1
|
Balduzzi E, Geinguenaud F, Sordyl D, Maiti S, Farsani MA, Nikolaev G, Arluison V, Bujnicki JM. NAIRDB: a database of Fourier transform infrared (FTIR) data for nucleic acids. Nucleic Acids Res 2024:gkae885. [PMID: 39413200 DOI: 10.1093/nar/gkae885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The Nucleic Acid InfraRed Data Bank (NAIRDB) serves as a comprehensive public repository dedicated to the archival and free distribution of Fourier transform infrared (FTIR) spectral data specific to nucleic acids. This database encompasses a collection of FTIR spectra covering diverse nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids and their various derivatives. NAIRDB covers details of the experimental conditions for FTIR measurements, literature links, primary sequence data, information about experimentally determined structures for related nucleic acid molecules and/or computationally modeled 3D structures. All entries undergo expert validation and curation to maintain the completeness, consistency and quality of the data. NAIRDB can be searched by similarity of nucleic acid sequences or by direct comparison of spectra. The database is open for the submission of the FTIR data for nucleic acids. NAIRDB is available at https://nairdb.genesilico.pl.
Collapse
Affiliation(s)
- Elsa Balduzzi
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
| | - Frédéric Geinguenaud
- Université Sorbonne Paris Nord, Université Paris Cité, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, 74 rue Marcel Cachin, F-93017 Bobigny, France
| | - Dominik Sordyl
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Satyabrata Maiti
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Grigory Nikolaev
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Véronique Arluison
- Laboratoire Léon Brillouin, UMR 12 CEA/CNRS, Bâtiment 563, Site de Saclay, 91191 Gif-sur-Yvette, France
- Université Paris Cité, UFR SDV, 35 Rue Hélène Brion, 75013 Paris, France
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|
2
|
Peixoto ML, Madan E. Unraveling the complexity: Advanced methods in analyzing DNA, RNA, and protein interactions. Adv Cancer Res 2024; 163:251-302. [PMID: 39271265 DOI: 10.1016/bs.acr.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Exploring the intricate interplay within and between nucleic acids, as well as their interactions with proteins, holds pivotal significance in unraveling the molecular complexities steering cancer initiation and progression. To investigate these interactions, a diverse array of highly specific and sensitive molecular techniques has been developed. The selection of a particular technique depends on the specific nature of the interactions. Typically, researchers employ an amalgamation of these different techniques to obtain a comprehensive and holistic understanding of inter- and intramolecular interactions involving DNA-DNA, RNA-RNA, DNA-RNA, or protein-DNA/RNA. Examining nucleic acid conformation reveals alternative secondary structures beyond conventional ones that have implications for cancer pathways. Mutational hotspots in cancer often lie within sequences prone to adopting these alternative structures, highlighting the importance of investigating intra-genomic and intra-transcriptomic interactions, especially in the context of mutations, to deepen our understanding of oncology. Beyond these intramolecular interactions, the interplay between DNA and RNA leads to formations like DNA:RNA hybrids (known as R-loops) or even DNA:DNA:RNA triplex structures, both influencing biological processes that ultimately impact cancer. Protein-nucleic acid interactions are intrinsic cellular phenomena crucial in both normal and pathological conditions. In particular, genetic mutations or single amino acid variations can alter a protein's structure, function, and binding affinity, thus influencing cancer progression. It is thus, imperative to understand the differences between wild-type (WT) and mutated (MT) genes, transcripts, and proteins. The review aims to summarize the frequently employed methods and techniques for investigating interactions involving nucleic acids and proteins, highlighting recent advancements and diverse adaptations of each technique.
Collapse
Affiliation(s)
- Maria Leonor Peixoto
- Champalimaud Center for the Unknown, Lisbon, Portugal; Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Esha Madan
- Department of Surgery, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Kaimuangpak K, Rosalina R, Thumanu K, Weerapreeyakul N. Macromolecules with predominant β-pleated sheet proteins in extracellular vesicles released from Raphanus sativus L. var. caudatus Alef microgreens induce DNA damage-mediated apoptosis in HCT116 colon cancer cells. Int J Biol Macromol 2024; 269:132001. [PMID: 38702007 DOI: 10.1016/j.ijbiomac.2024.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Plant-derived bioactive macromolecules (i.e., proteins, lipids, and nucleic acids) were prepared as extracellular vesicles (EVs). Plant-derived EVs are gaining pharmaceutical research interest because of their bioactive components and delivery properties. The spherical nanosized EVs derived from Raphanus sativus L. var. caudatus Alef microgreens previously showed antiproliferative activity in HCT116 colon cancer cells from macromolecular compositions (predominantly proteins). To understand the mechanism of action, the biological activity studies, i.e., antiproliferation, cellular biochemical changes, DNA conformational changes, DNA damage, apoptotic nuclear morphological changes, apoptosis induction, and apoptotic pathways, were determined by neutral red uptake assay, synchrotron radiation-based Fourier transform infrared microspectroscopy, circular dichroism spectroscopy, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, flow cytometry, and caspase activity assay, respectively. EVs inhibited HCT116 cell growth in concentration- and time-dependent manners, with a half-maximal inhibitory concentration of 675.4 ± 33.8 μg/ml at 48 h and a selectivity index of 1.5 ± 0.076. HCT116 treated with EVs mainly changed the cellular biochemical compositions in the nucleic acids and carbohydrates region. The DNA damage caused no changes in DNA conformation. The apoptotic nuclear morphological changes were associated with the increased apoptotic cell population. The apoptotic cell death was induced by both extrinsic and intrinsic pathways. EVs have potential as antiproliferative bioparticles.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (Research and Development in Pharmaceuticals Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand.
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Turbant F, Mosca K, Busi F, Arluison V, Wien F. Circular and Linear Dichroism for the Analysis of Small Noncoding RNA Properties. Methods Mol Biol 2024; 2741:399-416. [PMID: 38217665 DOI: 10.1007/978-1-0716-3565-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Useful structural information about the conformation of nucleic acids can be quickly acquired by circular and linear dichroism (CD/LD) spectroscopy. These techniques, rely on the differential absorption of polarised light and are indeed extremely sensitive to subtle changes in the structure of chiral biomolecules. Many CD analyses of DNA or DNA:protein complexes have been conducted with substantial data acquisitions. Conversely, CD RNA analysis are still scarce, despite the fact that RNA plays a wide cellular function. This chapter seeks to introduce the reader to the use of circular, linear dichroism and in particular the use of Synchrotron Radiation for such samples. The use of these techniques on small noncoding RNA (sRNA) will be exemplified by analyzing changes in base stacking and/or helical parameters for the understanding of sRNA structure and function, especially by translating the dynamics of RNA:RNA annealing but also to access RNA stability or RNA:RNA alignment. The effect of RNA remodeling proteins will also be addressed. These analyses are especially useful to decipher the mechanisms by which sRNA will adopt the proper conformation thanks to the action of proteins such as Hfq or ProQ in the regulation of the expression of their target mRNAs.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, CEA Saclay, Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
| | - Kevin Mosca
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, CEA Saclay, Gif-sur-Yvette, France
- Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, Gif-sur-Yvette, France
- SANOFI, Marcy-l'Etoile, France
| | - Florent Busi
- Université Paris Cité, Paris, France
- BFA, UMR 8251, Université Paris cité, CNRS, Paris, France
| | - Véronique Arluison
- CEA Saclay, Laboratoire LeÇon Brillouin LLB, CEA/CNRS, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Frank Wien
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR 12, CEA Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Sengupta P, Jamroskovic J, Sabouri N. A beginner's handbook to identify and characterize i-motif DNA. Methods Enzymol 2023; 695:45-70. [PMID: 38521590 DOI: 10.1016/bs.mie.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Genomic DNA exhibits an innate ability to manifest diverse sequence-dependent secondary structures, serving crucial functions in gene regulation and cellular equilibrium. While extensive research has confirmed the formation of G-quadruplex structures by guanine-rich sequences in vitro and in cells, recent investigations have turned the quadruplex community's attention to the cytosine (C)-rich complementary strands that can adopt unique tetra-stranded conformation, termed as intercalated motif or i-motif. I-motifs are stabilized by hemi-protonated C:CH+ base pairs under acidic conditions. Initially, the in vivo occurrence of i-motifs was underestimated because their formation is favored at non-physiological pH. However, groundbreaking research utilizing the structure-specific iMab antibody and high-throughput sequencing have recently detected their conserved dispersion throughout the genome, challenging previous assumptions. Given the evolving nature of this research field, it becomes imperative to conduct independent in vitro experiments aimed at identifying potential i-motif formation in C-rich sequences and consolidating the findings to address the properties of i-motifs. This chapter serves as an introductory guide for the swift identification of novel i-motifs, where we present an experimental framework for investigating and characterizing i-motif sequences in vitro. In this chapter, we selected a synthetic oligonucleotide (C7T3) sequence and outlined appropriate methodologies for annealing the i-motif structure into suitable buffers. Then, we validated its formation by CD (Circular Dichroism) and NMR (Nuclear Magnetic Resonance) spectroscopy. Finally, we provided a thorough account of the step-by-step procedures to investigate the effect of i-motif formation on the stalling or retardation of DNA replication using high resolution primer extension assays.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jan Jamroskovic
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| |
Collapse
|
6
|
Stulz R, Lerche M, Luige O, Taylor A, Geschwindner S, Ghidini A. An enhanced biophysical screening strategy to investigate the affinity of ASOs for their target RNA. RSC Chem Biol 2023; 4:1123-1130. [PMID: 38033730 PMCID: PMC10685824 DOI: 10.1039/d3cb00072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
The recent and rapid increase in the discovery of new RNA therapeutics has created the perfect terrain to explore an increasing number of novel targets. In particular, antisense oligonucleotides (ASOs) have long held the promise of an accelerated and effective drug design compared to other RNA-based therapeutics. Although ASOs in silico design has advanced distinctively in the past years, especially thanks to the several predictive frameworks for RNA folding, it is somehow limited by the wide approximation of calculating sequence affinity based on RNA-RNA/DNA sequences. None of the ASO modifications are taken into consideration, losing hybridization information particularly fundamental to ASOs that elicit their function through RNase H1-mediated mechanisms. Here we present an inexpensive and enhanced biophysical screening strategy to investigate the affinity of ASOs for their target RNA using several biophysical techniques such as high throughput differential scanning fluorimetry (DSF), circular dichroism (CD), isothermal calorimetry (ITC), surface plasmon resonance (SPR) and small-angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- Rouven Stulz
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo Huddinge 14183 Sweden
- Early Chemical Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Agnes Taylor
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Stefan Geschwindner
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| |
Collapse
|
7
|
He X, Yuan J, Gao Z, Wang Y. Promoter R-Loops Recruit U2AF1 to Modulate Its Phase Separation and RNA Splicing. J Am Chem Soc 2023; 145:21646-21660. [PMID: 37733759 PMCID: PMC10557143 DOI: 10.1021/jacs.3c08204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 09/23/2023]
Abstract
R-loops and guanine quadruplexes (G4s) are secondary structures of nucleic acids that are ubiquitously present in cells and are enriched in promoter regions of genes. By employing a bioinformatic approach based on overlap analysis of transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) data sets, we found that many splicing factors, including U2AF1 whose recognition of the 3' splicing site is crucial for pre-mRNA splicing, exhibit pronounced enrichment at endogenous R-loop- and DNA G4-structure loci in promoter regions of human genes. We also revealed that U2AF1 binds directly to R-loops and DNA G4 structures at a low-nM binding affinity. Additionally, we showed the ability of U2AF1 to undergo phase separation, which could be stimulated by binding with R-loops, but not duplex DNA, RNA/DNA hybrid, DNA G4, or single-stranded RNA. We also demonstrated that U2AF1 binds to promoter R-loops in human cells, and this binding competes with U2AF1's interaction with 3' splicing site and leads to augmented distribution of RNA polymerase II (RNAPII) to promoters over gene bodies, thereby modulating cotranscriptional pre-mRNA splicing. Together, we uncovered a group of candidate proteins that can bind to both R-loops and DNA G4s, revealed the direct and strong interactions of U2AF1 with these nucleic acid structures, and established a biochemical rationale for U2AF1's occupancy in gene promoters. We also unveiled that interaction with R-loops promotes U2AF1's phase separation, and our work suggests that U2AF1 modulates pre-mRNA splicing by regulating RNAPII's partition in transcription initiation versus elongation.
Collapse
Affiliation(s)
- Xiaomei He
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
| | - Jun Yuan
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California 92521-0403, United States
| | - Zi Gao
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
| | - Yinsheng Wang
- Department
of Chemistry, University of California Riverside, Riverside, California 92521-0403, United
States
- Environmental
Toxicology Graduate Program, University
of California Riverside, Riverside, California 92521-0403, United States
| |
Collapse
|
8
|
Zubova EA, Strelnikov IA. Experimental detection of conformational transitions between forms of DNA: problems and prospects. Biophys Rev 2023; 15:1053-1078. [PMID: 37974981 PMCID: PMC10643659 DOI: 10.1007/s12551-023-01143-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
Under different conditions, the DNA double helix can take different geometric forms. Of the large number of its conformations, in addition to the "canonical" B form, the A, C, and Z forms are widely known, and the D, Hoogsteen, and X forms are less known. DNA locally takes the A, C, and Z forms in the cell, in complexes with proteins. We compare different methods for detecting non-canonical DNA conformations: X-ray, IR, and Raman spectroscopy, linear and circular dichroism in both the infrared and ultraviolet regions, as well as NMR (measurement of chemical shifts and their anisotropy, scalar and residual dipolar couplings and inter-proton distances from NOESY (nuclear Overhauser effect spectroscopy) data). We discuss the difficulties in applying these methods, the problems of theoretical interpretation of the experimental results, and the prospects for reliable identification of non-canonical DNA conformations.
Collapse
Affiliation(s)
- Elena A. Zubova
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991 Russia
| | - Ivan A. Strelnikov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin St., Moscow, 119991 Russia
| |
Collapse
|
9
|
Parekh VJ, Węgrzyn G, Arluison V, Sinden RR. Genomic Instability of G-Quadruplex Sequences in Escherichia coli: Roles of DinG, RecG, and RecQ Helicases. Genes (Basel) 2023; 14:1720. [PMID: 37761860 PMCID: PMC10530614 DOI: 10.3390/genes14091720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Guanine-rich DNA can fold into highly stable four-stranded DNA structures called G-quadruplexes (G4). Originally identified in sequences from telomeres and oncogene promoters, they can alter DNA metabolism. Indeed, G4-forming sequences represent obstacles for the DNA polymerase, with important consequences for cell life as they may lead to genomic instability. To understand their role in bacterial genomic instability, different G-quadruplex-forming repeats were cloned into an Escherichia coli genetic system that reports frameshifts and complete or partial deletions of the repeat when the G-tract comprises either the leading or lagging template strand during replication. These repeats formed stable G-quadruplexes in single-stranded DNA but not naturally supercoiled double-stranded DNA. Nevertheless, transcription promoted G-quadruplex formation in the resulting R-loop for (G3T)4 and (G3T)8 repeats. Depending on genetic background and sequence propensity for structure formation, mutation rates varied by five orders of magnitude. Furthermore, while in vitro approaches have shown that bacterial helicases can resolve G4, it is still unclear whether G4 unwinding is important in vivo. Here, we show that a mutation in recG decreased mutation rates, while deficiencies in the structure-specific helicases DinG and RecQ increased mutation rates. These results suggest that G-quadruplex formation promotes genetic instability in bacteria and that helicases play an important role in controlling this process in vivo.
Collapse
Affiliation(s)
- Virali J. Parekh
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, 75006 Paris, France
| | - Richard R. Sinden
- Laboratory of DNA Structure and Mutagenesis, Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA;
| |
Collapse
|
10
|
Vanloon J, Bennett HA, Martin A, Wien F, Harroun T, Yan H. Synchrotron Radiation Circular Dichroism Spectroscopy of Oligonucleotides at Millimolar Concentrations. Bioorg Med Chem Lett 2023:129376. [PMID: 37328039 DOI: 10.1016/j.bmcl.2023.129376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Circular dichroism spectroscopy of nucleic acids has been traditionally performed at sample concentrations orders of magnitude lower than what occur in biological systems. While recent work from us demonstrated the flexibility of an adjustable sample cell that allowed for successful recording of CD spectra of an 18- and a 21-mer double stranded DNA sequences at around 1 mM, sample concentrations beyond 1 mM present a challenge for standard benchtop CD spectrometers. In the present work, the synchrotron radiation circular dichroism (SRCD) spectra were recorded for d(CG)9 and a mixed 18-mer double stranded DNA at 1, 5, and 10 mM in 100 mM or 4 M NaCl. SRCD of low molecular weight salmon DNA was also measured at a 10 mg/ml concentration. These results represent the first report of CD spectra of DNA samples measured at concentrations comparable to those found in the nucleus. The results suggest that dsDNA maintain very similar structures at concentrations up to 10s of mg/ml, as evident by the very similar CD patterns in this concentration range. Furthermore, the SRCD allowed for the recording of CD patterns of DNA in the far UV region, which is not readily accessible by standard benchtop CD spectropolarimeters. These far UV signals appear to be quite characteristic of DNA structures and are sensitive to sample conditions.
Collapse
Affiliation(s)
- Jesse Vanloon
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Hayley-Ann Bennett
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Alicia Martin
- Department of Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192, Gif-sur-Yvette, France.
| | - Thad Harroun
- Department of Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|