1
|
Yamada H, Iwai H, Hashiya F, Kimura Y, Abe H, Yamamoto J. Concise Affinity-Based Purification of Ligated mRNA for Structure-Activity Relationship Studies of Nucleosugar Modification Patterns. Chembiochem 2025; 26:e202400711. [PMID: 39533830 DOI: 10.1002/cbic.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Position-specific nucleoside sugar modifications have been shown to improve the translational activity and stability of chemically synthesized mRNA. For pharmaceutical applications of chemically modified mRNAs, a rapid purification methodology is imperative to identify the optimal modification pattern. However, while the chemical synthesis of mRNAs can be accomplished by splint ligation of oligonucleotide fragments, the current purification method for ligated mRNAs based on denaturing polyacrylamide gel electrophoresis tends to be time consuming. In this study, we developed a two-step affinity purification method for rapid sample preparation. In this method, ligated mRNA is captured by oligo dT magnetic beads and streptavidin magnetic beads with 3'-biotinylated oligo DNA, which are complementary to the 3'-poly(A) and 5' terminal sequences of the target mRNA, respectively. Therefore, the target mRNA can be isolated from a complex mixture of splint ligations. Using this method, six sugar-modified mRNAs were simultaneously purified, and the translational activities of these mRNAs were evaluated immediately after purification. The results demonstrate that this methodology is suitable for the rapid preparation of various chemically synthesized mRNAs to identify their optimal modification patterns.
Collapse
Affiliation(s)
- Hiroki Yamada
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Hiroto Iwai
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroshi Abe
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Junichiro Yamamoto
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| |
Collapse
|
2
|
Ripp A, Krämer M, Barth V, Moser P, Haas TM, Singh J, Huck T, Gleue L, Friedland K, Helm M, Jessen HJ. The P(III)-Amidite Based Synthesis of Stable Isotope Labeled mRNA-Cap-Structures Enables their Sensitive Quantitation from Brain Tissue. Angew Chem Int Ed Engl 2025; 64:e202414537. [PMID: 39324525 DOI: 10.1002/anie.202414537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
The 5' cap structure is crucial to mRNA function, with its diverse methylation patterns depending on the cellular state. Sensitive analytical methods are sought after to quantify this cap variety also referred to as cap epitranscriptome. To address a bottleneck for accurate and precise quantitation, we report a facile and fast access to high-quality synthetic standards via a new route, involving P(III)-amidite chemistry. A range of cap nucleotides and their stable heavy isotopic labeled analogues were derived from nucleoside diphosphates, which themselves were directly prepared in a one-step reaction sequence starting from unprotected nucleosides using a triphosphorylating reagent in combination with ethylenediamine. Considering a wider scope, the route also enables direct access to magic spot nucleotides and diphosphates of isoprenyl-alcohols. Stable-isotope labeled cap nucleotides derived from this route paved the way for the development of a highly sensitive LC-MS/MS method, applied to the characterization of mouse brain cap epitranscriptomes, which turned out to be very different from those of cultured cell lines of widespread use in the life sciences.
Collapse
Affiliation(s)
- Alexander Ripp
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Martina Krämer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Vanessa Barth
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| | - Patrick Moser
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Thomas M Haas
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Jyoti Singh
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Tamara Huck
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
| | - Lukas Gleue
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Kristina Friedland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Xu Y, Qi S, Zhang G, Liu D, Xu D, Qin T, Cheng Q, Kang H, Hu B, Huang Z. One-pot ligation of multiple mRNA fragments on dsDNA splint advancing regional modification and translation. Nucleic Acids Res 2025; 53:gkae1280. [PMID: 39778864 PMCID: PMC11707544 DOI: 10.1093/nar/gkae1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Region-specific RNA modifications are crucial for advancing RNA research and therapeutics, including messenger RNA (mRNA)-based vaccines and immunotherapy. However, the predominant method, synthesizing regionally modified mRNAs with short single-stranded DNA (ssDNA) splints, encounters challenges in ligating long mRNA fragments due to the formation of RNA self-folded complex structures. To address this issue, we developed an efficient strategy using an easily obtained long double-stranded DNA (dsDNA) as a ligation splint after in situ denaturing, while parts of this dsDNA are the templates for transcribing mRNA fragments. We observed that the denatured dsDNA formed a long hybrid duplex with these mRNA fragments, overcoming their structures. Further, our novel strategy remarkably facilitated the ligation of long mRNA fragments (especially structured ones), offering ligation efficiency up to 106-fold higher than the ssDNA method. Using this one-pot strategy, we conveniently synthesized the mRNAs with N1-methylpseudouridine (m1ψ) and 5-methylcytidine (m5C) modifications in specific regions. We have found that compared with the fully modified mRNAs, the 3'UTR m1ψ modifications alone increased the translation efficiency, and the combined modifications of the m1ψ-3'UTR and m5C-5'UTR/CDS exhibited higher translation efficiency and lower immunogenicity in general. Our study presents a broadly applicable strategy for producing regionally modified mRNAs, advancing the potential of mRNA therapeutics.
Collapse
Affiliation(s)
- Yunfan Xu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Shuopeng Qi
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Gongrui Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Dan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Dejin Xu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Tong Qin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Qin Cheng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Han Kang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Bei Hu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Zhen Huang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
- SeNA Research Institute, School of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei 430062, P.R. China
| |
Collapse
|
4
|
Kompatscher M, Gonnella I, Erlacher M. Studying the Function of tRNA Modifications: Experimental Challenges and Opportunities. J Mol Biol 2025:168934. [PMID: 39756793 DOI: 10.1016/j.jmb.2024.168934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
tRNAs are essential molecules in protein synthesis, responsible for translating the four-nucleotide genetic code into the corresponding amino acid sequence. RNA modifications play a crucial role in influencing tRNA folding, structure, and function. These modifications, ranging from simple methylations to complex hypermodified species, are distributed throughout the tRNA molecule. Depending on their type and position, they contribute to the accuracy and efficiency of decoding by participating in a complex network of interactions. The enzymatic processes introducing these modifications are equally intricate and diverse, adding further complexity. As a result, studying tRNA modifications faces limitations at multiple levels. This review addresses the challenges involved in manipulating and studying the function of tRNA modifications and discusses experimental strategies and possibilities to overcome these obstacles.
Collapse
Affiliation(s)
- Maria Kompatscher
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Isabell Gonnella
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Matthias Erlacher
- Institute of Genomics and RNomics, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Ivancová I, Quirante TS, Ondruš M, Pohl R, Vlková M, Žilecká E, Bouřa E, Hocek M. Enzymatic synthesis of reactive RNA probes containing squaramate-linked cytidine or adenosine for bioconjugations and cross-linking with lysine-containing peptides and proteins. Commun Chem 2025; 8:1. [PMID: 39748090 PMCID: PMC11696893 DOI: 10.1038/s42004-024-01399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase. Inhibition of RNA-depending RNA polymerases from Japanese Encephalitis virus was observed through formation of covalent cross-link which was partially identified by MS/MS analysis. Thus, the squaramate-linked NTP analogs are useful building blocks for the synthesis of reactive RNA probes for bioconjugations with primary amines and cross-linking with lysine residues.
Collapse
Affiliation(s)
- Ivana Ivancová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Tania Sánchez Quirante
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Prague, Czech Republic
| | - Marek Ondruš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Eva Žilecká
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Prague, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Prague, Czech Republic.
| |
Collapse
|
6
|
Boyd R, Kennebeck M, Miranda A, Liu Z, Silverman S. Site-specific N-alkylation of DNA oligonucleotide nucleobases by DNAzyme-catalyzed reductive amination. Nucleic Acids Res 2024; 52:8702-8716. [PMID: 39051544 PMCID: PMC11347174 DOI: 10.1093/nar/gkae639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
DNA and RNA nucleobase modifications are biologically relevant and valuable in fundamental biochemical and biophysical investigations of nucleic acids. However, directly introducing site-specific nucleobase modifications into long unprotected oligonucleotides is a substantial challenge. In this study, we used in vitro selection to identify DNAzymes that site-specifically N-alkylate the exocyclic nucleobase amines of particular cytidine, guanosine, and adenosine (C, G and A) nucleotides in DNA substrates, by reductive amination using a 5'-benzaldehyde oligonucleotide as the reaction partner. The new DNAzymes each require one or more of Mg2+, Mn2+, and Zn2+ as metal ion cofactors and have kobs from 0.04 to 0.3 h-1, with rate enhancement as high as ∼104 above the splinted background reaction. Several of the new DNAzymes are catalytically active when an RNA substrate is provided in place of DNA. Similarly, several new DNAzymes function when a small-molecule benzaldehyde compound replaces the 5'-benzaldehyde oligonucleotide. These findings expand the scope of DNAzyme catalysis to include nucleobase N-alkylation by reductive amination. Further development of this new class of DNAzymes is anticipated to facilitate practical covalent modification and labeling of DNA and RNA substrates.
Collapse
Affiliation(s)
- Robert D Boyd
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Morgan M Kennebeck
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Aurora A Miranda
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Zehui Liu
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | - Scott K Silverman
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|
7
|
Flemmich L, Bereiter R, Micura R. Chemical Synthesis of Modified RNA. Angew Chem Int Ed Engl 2024; 63:e202403063. [PMID: 38529723 DOI: 10.1002/anie.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.
Collapse
Affiliation(s)
- Laurin Flemmich
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Cong D, Steinbuch KB, Koyama R, Lam TV, Lam JY, Tor Y. Site-specific RNA modification via initiation of in vitro transcription reactions with m 6A and isomorphic emissive adenosine analogs. RSC Chem Biol 2024; 5:454-458. [PMID: 38725913 PMCID: PMC11078205 DOI: 10.1039/d4cb00045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
The templated enzymatic incorporation of adenosine and its analogs, including m6A, thA and tzA into RNA transcripts, has been explored. Enforced transcription initiation with excess free nucleosides and the native triphosphates generates 5'-end modified transcripts, which can be 5'-phosphorylated and ligated to provide full length, singly modified RNA oligomers. To explore structural integrity, functionality and utility of the resulting non-canonical purine-containing RNA constructs, a MazF RNA hairpin substrate has been synthesized and analyzed for its susceptibility to this endonuclease. Additionally, RNA substrates, containing a singly incorporated isomorphic emissive nucleoside, can be used to monitor the enzymatic reactions in real-time by steady state fluorescence spectroscopy.
Collapse
Affiliation(s)
- Deyuan Cong
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093-0358 USA
| | - Kfir B Steinbuch
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093-0358 USA
| | - Ryosuke Koyama
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093-0358 USA
| | - Tyler V Lam
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093-0358 USA
| | - Jamie Y Lam
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093-0358 USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla California 92093-0358 USA
| |
Collapse
|
9
|
Brunderová M, Havlíček V, Matyašovský J, Pohl R, Poštová Slavětínská L, Krömer M, Hocek M. Expedient production of site specifically nucleobase-labelled or hypermodified RNA with engineered thermophilic DNA polymerases. Nat Commun 2024; 15:3054. [PMID: 38594306 PMCID: PMC11004144 DOI: 10.1038/s41467-024-47444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Innovative approaches to controlled nucleobase-modified RNA synthesis are urgently needed to support RNA biology exploration and to synthesize potential RNA therapeutics. Here we present a strategy for enzymatic construction of nucleobase-modified RNA based on primer-dependent engineered thermophilic DNA polymerases - SFM4-3 and TGK. We demonstrate introduction of one or several different base-modified nucleotides in one strand including hypermodified RNA containing all four modified nucleotides bearing four different substituents, as well as strategy for primer segment removal. We also show facile site-specific or segmented introduction of fluorophores or other functional groups at defined positions in variety of RNA molecules, including structured or long mRNA. Intriguing translation efficacy of single-site modified mRNAs underscores the necessity to study isolated modifications placed at designer positions to disentangle their biological effects and enable development of improved mRNA therapeutics. Our toolbox paves the way for more precise dissecting RNA structures and functions, as well as for construction of diverse types of base-functionalized RNA for therapeutic applications and diagnostics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vojtěch Havlíček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic
| | - Ján Matyašovský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- The Rosalind Franklin Institute, Harwell Campus, Didcot, Oxfordshire, UK.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000, Prague, 6, Czech Republic.
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843, Prague, 2, Czech Republic.
| |
Collapse
|
10
|
Kennebeck MM, Kaminsky CK, Massa MA, Das PK, Boyd RD, Bishka M, Tricarico JT, Silverman SK. DNAzyme-Catalyzed Site-Specific N-Acylation of DNA Oligonucleotide Nucleobases. Angew Chem Int Ed Engl 2024; 63:e202317565. [PMID: 38157448 PMCID: PMC10873475 DOI: 10.1002/anie.202317565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
We used in vitro selection to identify DNAzymes that acylate the exocyclic nucleobase amines of cytidine, guanosine, and adenosine in DNA oligonucleotides. The acyl donor was the 2,3,5,6-tetrafluorophenyl ester (TFPE) of a 5'-carboxyl oligonucleotide. Yields are as high as >95 % in 6 h. Several of the N-acylation DNAzymes are catalytically active with RNA rather than DNA oligonucleotide substrates, and eight of nine DNAzymes for modifying C are site-specific (>95 %) for one particular substrate nucleotide. These findings expand the catalytic ability of DNA to include site-specific N-acylation of oligonucleotide nucleobases. Future efforts will investigate the DNA and RNA substrate sequence generality of DNAzymes for oligonucleotide nucleobase N-acylation, toward a universal approach for site-specific oligonucleotide modification.
Collapse
Affiliation(s)
- Morgan M Kennebeck
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Caroline K Kaminsky
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Maria A Massa
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Prakriti K Das
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Robert D Boyd
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Michelle Bishka
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - J Tomas Tricarico
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| | - Scott K Silverman
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL-61801, USA
| |
Collapse
|
11
|
Gamper H, McCormick C, Makhamreh A, Wanunu M, Rouhanifard SH, Hou YM. Enzymatic synthesis of RNA standards for mapping and quantifying RNA modifications in sequencing analysis. Methods Enzymol 2023; 692:127-153. [PMID: 37925177 DOI: 10.1016/bs.mie.2023.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Synthesis of RNA standards that contain an internal site-specific modification is important for mapping and quantification of the modified nucleotide in sequencing analysis. While RNA containing a site-specific modification can be readily synthesized by solid-state coupling for less than 100-mer nucleotides, longer RNA must be synthesized by enzymatic ligation in the presence of a DNA splint. However, long RNAs have structural heterogeneity, and those generated by in vitro transcription have 3'-end sequence heterogeneity, which together substantially reduce the yield of ligation. Here we describe a method of 3-part splint ligation that joins an in vitro transcribed left-arm RNA, an in vitro transcribed right-arm RNA, and a chemically synthesized modification-containing middle RNA, with an efficiency higher than previously reported. We report that the improved efficiency is largely attributed to the inclusion of a pair of DNA disruptors proximal to the ligation sites, and to a lesser extent to the homogeneous processing of the 3'-end of the left-arm RNA. The yields of the ligated long RNA are sufficiently high to afford purification to homogeneity for practical RNA research. We also verify the sequence accuracy at each ligation junction by nanopore sequencing.
Collapse
Affiliation(s)
- Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Caroline McCormick
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, United States; Department of Physics, Northeastern University, Boston, MA, United States
| | - Sara H Rouhanifard
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Brunderová M, Krömer M, Vlková M, Hocek M. Chloroacetamide-Modified Nucleotide and RNA for Bioconjugations and Cross-Linking with RNA-Binding Proteins. Angew Chem Int Ed Engl 2023; 62:e202213764. [PMID: 36533569 PMCID: PMC10107093 DOI: 10.1002/anie.202213764] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Reactive RNA probes are useful for studying and identifying RNA-binding proteins. To that end, we designed and synthesized chloroacetamide-linked 7-deaza-ATP which was a good substrate for T7 RNA polymerase in in vitro transcription assay to synthesize reactive RNA probes bearing one or several reactive modifications. Modified RNA probes reacted with thiol-containing molecules as well as with cysteine- or histidine-containing peptides to form stable covalent products. They also reacted selectively with RNA-binding proteins to form cross-linked conjugates in high conversions thanks to proximity effect. Our modified nucleotide and RNA probes are promising tools for applications in RNA (bio)conjugations or RNA proteomics.
Collapse
Affiliation(s)
- Mária Brunderová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Matouš Krömer
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| | - Marta Vlková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesFlemingovo nám. 216000Prague 6Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles UniversityHlavova 812843Prague 2Czech Republic
| |
Collapse
|