1
|
Yao B, Lei Z, Gonçalves MAFV, Sluijter JPG. Integrating Prime Editing and Cellular Reprogramming as Novel Strategies for Genetic Cardiac Disease Modeling and Treatment. Curr Cardiol Rep 2024; 26:1197-1208. [PMID: 39259489 PMCID: PMC11538137 DOI: 10.1007/s11886-024-02118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW This review aims to evaluate the potential of CRISPR-based gene editing tools, particularly prime editors (PE), in treating genetic cardiac diseases. It seeks to answer how these tools can overcome current therapeutic limitations and explore the synergy between PE and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for personalized medicine. RECENT FINDINGS Recent advancements in CRISPR technology, including CRISPR-Cas9, base editors, and PE, have demonstrated precise genome correction capabilities. Notably, PE has shown exceptional precision in correcting genetic mutations. Combining PE with iPSC-CMs has emerged as a robust platform for disease modeling and developing innovative treatments for genetic cardiac diseases. The review finds that PE, when combined with iPSC-CMs, holds significant promise for treating genetic cardiac diseases by addressing their root causes. This approach could revolutionize personalized medicine, offering more effective and precise treatments. Future research should focus on refining these technologies and their clinical applications.
Collapse
Affiliation(s)
- Bing Yao
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Zhiyong Lei
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Wang Q, Capelletti S, Liu J, Janssen JM, Gonçalves MAFV. Selection-free precise gene repair using high-capacity adenovector delivery of advanced prime editing systems rescues dystrophin synthesis in DMD muscle cells. Nucleic Acids Res 2024; 52:2740-2757. [PMID: 38321963 DOI: 10.1093/nar/gkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Prime editors have high potential for disease modelling and regenerative medicine efforts including those directed at the muscle-wasting disorder Duchenne muscular dystrophy (DMD). However, the large size and multicomponent nature of prime editing systems pose substantial production and delivery issues. Here, we report that packaging optimized full-length prime editing constructs in adenovector particles (AdVPs) permits installing precise DMD edits in human myogenic cells, namely, myoblasts and mesenchymal stem cells (up to 80% and 64%, respectively). AdVP transductions identified optimized prime-editing reagents capable of correcting DMD reading frames of ∼14% of patient genotypes and restoring dystrophin synthesis and dystrophin-β-dystroglycan linkages in unselected DMD muscle cell populations. AdVPs were equally suitable for correcting DMD iPSC-derived cardiomyocytes and delivering dual prime editors tailored for DMD repair through targeted exon 51 deletion. Moreover, by exploiting the cell cycle-independent AdVP transduction process, we report that 2- and 3-component prime-editing modalities are both most active in cycling than in post-mitotic cells. Finally, we establish that combining AdVP transduction with seamless prime editing allows for stacking chromosomal edits through successive delivery rounds. In conclusion, AdVPs permit versatile investigation of advanced prime editing systems independently of their size and component numbers, which should facilitate their screening and application.
Collapse
Affiliation(s)
- Qian Wang
- Leiden University Medical Centre, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Sabrina Capelletti
- Leiden University Medical Centre, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jin Liu
- Leiden University Medical Centre, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Josephine M Janssen
- Leiden University Medical Centre, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Centre, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
3
|
Fu Y, He X, Gao XD, Li F, Ge S, Yang Z, Fan X. Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing) 2023; 68:3278-3291. [PMID: 37973465 DOI: 10.1016/j.scib.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge MA 02141, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge MA 02138, USA
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
4
|
Mikkelsen NS, Bak RO. Enrichment strategies to enhance genome editing. J Biomed Sci 2023; 30:51. [PMID: 37393268 PMCID: PMC10315055 DOI: 10.1186/s12929-023-00943-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Genome editing technologies hold great promise for numerous applications including the understanding of cellular and disease mechanisms and the development of gene and cellular therapies. Achieving high editing frequencies is critical to these research areas and to achieve the overall goal of being able to manipulate any target with any desired genetic outcome. However, gene editing technologies sometimes suffer from low editing efficiencies due to several challenges. This is often the case for emerging gene editing technologies, which require assistance for translation into broader applications. Enrichment strategies can support this goal by selecting gene edited cells from non-edited cells. In this review, we elucidate the different enrichment strategies, their many applications in non-clinical and clinical settings, and the remaining need for novel strategies to further improve genome research and gene and cellular therapy studies.
Collapse
Affiliation(s)
- Nanna S Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark.
| |
Collapse
|
5
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
6
|
Berling E, Nicolle R, Laforêt P, Ronzitti G. Gene therapy review: Duchenne muscular dystrophy case study. Rev Neurol (Paris) 2023; 179:90-105. [PMID: 36517287 DOI: 10.1016/j.neurol.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Gene therapy, i.e., any therapeutic approach involving the use of genetic material as a drug and more largely altering the transcription or translation of one or more genes, covers a wide range of innovative methods for treating diseases, including neurological disorders. Although they share common principles, the numerous gene therapy approaches differ greatly in their mechanisms of action. They also differ in their maturity for some are already used in clinical practice while others have never been used in humans. The aim of this review is to present the whole range of gene therapy techniques through the example of Duchenne muscular dystrophy (DMD). DMD is a severe myopathy caused by mutations in the dystrophin gene leading to the lack of functional dystrophin protein. It is a disease known to all neurologists and in which almost all gene therapy methods were applied. Here we discuss the mechanisms of gene transfer techniques with or without viral vectors, DNA editing with or without matrix repair and those acting at the RNA level (RNA editing, exon skipping and STOP-codon readthrough). For each method, we present the results obtained in DMD with a particular focus on clinical data. This review aims also to outline the advantages, limitations and risks of gene therapy related to the approach used.
Collapse
Affiliation(s)
- E Berling
- Neurology department, Raymond Poincaré university hospital, AP-HP, Garches, France; Nord-Est-Île-de-France neuromuscular reference center, FHU PHENIX, Garches, France; U 1179 Inserm, université Paris-Saclay, Montigny-Le-Bretonneux, France.
| | - R Nicolle
- Université Paris Cité, Inserm UMR1163, Imagine Institute, Clinical Bioinformatics laboratory, 75015 Paris, France
| | - P Laforêt
- Neurology department, Raymond Poincaré university hospital, AP-HP, Garches, France; Nord-Est-Île-de-France neuromuscular reference center, FHU PHENIX, Garches, France; U 1179 Inserm, université Paris-Saclay, Montigny-Le-Bretonneux, France
| | - G Ronzitti
- Université Paris Cité, Inserm UMR1163, Imagine Institute, Clinical Bioinformatics laboratory, 75015 Paris, France; Genethon, Evry, France
| |
Collapse
|
7
|
Biederstädt A, Manzar GS, Daher M. Multiplexed engineering and precision gene editing in cellular immunotherapy. Front Immunol 2022; 13:1063303. [PMID: 36483551 PMCID: PMC9723254 DOI: 10.3389/fimmu.2022.1063303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The advent of cellular immunotherapy in the clinic has entirely redrawn the treatment landscape for a growing number of human cancers. Genetically reprogrammed immune cells, including chimeric antigen receptor (CAR)-modified immune effector cells as well as T cell receptor (TCR) therapy, have demonstrated remarkable responses across different hard-to-treat patient populations. While these novel treatment options have had tremendous success in providing long-term remissions for a considerable fraction of treated patients, a number of challenges remain. Limited in vivo persistence and functional exhaustion of infused immune cells as well as tumor immune escape and on-target off-tumor toxicities are just some examples of the challenges which restrain the potency of today's genetically engineered cell products. Multiple engineering strategies are being explored to tackle these challenges.The advent of multiplexed precision genome editing has in recent years provided a flexible and highly modular toolkit to specifically address some of these challenges by targeted genetic interventions. This class of next-generation cellular therapeutics aims to endow engineered immune cells with enhanced functionality and shield them from immunosuppressive cues arising from intrinsic immune checkpoints as well as the hostile tumor microenvironment (TME). Previous efforts to introduce additional genetic modifications into immune cells have in large parts focused on nuclease-based tools like the CRISPR/Cas9 system or TALEN. However, nuclease-inactive platforms including base and prime editors have recently emerged and promise a potentially safer route to rewriting genetic sequences and introducing large segments of transgenic DNA without inducing double-strand breaks (DSBs). In this review, we discuss how these two exciting and emerging fields-cellular immunotherapy and precision genome editing-have co-evolved to enable a dramatic expansion in the possibilities to engineer personalized anti-cancer treatments. We will lay out how various engineering strategies in addition to nuclease-dependent and nuclease-inactive precision genome editing toolkits are increasingly being applied to overcome today's limitations to build more potent cellular therapeutics. We will reflect on how novel information-rich unbiased discovery approaches are continuously deepening our understanding of fundamental mechanisms governing tumor biology. We will conclude with a perspective of how multiplexed-engineered and gene edited cell products may upend today's treatment paradigms as they evolve into the next generation of more potent cellular immunotherapies.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medicine III, Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gohar Shahwar Manzar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|