1
|
Klabenkova K, Zakhryamina A, Burakova E, Bizyaev S, Fokina A, Stetsenko D. Synthesis of New Polyfluoro Oligonucleotides via Staudinger Reaction. Int J Mol Sci 2024; 26:300. [PMID: 39796153 PMCID: PMC11719919 DOI: 10.3390/ijms26010300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Nowadays, nucleic acid derivatives capable of modulating gene expression at the RNA level have gained widespread recognition as promising therapeutic agents. A suitable degree of biological stability of oligonucleotide therapeutics is required for in vivo application; this can be most expeditiously achieved by the chemical modification of the internucleotidic phosphate group, which may also affect their cellular uptake, tissue distribution and pharmacokinetics. Our group has previously developed a strategy for the chemical modification of the phosphate group via the Staudinger reaction on a solid phase of the intermediate dinucleoside phosphite triester and a range of, preferably, electron deficient organic azides such as sulfonyl azides during automated solid-phase DNA synthesis according to the conventional β-cyanoethyl phosphoramidite scheme. Polyfluoro compounds are characterized by unique properties that have prompted their extensive application both in industry and in scientific research. We report herein the synthesis and isolation of novel oligodeoxyribonucleotides incorporating internucleotidic perfluoro-1-octanesulfonyl phosphoramidate or 2,2,2-trifluoroethanesulfonyl phosphoramidate groups. In addition, novel oligonucleotide derivatives with fluorinated zwitterionic phosphate mimics were synthesized by a tandem methodology, which involved (a) the introduction of a carboxylic ester group at the internucleotidic position via the Staudinger reaction with methyl 2,2-difluoro-3-azidosulfonylacetate; and (b) treatment with an aliphatic diamine, e.g., 1,1-dimethylethylenediamine or 1,3-diaminopropane. It was further shown that the polyfluoro oligonucleotides obtained were able to form complementary duplexes with either DNA or RNA, which were not significantly differing in stability from the natural counterparts. Long-chain perfluoroalkyl oligonucleotides were taken up into cultured human cells in the absence of a transfection agent. It may be concluded that the polyfluoro oligonucleotides described here can represent a useful platform for designing oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kristina Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alyona Zakhryamina
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.K.); (E.B.); (S.B.); (A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Tanimoto H, Tomohiro T. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds. Chem Commun (Camb) 2024; 60:12062-12100. [PMID: 39302239 DOI: 10.1039/d4cc03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Going beyond the conventional approach of pairwise conjugation between two molecules, the integration of multiple components onto a central scaffold molecule is essential for the development of high-performance molecular materials with multifunctionality. This approach also facilitates the creation of functionalized molecular probes applicable in diverse fields ranging from pharmaceuticals to polymeric materials. Among the various click functional groups, the azido group stands out as a representative click functional group due to its steric compactness, high reactivity, handling stability, and easy accessibility in the context of multi-azide scaffolds. However, the azido groups in multi-azide scaffolds have not been well exploited for site-specific use in molecular conjugation. In fact, multi-azide compounds have been well used to conjugate to the same multiple fragments. To circumvent problems of promiscuous and random coupling of multiple different fragments to multiple azido positions, it is imperative to distinguish specific azido positions and use them orthogonally for molecular conjugation. This review outlines methods and strategies to exploit specific azide positions for molecular conjugation in the presence of multiple azido groups. Illustrative examples covering di-, tri- and tetraazide click scaffolds are included.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
3
|
Callaghan KL, Sherrell PC, Ellis AV. The Impact of Activating Agents on Non-Enzymatic Nucleic Acid Extension Reactions. Chembiochem 2024; 25:e202300859. [PMID: 38282207 DOI: 10.1002/cbic.202300859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Non-enzymatic template-directed primer extension is increasingly being studied for the production of RNA and DNA. These reactions benefit from producing RNA or DNA in an aqueous, protecting group free system, without the need for expensive enzymes. However, these primer extension reactions suffer from a lack of fidelity, low reaction rates, low overall yields, and short primer extension lengths. This review outlines a detailed mechanistic pathway for non-enzymatic template-directed primer extension and presents a review of the thermodynamic driving forces involved in entropic templating. Through the lens of entropic templating, the rate and fidelity of a reaction are shown to be intrinsically linked to the reactivity of the activating agent used. Thus, a strategy is discussed for the optimization of non-enzymatic template-directed primer extension, providing a path towards cost-effective in vitro synthesis of RNA and DNA.
Collapse
Affiliation(s)
- Kimberley L Callaghan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peter C Sherrell
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- School of Science, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
4
|
Klabenkova KV, Zhdanova PV, Burakova EA, Bizyaev SN, Fokina AA, Stetsenko DA. A Convenient Oligonucleotide Conjugation via Tandem Staudinger Reaction and Amide Bond Formation at the Internucleotidic Phosphate Position. Int J Mol Sci 2024; 25:2007. [PMID: 38396686 PMCID: PMC10889076 DOI: 10.3390/ijms25042007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Staudinger reaction on the solid phase between an electronodeficit organic azide, such as sulfonyl azide, and the phosphite triester formed upon phosphoramidite coupling is a convenient method for the chemical modification of oligonucleotides at the internucleotidic phosphate position. In this work, 4-carboxybenzenesulfonyl azide, either with a free carboxy group or in the form of an activated ester such as pentafluorophenyl, 4-nitrophenyl, or pentafluorobenzyl, was used to introduce a carboxylic acid function to the terminal or internal internucleotidic phosphate of an oligonucleotide via the Staudinger reaction. A subsequent treatment with excess primary alkyl amine followed by the usual work-up, after prior activation with a suitable peptide coupling agent such as a uronium salt/1-hydroxybenzotriazole in the case of a free carboxyl, afforded amide-linked oligonucleotide conjugates in good yields including multiple conjugations of up to the exhaustive modification at each phosphate position for a weakly activated pentafluorobenzyl ester, whereas more strongly activated and, thus, more reactive aryl esters provided only single conjugations at the 5'-end. The conjugates synthesized include those with di- and polyamines that introduce a positively charged side chain to potentially assist the intracellular delivery of the oligonucleotide.
Collapse
Affiliation(s)
- Kristina V. Klabenkova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Polina V. Zhdanova
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia;
| | - Ekaterina A. Burakova
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sergei N. Bizyaev
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Alesya A. Fokina
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Dmitry A. Stetsenko
- Department of Physics, Novosibirsk State University, 2 Pirogov Str., Novosibirsk 630090, Russia; (K.V.K.); (E.A.B.); (S.N.B.); (A.A.F.)
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Zharkov TD, Markov OV, Zhukov SA, Khodyreva SN, Kupryushkin MS. Influence of Combinations of Lipophilic and Phosphate Backbone Modifications on Cellular Uptake of Modified Oligonucleotides. Molecules 2024; 29:452. [PMID: 38257365 PMCID: PMC10818405 DOI: 10.3390/molecules29020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Numerous types of oligonucleotide modifications have been developed since automated synthesis of DNA/RNA became a common instrument in the creation of synthetic oligonucleotides. Despite the growing number of types of oligonucleotide modifications under development, only a few of them and, moreover, their combinations have been studied widely enough in terms of their influence on the properties of corresponding NA constructions. In the present study, a number of oligonucleotides with combinations of 3'-end lipophilic (a single cholesteryl or a pair of dodecyl residues) and phosphate backbone modifications were synthesized. The influence of the combination of used lipophilic groups with phosphate modifications of various natures and different positions on the efficiency of cell penetration was evaluated. The obtained results indicate that even a couple of phosphate modifications are able to affect a set of oligonucleotide properties in a complex manner and can remarkably change cellular uptake. These data clearly show that the strategy of using different patterns of modification combinations has great potential for the rational design of oligonucleotide structures with desired predefined properties.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S. Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (T.D.Z.); (O.V.M.); (S.A.Z.); (S.N.K.)
| |
Collapse
|
6
|
Smidt JM, Lykke L, Stidsen CE, Pristovšek N, Gothelf K. Synthesis of peptide-siRNA conjugates via internal sulfonylphosphoramidate modifications and evaluation of their in vitro activity. Nucleic Acids Res 2024; 52:49-58. [PMID: 37971296 PMCID: PMC10783514 DOI: 10.1093/nar/gkad1015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Conjugates of therapeutic oligonucleotides (ONs) including peptide conjugates, provide a potential solution to the major challenge of specific tissue delivery faced by this class of drugs. Conjugations are often positioned terminal at the ONs, although internal placement of other chemical modifications are known to be of critical importance. The introduction of internal conjugation handles in chemically modified ONs require highly specialized and expensive nucleoside phosphoramidites. Here, we present a method for synthesizing a library of peptide-siRNA conjugates by conjugation at internal phosphorous positions via sulfonylphosphoramidate modifications incorporated into the sense strand. The sulfonylphosphoramidate modification offers benefits as it can be directly incorporated into chemically modified ONs by simply changing the oxidation step during synthesis, and furthermore holds the potential to create multifunctionalized therapeutic ONs. We have developed a workflow using a novel pH-controlled amine-to-amine linker that yields peptide-siRNA conjugates linked via amide bonds, and we have synthesized conjugates between GLP1 peptides and a HPRT1 siRNA as a model system. The in vitro activity of the conjugates was tested by GLP1R activity and knockdown of the HPRT1 gene. We found that conjugation near the 3'-end is more favorable than certain central internal positions and different internal conjugation strategies were compared.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Lennart Lykke
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Carsten Enggaard Stidsen
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Nuša Pristovšek
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
7
|
Park JY, Cho YL, Chae JR, Lee JH, Kang WJ. Enhancement of in vivo targeting properties of ErbB2 aptamer by chemical modification. PLoS One 2023; 18:e0291624. [PMID: 37729138 PMCID: PMC10511116 DOI: 10.1371/journal.pone.0291624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023] Open
Abstract
Aptamers have great potential for diagnostics and therapeutics due to high specificity to target molecules. However, studies have shown that aptamers are rapidly distributed and excreted from blood circulation due to nuclease degradation. To overcome this issue and to improve in vivo pharmacokinetic properties, inverted deoxythymidine (idT) incorporation at the end of aptamer has been developed. The goal of this study was to evaluate the biological characterization of 3'-idT modified ErbB2 aptamer and compare with that of unmodified aptamer via nuclear imaging. ErbB2-idT aptamer was labeled with radioisotope F-18 by base-pair hybridization using complementary oligonucleotide platform. The hyErbB2-idT aptamer demonstrated specific binding to targets in a ErbB2 expressing SK-BR-3 and KPL4 cells in vitro. Ex vivo biodistribution and in vivo imaging was studied in KPL4 xenograft bearing Balb/c nu/nu mice. 18F-hyErbB2-idT aptamer had significantly higher retention in the tumor (1.36 ± 0.17%ID/g) than unmodified 18F-hyErbB2 (0.98 ± 0.19%ID/g) or scrambled aptamer (0.79 ± 0.26% ID/g) at 1 h post-injection. 18F-hyErbB2-idT aptamer exhibited relatively slow blood clearance and delayed excretion by the renal and hepatobiliary system than 18F-hyErbB2 aptamer. In vivo PET imaging study showed that 18F-hyErbB2-idT aptamer had more stronger PET signals on KPL4 tumor than 18F-hyErbB2 aptamer. The results of this study demonstrate that attachment of idT at 3'-end of aptamer have a substantial influence on biological stability and extended blood circulation led to enhanced tumor uptake of aptamer.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Ri Chae
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Lee
- INTEROligo Corporation, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Bai J, Zou J, Cao Y, Du Y, Chen T. Recognition of an Unnatural Base Pair by Tool Enzymes from Bacteriophages and Its Application in the Enzymatic Preparation of DNA with an Expanded Genetic Alphabet. ACS Synth Biol 2023; 12:2676-2690. [PMID: 37590442 DOI: 10.1021/acssynbio.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Unnatural base pairs (UBPs) have been developed to expand the genetic alphabet in vitro and in vivo. UBP dNaM-dTPT3 and its analogues have been successfully used to construct the first set of semi-synthetic organisms, which suggested the great potential of UBPs to be used for producing novel synthetic biological parts. Two prerequisites for doing so are the facile manipulation of DNA containing UBPs with common tool enzymes, including DNA polymerases and ligases, and the easy availability of UBP-containing DNA strands. Besides, for the application of UBPs in phage synthetic biology, the recognition of UBPs by phage enzymes is essential. Here, we first explore the recognition of dNaM-dTPT3 by a family B DNA polymerase from bacteriophage, T4 DNA polymerase D219A. Results from primer extension, steady-state kinetics, and gap-filling experiments suggest that T4 DNA polymerase D219A can efficiently and faithfully replicate dNaM-dTPT3, and efficiently fill a gap by inserting dTPT3TP or its analogues opposite dNaM. We then systematically explore the recognition of dNaM-dTPT3 and its analogues by different DNA ligases from bacteriophages and find that these DNA ligases are generally able to efficiently ligate the DNA nick next to dNaM-dTPT3 or its analogues, albeit with slightly different efficiencies. These results suggest more enzymatic tools for the manipulation of dNaM-dTPT3 and indicate the potential use of dNaM-dTPT3 for expanding the genetic alphabet in bacteriophages. Based on these results, we next develop and comprehensively optimize an upgraded method for enzymatic preparation of unnatural nucleobase (UB)-containing DNA oligonucleotides with good simplicity and universality.
Collapse
Affiliation(s)
- Jingsi Bai
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yijun Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
9
|
Hansen RA, Märcher A, Pedersen KN, Gothelf KV. Insertion of Chemical Handles into the Backbone of DNA during Solid-Phase Synthesis by Oxidative Coupling of Amines to Phosphites. Angew Chem Int Ed Engl 2023; 62:e202305373. [PMID: 37119479 DOI: 10.1002/anie.202305373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023]
Abstract
Conjugation of molecules or proteins to oligonucleotides can improve their functional and therapeutic capacity. However, such modifications are often limited to the 5' and 3' end of oligonucleotides. Herein, we report the development of an inexpensive and simple method that allows for the insertion of chemical handles into the backbone of oligonucleotides. This method is compatible with standardized automated solid-phase oligonucleotide synthesis, and relies on formation of phosphoramidates. A unique phosphoramidite is incorporated into a growing oligonucleotide, and oxidized to the desired phosphoramidate using iodine and an amine of choice. Azides, alkynes, amines, and alkanes have been linked to oligonucleotides via internally positioned phosphoramidates with oxidative coupling yields above 80 %. We show the design of phosphoramidates from secondary amines that specifically hydrolyze to the phosphate only at decreased pH. Finally, we show the synthesis of an antibody-DNA conjugate, where the oligonucleotide can be selectively released in a pH 5.5 buffer.
Collapse
Affiliation(s)
- Rikke A Hansen
- sDepartment of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Anders Märcher
- sDepartment of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kristian Nørgaard Pedersen
- sDepartment of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| | - Kurt V Gothelf
- sDepartment of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus, Denmark
| |
Collapse
|
10
|
Meher S, Gade CR, Sharma NK. Tropolone-Conjugated DNA: A Fluorescent Thymidine Analogue Exhibits Solvatochromism, Enzymatic Incorporation into DNA and HeLa Cell Internalization. Chembiochem 2023; 24:e202200732. [PMID: 36510378 DOI: 10.1002/cbic.202200732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Tropolone is a non-benzenoid aromatic scaffold with unique photophysical and metal-chelating properties. Recently, it has been conjugated with DNA, and the photophysical properties of this conjugate have been explored. Tropolonyl-deoxyuridine (tr-dU) is a synthetic fluorescent DNA nucleoside analogue that exhibits pH-dependent emissions. However, its solvent-dependent fluorescence properties are unexplored owing to its poor solubility in most organic solvents. It would be interesting to incorporate it into DNA primer enzymatically. This report describes the solvent-dependent fluorescence properties of the silyl-derivative, and enzymatic incorporation of its triphosphate analogue. For practical use, its cell-internalization and cytotoxicity are also explored. tr-dU nucleoside was found to be a potential analogue to design DNA probes and can be explored for various therapeutic applications in the future.
Collapse
Affiliation(s)
- Sagarika Meher
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Chandrasekhar Reddy Gade
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Nagendra K Sharma
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatani, 752050, Odisha, India.,Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
11
|
Kanlidere Z. Template-Directed Incorporation of Functional Molecules into DNA. Chembiochem 2023; 24:e202200554. [PMID: 36520932 DOI: 10.1002/cbic.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
We report a versatile method for the incorporation of functional molecules into oligonucleotides carrying reactive groups by using a template-directed postsynthetic approach in the solution phase. For this purpose, we prepared oligonucleotides carrying an amino group on the backbone by using an acylic threoninol scaffold. The resulting oligonucleotides could be used to introduce almost any molecule carrying aldehyde, which can be, among other things, a metal-binding ligand or a fluorophore. In our study, we incorporated aldehyde-bearing phenanthroline, a metal-binding ligand, into oligonucleotides by template-directed reversible conjugation. We observed that the use of an abasic sugar site instead of a natural nucleobase in the template strand increased the yield of conjugation and induced selective incorporation of the phenanthroline. This method could lead progress in the development of probes for the recognition of abasic regions in duplex DNA. Moreover, template-directed formation of metal ligand-oligonucleotide conjugates might have potential applications in hybrid biocatalysis for enantioselective transformations.
Collapse
Affiliation(s)
- Zeynep Kanlidere
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No: 32 Atasehir, 34752, Istanbul, Turkey
| |
Collapse
|
12
|
Vasilyeva SV, Baranovskaya EE, Dyudeeva ES, Lomzov AA, Pyshnyi DV. Synthesis of Oligonucleotides Carrying Inter-nucleotide N-(Benzoazole)-phosphoramide Moieties. ACS OMEGA 2023; 8:1556-1566. [PMID: 36643477 PMCID: PMC9835791 DOI: 10.1021/acsomega.2c07083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In this work, we present new oligonucleotide derivatives containing inter-nucleotide N-benzimidazole, N-benzoxazole, N-benzothiazole, and 1,3-dimethyl-N-benzimidazole (benzoazoles) phosphoramide groups. These modifications were introduced via the Staudinger reaction with appropriate azides during standard automated solid-phase oligonucleotide synthesis. The principal structural difference between the new azido modifiers and those already known is that they are bulk heterocyclic structures, similar to purine nucleoside bases. Modified oligonucleotides with one and two modifications at different positions and multiple modified heteronucleotide sequences were obtained with high yields. The possibility of multiple modifications in the process of automatic DNA synthesis is fundamental and critical for further application of our oligonucleotide derivatives. Initial studies on the properties of new oligonucleotides were carried out. The stability of the oligodeoxyribonucleotide duplex containing phosphoramide groups of N-benzoazoles with complementary DNA or RNA is slightly lower than that of native complexes.
Collapse
Affiliation(s)
| | | | - Evgeniya S. Dyudeeva
- Institute of Chemical Biology and Fundamental
Medicine, SB of RAS, pr. Lavrent’eva 8, 630090 Novosibirsk, Russia
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental
Medicine, SB of RAS, pr. Lavrent’eva 8, 630090 Novosibirsk, Russia
| | - Dmitrii V. Pyshnyi
- Institute of Chemical Biology and Fundamental
Medicine, SB of RAS, pr. Lavrent’eva 8, 630090 Novosibirsk, Russia
| |
Collapse
|