, Abyaneh P, Bao Y, Sale JE, Berry S, Tufegdžić Vidaković A. CRL3 ARMC5 ubiquitin ligase and Integrator phosphatase form parallel mechanisms to control early stages of RNA Pol II transcription. Mol Cell 2024; 84:4808-4823.e13. [PMID: 39667934 DOI: 10.1016/j.molcel.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/16/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Control of RNA polymerase II (RNA Pol II) through ubiquitylation is essential for the DNA-damage response. Here, we reveal a distinct ubiquitylation pathway in human cells, mediated by CRL3ARMC5, that targets excessive and defective RNA Pol II molecules at the initial stages of the transcription cycle. Upon ARMC5 loss, RNA Pol II accumulates in the free pool and in the promoter-proximal zone but is not permitted into elongation. We identify Integrator subunit 8 (INTS8) as a gatekeeper preventing the release of excess RNA Pol II molecules into gene bodies. Combined loss of ARMC5 and INTS8 has detrimental effects on cell growth and results in the uncontrolled release of excessive RNA Pol II complexes into early elongation, many of which are transcriptionally incompetent and fail to reach the ends of genes. These findings uncover CRL3ARMC5 and Integrator as two distinct pathways acting in parallel to monitor the quantity and quality of transcription complexes before they are licensed into elongation.
Collapse
Affiliation(s)
- Roberta Cacioppo
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Iván Shlamovitz
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Andrew Zeller
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Daniela Castiblanco
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Benjamin Haworth
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Angela Arabiotorre
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Pegah Abyaneh
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Yu Bao
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia; UNSW RNA Institute, University of New South Wales, Sydney, NSW, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Ana Tufegdžić Vidaković
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
Zhou F, Ding Y, Chen T, Tang Q, Zhang J, Thyparambil S, Jin B, Han Z, Chou CJ, Schilling J, Luo RY, Tian H, Sylvester KG, Whitin JC, Cohen HJ, McElhinney DB, Tian L, Ling XB, Ren Y. Targeted multiplex proteomics for the development and validation of biomarkers in primary aldosteronism subtyping. Eur J Endocrinol 2024; 191:558-569. [PMID: 39556467 DOI: 10.1093/ejendo/lvae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/07/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
OBJECTIVE Primary aldosteronism (PA), a significant cause of secondary hypertension affecting ∼10% of patients with severe hypertension, exacerbates cardiovascular, and cerebrovascular complications even after blood pressure control. PA is categorized into two main subtypes: unilateral aldosterone-producing adenomas (APA) and bilateral hyperaldosteronism (BHA), each requiring distinct treatment approaches. Accurate subtype classification is crucial for selecting the most effective treatment. The goal of this study was to develop novel blood-based proteomic biomarkers to differentiate between APA and BHA subtypes in patients with PA. DESIGN AND METHODS Five subtyping differential protein biomarker candidates (APOC3, CD56, CHGA, KRT5, and AZGP1) were identified through targeted proteomic profiling of plasma. The subtyping efficiency of these biomarkers was assessed at both the tissue gene expression and blood protein expression levels. To explore the underlying biology of APA and BHA, significant differential pathways were investigated. RESULTS The five-protein panel proved highly effective in distinguishing APA from BHA in both tissue and blood samples. By integrating these five protein biomarkers with aldosterone and renin, our blood-based predictive methods achieved remarkable receiver operating characteristic (ROC) area under the ROC curves of 0.986 (95% CI: 0.963-1.000) for differentiating essential hypertension from PA, and 0.922 (95% CI: 0.846-0.998) for subtyping APA versus BHA. These outcomes surpass the performance of the existing Kobayashi score subtyping system. Furthermore, the study validated differential pathways associated with the pathophysiology of PA, aligning with current scientific knowledge and opening new avenues for advancing PA care. CONCLUSIONS The new blood-based biomarkers for PA subtyping hold the potential to significantly enhance clinical utility and advance the practice of PA care.
Collapse
Affiliation(s)
- Fangli Zhou
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yun Ding
- Research and Development Department, mProbe Inc., Rockville, MD 20850, United States
| | - Tao Chen
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiming Tang
- Research and Development Department, mProbe Inc., Rockville, MD 20850, United States
| | - Jingjing Zhang
- Research and Development Department, mProbe Inc., Rockville, MD 20850, United States
| | - Sheeno Thyparambil
- Research and Development Department, mProbe Inc., Rockville, MD 20850, United States
| | - Bo Jin
- Research and Development Department, mProbe Inc., Rockville, MD 20850, United States
| | - Zhi Han
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - C James Chou
- Research and Development Department, mProbe Inc., Rockville, MD 20850, United States
| | - James Schilling
- Research and Development Department, mProbe Inc., Rockville, MD 20850, United States
| | - Ruben Y Luo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Haoming Tian
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Karl G Sylvester
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - John C Whitin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Harvey J Cohen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Doff B McElhinney
- Departments of Cardiothoracic Surgery and Pediatrics (Cardiology), Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Li Tian
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuefeng B Ling
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Yan Ren
- Department of Endocrinology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
9
|
Uota A, Okuno Y, Fukuhara A, Sasaki S, Kobayashi S, Shimomura I. ARMC5 selectively degrades SCAP-free SREBF1 and is essential for fatty acid desaturation in adipocytes. J Biol Chem 2024; 300:107953. [PMID: 39491648 PMCID: PMC11635738 DOI: 10.1016/j.jbc.2024.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024] Open
Abstract
SREBF1 plays the central role in lipid metabolism. It has been known that full-length SREBF1 that did not associate with SCAP (SCAP-free SREBF1) is actively degraded, but its molecular mechanism and its biological meaning remain unclear. ARMC5-CUL3 complex was recently identified as E3 ubiquitin ligase of full-length SREBF. Although ARMC5 was involved in SREBF pathway in adrenocortical cells, the role of ARMC5 in adipocytes has not been investigated. In this study, adipocyte-specific Armc5 KO mice were generated. In the white adipose tissue of these mice, all the stearoyl-CoA desaturase (Scd) were drastically downregulated. Consistently, unsaturated fatty acids were decreased and saturated fatty acids were increased. The protein amount of full-length SREBF1 was increased, but ATAC-Seq peaks at the SREBF1-binding sites were markedly diminished around the Scd1 locus in the WAT of Armc5 KO mice. Armc5-deficient 3T3-L1 adipocytes also exhibited downregulation of Scd. Mechanistically, disruption of Armc5 restored decreased full-length SREBF1 in CHO cells deficient for Scap. Overexpression of Scap inhibited ARMC5-mediated degradation of full-length SREBF1, and overexpression of Armc5 increased nuclear SREBF1/full-length SREBF1 ratio and SREBF1 transcriptional activity in the presence of exogenous SCAP. These results demonstrated that ARMC5 selectively removes SCAP-free SREBF1 and stimulates SCAP-mediated SREBF1 processing, hence is essential for fatty acid desaturation in vivo.
Collapse
Affiliation(s)
- Akifumi Uota
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yosuke Okuno
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Atsunori Fukuhara
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Adipose Management, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shugo Sasaki
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Sachiko Kobayashi
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
10
|
Bouys L, Violon F, Louiset E, Sibony M, Lefebvre H, Bertherat J. Bilateral Adrenocortical Nodular Disease and Cushing's Syndrome. J Clin Endocrinol Metab 2024; 109:2422-2432. [PMID: 38888184 DOI: 10.1210/clinem/dgae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Primary pigmented nodular adrenocortical disease (PPNAD) and bilateral macronodular adrenocortical disease (BMAD) are 2 forms of adrenocortical nodular diseases causing Cushing's syndrome but are 2 very distinct conditions. PPNAD, affecting mostly young patients with an almost constant severe Cushing's syndrome, is characterized by pigmented micronodules, usually less than 1 cm, not always visible on imaging. On the contrary, BMAD is predominantly diagnosed in the fifth and sixth decades, with highly variable degrees of cortisol excess, from mild autonomous cortisol secretion to overt Cushing's syndrome. BMAD presents as large bilateral adrenal macronodules, easily observed on imaging. Both diseases are often genetically determined: frequently PPNAD is observed in a multiple neoplasia syndrome, Carney complex, and a germline genetic defect is identified in around 80% of index cases, always affecting key actors of the cAMP/protein kinase A (PKA) pathway: mostly PRKAR1A, encoding the PKA 1-alpha regulatory subunit. On the other hand, BMAD appears mostly isolated, and 2 predisposing genes are known at present: ARMC5, accounting for around 20% of index cases, and the recently identified KDM1A, causing the rare presentation with food-dependent Cushing's syndrome, mediated by the ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR) in adrenal nodules. GIPR was the first demonstrated receptor to illegitimately regulate cortisol secretion in nodular adrenocortical diseases, and a myriad of other receptors and paracrine signals were discovered afterward. The last 30 years were pivotal in the understanding of the genetics and pathophysiology of bilateral adrenocortical nodular diseases, leading to a personalized approach of these fascinating conditions.
Collapse
Affiliation(s)
- Lucas Bouys
- Department of Endocrinology and National Reference Center for Rare Adrenal Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
- Genomics and Signaling of Endocrine Tumors, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris-Cité, F-75014 Paris, France
| | - Florian Violon
- Genomics and Signaling of Endocrine Tumors, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris-Cité, F-75014 Paris, France
- Department of Pathology, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
| | - Estelle Louiset
- Adrenal and Gonadal Pathophysiology, Université Rouen Normandie, INSERM, NorDiC UMR 1239, F-76000 Rouen, France
| | - Mathilde Sibony
- Genomics and Signaling of Endocrine Tumors, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris-Cité, F-75014 Paris, France
- Department of Pathology, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
| | - Hervé Lefebvre
- Adrenal and Gonadal Pathophysiology, Université Rouen Normandie, INSERM, NorDiC UMR 1239, F-76000 Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, CHU Rouen, F-76000 Rouen, France
| | - Jérôme Bertherat
- Department of Endocrinology and National Reference Center for Rare Adrenal Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, F-75014 Paris, France
- Genomics and Signaling of Endocrine Tumors, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris-Cité, F-75014 Paris, France
| |
Collapse
|
11
|
Violon F, Bouys L, Vaduva P, Chansavang A, Vaquier L, Letourneur F, Izac B, Giannone G, De Murat D, Gaillard M, Berthon A, Ragazzon B, Pasmant E, Sibony M, Bertherat J. Somatic Molecular Heterogeneity in Bilateral Macronodular Adrenocortical Disease (BMAD) Differs Among the Pathological Subgroups. Endocr Pathol 2024; 35:194-206. [PMID: 39180662 DOI: 10.1007/s12022-024-09824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Bilateral macronodular adrenocortical disease (BMAD) is an uncommon cause of Cushing's syndrome leading to bilateral macronodules. Isolated BMAD has been classified into three molecular groups: patients with ARMC5 alteration, KDM1A alteration, and patients without known genetic cause. The aim of this study was to identify by NGS, in a cohort of 26 patients with BMAD, the somatic alterations acquired in different nodules after macrodissection from patients with germline ARMC5 or KDM1A alterations and to analyze potential somatic alterations in a panel of five other genes involved in adrenal pathology (GNAS, PDE8B, PDE11A, PRKAR1A, and PRKACA). Twenty-three patients (7 ARMC5, 3 KDM1A, and 13 BMAD with unknown genetic cause) were analyzable. Somatic ARMC5 or KDM1A events were exclusively observed in patients with germline ARMC5 and KDM1A alterations, respectively. Six out of 7 ARMC5 patients have a high heterogeneity in identified somatic events, whereas one ARMC5 and all KDM1A patients show a loss of heterozygosity (LOH) in all nodules. Except for passenger alterations of GNAS, no genetic alteration susceptible to causing the disease was detected in the BMAD with unknown genetic cause. Our study reinforces our knowledge of the somatic genetic heterogeneity of ARMC5 and the somatic homogeneity of KDM1A. It reveals the absence of purely somatic events in these two genes and provides a new tool for detecting KDM1A alterations by FISH 1p36/1q25.
Collapse
Affiliation(s)
- Florian Violon
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Pathology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Lucas Bouys
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Patricia Vaduva
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Albain Chansavang
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Genomic Medicine of Tumors and Cancers, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Louis Vaquier
- Department of Pathology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Franck Letourneur
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Genom'IC Platform, Cochin Institute, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Brigitte Izac
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Genom'IC Platform, Cochin Institute, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Gaëtan Giannone
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Daniel De Murat
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Martin Gaillard
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Digestive, Hepatobiliary and Endocrine Surgery, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Annabel Berthon
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Bruno Ragazzon
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Eric Pasmant
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Genomic Medicine of Tumors and Cancers, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Mathilde Sibony
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France
- Department of Pathology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 27 Rue du Faubourg Saint Jacques, 75014, Paris, France
| | - Jérôme Bertherat
- Paris-Cité University, Cochin Institute CNRS UMR8104, Inserm U1016, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 Rue du Faubourg Saint Jacques, 75014, Paris, France.
| |
Collapse
|
12
|
Gillis A, Berry S. Global control of RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195024. [PMID: 38552781 DOI: 10.1016/j.bbagrm.2024.195024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
RNA polymerase II (Pol II) is the multi-protein complex responsible for transcribing all protein-coding messenger RNA (mRNA). Most research on gene regulation is focused on the mechanisms controlling which genes are transcribed when, or on the mechanics of transcription. How global Pol II activity is determined receives comparatively less attention. Here, we follow the life of a Pol II molecule from 'assembly of the complex' to nuclear import, enzymatic activity, and degradation. We focus on how Pol II spends its time in the nucleus, and on the two-way relationship between Pol II abundance and activity in the context of homeostasis and global transcriptional changes.
Collapse
Affiliation(s)
- Alexander Gillis
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Scott Berry
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, Australia; UNSW RNA Institute, University of New South Wales, Sydney, Australia; Department of Molecular Medicine, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
13
|
Liu J, Isaji T, Komatsu S, Sun Y, Xu X, Fukuda T, Fujimura T, Takahashi S, Gu J. BRCC36 associates with FLT3-ITD to regulate its protein stability and intracellular signaling in acute myeloid leukemia. Cancer Sci 2024; 115:1196-1208. [PMID: 38288901 PMCID: PMC11007003 DOI: 10.1111/cas.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 04/12/2024] Open
Abstract
Fms-like tyrosine kinase-3 (FLT3) is a commonly mutated gene in acute myeloid leukemia (AML). The two most common mutations are the internal-tandem duplication domain (ITD) mutation and the tyrosine kinase domain (TKD) mutation. FLT3-ITD and FLT3-TKD exhibit distinct protein stability, cellular localization, and intracellular signaling. To understand the underlying mechanisms, we performed proximity labeling with TurboID to identify proteins that regulate FLT3-ITD or -TKD differently. We found that BRCA1/BRCA2-containing complex subunit 36 (BRCC36), a specific K63-linked polyubiquitin deubiquitinase, was exclusively associated with ITD, not the wild type of FLT3 and TKD. Knockdown of BRCC36 resulted in decreased signal transducers and activators of transcription 5 phosphorylation and cell proliferation in ITD cells. Consistently, treatment with thiolutin, an inhibitor of BRCC36, specifically suppressed cell proliferation and induced cell apoptosis in ITD cells. Thiolutin efficiently affected leukemia cell lines expressing FLT3-ITD cell viability and exhibited mutual synergies with quizartinib, a standard clinical medicine for AML. Furthermore, mutation of the lysine at 609 of ITD led to significant suppression of K63 polyubiquitination and decreased its stability, suggesting that K609 is a critical site for K63 ubiquitination specifically recognized by BRCC36. These data indicate that BRCC36 is a specific regulator for FLT3-ITD, which may shed light on developing a novel therapeutic approach for AML.
Collapse
Affiliation(s)
- Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Sachiko Komatsu
- Division of Bioanalytical ChemistryTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Tsutomu Fujimura
- Division of Bioanalytical ChemistryTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and GlycobiologyTohoku Medical and Pharmaceutical UniversitySendaiMiyagiJapan
| |
Collapse
|
14
|
Luo H, Lao L, Au KS, Northrup H, He X, Forget D, Gauthier MS, Coulombe B, Bourdeau I, Shi W, Gagliardi L, Fragoso MCBV, Peng J, Wu J. ARMC5 controls the degradation of most Pol II subunits, and ARMC5 mutation increases neural tube defect risks in mice and humans. Genome Biol 2024; 25:19. [PMID: 38225631 PMCID: PMC10789052 DOI: 10.1186/s13059-023-03147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neural tube defects (NTDs) are caused by genetic and environmental factors. ARMC5 is part of a novel ubiquitin ligase specific for POLR2A, the largest subunit of RNA polymerase II (Pol II). RESULTS We find that ARMC5 knockout mice have increased incidence of NTDs, such as spina bifida and exencephaly. Surprisingly, the absence of ARMC5 causes the accumulation of not only POLR2A but also most of the other 11 Pol II subunits, indicating that the degradation of the whole Pol II complex is compromised. The enlarged Pol II pool does not lead to generalized Pol II stalling or a generalized decrease in mRNA transcription. In neural progenitor cells, ARMC5 knockout only dysregulates 106 genes, some of which are known to be involved in neural tube development. FOLH1, critical in folate uptake and hence neural tube development, is downregulated in the knockout intestine. We also identify nine deleterious mutations in the ARMC5 gene in 511 patients with myelomeningocele, a severe form of spina bifida. These mutations impair the interaction between ARMC5 and Pol II and reduce Pol II ubiquitination. CONCLUSIONS Mutations in ARMC5 increase the risk of NTDs in mice and humans. ARMC5 is part of an E3 controlling the degradation of all 12 subunits of Pol II under physiological conditions. The Pol II pool size might have effects on NTD pathogenesis, and some of the effects might be via the downregulation of FOLH1. Additional mechanistic work is needed to establish the causal effect of the findings on NTD pathogenesis.
Collapse
Affiliation(s)
- Hongyu Luo
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
| | - Linjiang Lao
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Xiao He
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Diane Forget
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Bourdeau
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
- Division of Endocrinology, CHUM, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Wei Shi
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Lucia Gagliardi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
- Endocrine and Diabetes Unit, Queen Elizabeth Hospital, Adelaide, Australia
| | - Maria Candida Barisson Villares Fragoso
- Unidade de Suprarrenal Disciplina de Endocrinologia E Metabologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Junzheng Peng
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jiangping Wu
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.
- Division of Nephrology, CHUM, Montreal, QC, Canada.
| |
Collapse
|
15
|
Bertherat J, Bourdeau I, Bouys L, Chasseloup F, Kamenicky P, Lacroix A. Clinical, pathophysiologic, genetic and therapeutic progress in Primary Bilateral Macronodular Adrenal Hyperplasia. Endocr Rev 2022:6957368. [PMID: 36548967 DOI: 10.1210/endrev/bnac034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) usually present bilateral benign adrenocortical macronodules at imaging and variable levels of cortisol excess. PBMAH is a rare cause of primary overt Cushing's syndrome, but may represent up to one third of bilateral adrenal incidentalomas with evidence of cortisol excess. The increased steroidogenesis in PBMAH is often regulated by various G-protein coupled receptors aberrantly expressed in PBMAH tissues; some receptor ligands are ectopically produced in PBMAH tissues creating aberrant autocrine/paracrine regulation of steroidogenesis. The bilateral nature of PBMAH and familial aggregation, led to the identification of germline heterozygous inactivating mutations of the ARMC5 gene, in 20-25% of the apparent sporadic cases and more frequently in familial cases; ARMC5 mutations/pathogenic variants can be associated with meningiomas. More recently, combined germline mutations/pathogenic variants and somatic events inactivating the KDM1A gene were specifically identified in patients affected by GIP-dependent PBMAH. Functional studies demonstrated that inactivation of KDM1A leads to GIP-receptor (GIPR) overexpression and over or down-regulation of other GPCRs. Genetic analysis is now available for early detection of family members of index cases with PBMAH carrying identified germline pathogenic variants. Detailed biochemical, imaging, and co-morbidities assessment of the nature and severity of PBMAH is essential for its management. Treatment is reserved for patients with overt or mild cortisol/aldosterone or other steroid excesses taking in account co-morbidities. It previously relied on bilateral adrenalectomy; however recent studies tend to favor unilateral adrenalectomy, or less frequently, medical treatment with cortisol synthesis inhibitors or specific blockers of aberrant GPCR.
Collapse
Affiliation(s)
- Jerôme Bertherat
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Lucas Bouys
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Cochin Hospital, Assistance Publique Hôpitaux de Paris, 24 rue du Fg St Jacques, Paris 75014, France
| | - Fanny Chasseloup
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, 94276 Le Kremlin-Bicêtre, France
| | - André Lacroix
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| |
Collapse
|
16
|
Muñoz JC, Beckerman I, Choudhary R, Bouvier LA, Muñoz MJ. DNA Damage-Induced RNAPII Degradation and Its Consequences in Gene Expression. Genes (Basel) 2022; 13:1951. [PMID: 36360188 PMCID: PMC9689695 DOI: 10.3390/genes13111951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
RPB1, the major and catalytic subunit of human RNA Polymerase II (RNAPII), is specifically degraded by the ubiquitin-proteasome system upon induction of DNA damage by different agents, such as ultraviolet (UV) light. The "last resort" model of RNAPII degradation states that a persistently stalled RNAPII is degraded at the site of the DNA lesion in order to facilitate access to Nucleotide Excision Repair (NER) factors, thereby promoting repair in template strands of active genes. Recent identification and mutation of the lysine residue involved in RPB1 ubiquitylation and degradation unveiled the relevance of RNAPII levels in the control of gene expression. Inhibition of RNAPII degradation after UV light exposure enhanced RNAPII loading onto chromatin, demonstrating that the mere concentration of RNAPII shapes the gene expression response. In this review, we discuss the role of RNAPII ubiquitylation in NER-dependent repair, recent advances in RPB1 degradation mechanisms and its consequences in gene expression under stress, both in normal and repair deficient cells.
Collapse
Affiliation(s)
- Juan Cristobal Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Inés Beckerman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Ramveer Choudhary
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - León Alberto Bouvier
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - Manuel J. Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| |
Collapse
|