1
|
Li Y, Li F, Duan Z, Liu R, Jiao W, Wu H, Zhu F, Xue W. SYNBIP 2.0: epitopes mapping, sequence expansion and scaffolds discovery for synthetic binding protein innovation. Nucleic Acids Res 2024:gkae893. [PMID: 39413165 DOI: 10.1093/nar/gkae893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/18/2024] Open
Abstract
Synthetic binding proteins (SBPs) represent a pivotal class of artificially engineered proteins, meticulously crafted to exhibit targeted binding properties and specific functions. Here, the SYNBIP database, a comprehensive resource for SBPs, has been significantly updated. These enhancements include (i) featuring 3D structures of 899 SBP-target complexes to illustrate the binding epitopes of SBPs, (ii) using the structures of SBPs in the monomer or complex forms with target proteins, their sequence space has been expanded five times to 12 025 by integrating a structure-based protein generation framework and a protein property prediction tool, (iii) offering detailed information on 78 473 newly identified SBP-like scaffolds from the RCSB Protein Data Bank, and an additional 16 401 555 ones from the AlphaFold Protein Structure Database, and (iv) the database is regularly updated, incorporating 153 new SBPs. Furthermore, the structural models of all SBPs have been enhanced through the application of the AlphaFold2, with their clinical statuses concurrently refreshed. Additionally, the design methods employed for each SBP are now prominently featured in the database. In sum, SYNBIP 2.0 is designed to provide researchers with essential SBP data, facilitating their innovation in research, diagnosis and therapy. SYNBIP 2.0 is now freely accessible at https://idrblab.org/synbip/.
Collapse
Affiliation(s)
- Yanlin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Fengcheng Li
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, Zhejiang 310052, China
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Zixin Duan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Ruihan Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Wantong Jiao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Haibo Wu
- School of Life Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 South University Town Road, High-tech Zone, Chongqing 401331, China
| |
Collapse
|
2
|
Suroengrit A, Cao V, Wilasluck P, Deetanya P, Wangkanont K, Hengphasatporn K, Harada R, Chamni S, Leelahavanichkul A, Shigeta Y, Rungrotmongkol T, Hannongbua S, Chavasiri W, Wacharapluesadee S, Prompetchara E, Boonyasuppayakorn S. Alpha and gamma mangostins inhibit wild-type B SARS-CoV-2 more effectively than the SARS-CoV-2 variants and the major target is unlikely the 3C-like protease. Heliyon 2024; 10:e31987. [PMID: 38867992 PMCID: PMC11168321 DOI: 10.1016/j.heliyon.2024.e31987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
Background Anti-SARS-CoV-2 and immunomodulatory drugs are important for treating clinically severe patients with respiratory distress symptoms. Alpha- and gamma-mangostins (AM and GM) were previously reported as potential 3C-like protease (3CLpro) and Angiotensin-converting enzyme receptor 2 (ACE2)-binding inhibitors in silico. Objective We aimed to evaluate two active compounds, AM and GM, from Garcinia mangostana for their antivirals against SARS-CoV-2 in live virus culture systems and their cytotoxicities using standard methods. Also, we aimed to prove whether 3CLpro and ACE2 neutralization were major targets and explored whether any additional targets existed. Methods We tested the translation and replication efficiencies of SARS-CoV-2 in the presence of AM and GM. Initial and subgenomic translations were evaluated by immunofluorescence of SARS-CoV-2 3CLpro and N expressions at 16 h after infection. The viral genome was quantified and compared with the untreated group. We also evaluated the efficacies and cytotoxicities of AM and GM against four strains of SARS-CoV-2 (wild-type B, B.1.167.2, B.1.36.16, and B.1.1.529) in Vero E6 cells. The potential targets were evaluated using cell-based anti-attachment, time-of-drug addition, in vitro 3CLpro activities, and ACE2-binding using a surrogated viral neutralization test (sVNT). Moreover, additional targets were explored using combinatorial network-based interactions and Chemical Similarity Ensemble Approach (SEA). Results AM and GM reduced SARS-CoV-2 3CLpro and N expressions, suggesting that initial and subgenomic translations were globally inhibited. AM and GM inhibited all strains of SARS-CoV-2 at EC50 of 0.70-3.05 μM, in which wild-type B was the most susceptible strain (EC50 0.70-0.79 μM). AM was slightly more efficient in the variants (EC50 0.88-2.41 μM), resulting in higher selectivity indices (SI 3.65-10.05), compared to the GM (EC50 0.94-3.05 μM, SI 1.66-5.40). GM appeared to be more toxic than AM in both Vero E6 and Calu-3 cells. Cell-based anti-attachment and time-of-addition suggested that the potential molecular target could be at the post-infection. 3CLpro activity and ACE2 binding were interfered with in a dose-dependent manner but were insufficient to be a major target. Combinatorial network-based interaction and chemical similarity ensemble approach (SEA) suggested that fatty acid synthase (FASN), which was critical for SARS-CoV-2 replication, could be a target of AM and GM. Conclusion AM and GM inhibited SARS-CoV-2 with the highest potency at the wild-type B and the lowest at the B.1.1.529. Multiple targets were expected to integratively inhibit viral replication in cell-based system.
Collapse
Affiliation(s)
- Aphinya Suroengrit
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Van Cao
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Interdisciplinary Program in Microbiology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- DaNang University of Medical Technology and Pharmacy, DaNang, 50200, Viet Nam
| | - Patcharin Wilasluck
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerapon Deetanya
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Natural Products and Nanoparticles (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supot Hannongbua
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development, Chulalongkorn University (Chula-VRC), Bangkok, 10330, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siwaporn Boonyasuppayakorn
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Zhang X, Wu J, Luo Y, Wang Y, Wu Y, Xu X, Zhang Y, Kong R, Chi Y, Sun Y, Chen S, He Q, Zhu F, Zhou Z. CovEpiAb: a comprehensive database and analysis resource for immune epitopes and antibodies of human coronaviruses. Brief Bioinform 2024; 25:bbae183. [PMID: 38653491 PMCID: PMC11036340 DOI: 10.1093/bib/bbae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/24/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Coronaviruses have threatened humans repeatedly, especially COVID-19 caused by SARS-CoV-2, which has posed a substantial threat to global public health. SARS-CoV-2 continuously evolves through random mutation, resulting in a significant decrease in the efficacy of existing vaccines and neutralizing antibody drugs. It is critical to assess immune escape caused by viral mutations and develop broad-spectrum vaccines and neutralizing antibodies targeting conserved epitopes. Thus, we constructed CovEpiAb, a comprehensive database and analysis resource of human coronavirus (HCoVs) immune epitopes and antibodies. CovEpiAb contains information on over 60 000 experimentally validated epitopes and over 12 000 antibodies for HCoVs and SARS-CoV-2 variants. The database is unique in (1) classifying and annotating cross-reactive epitopes from different viruses and variants; (2) providing molecular and experimental interaction profiles of antibodies, including structure-based binding sites and around 70 000 data on binding affinity and neutralizing activity; (3) providing virological characteristics of current and past circulating SARS-CoV-2 variants and in vitro activity of various therapeutics; and (4) offering site-level annotations of key functional features, including antibody binding, immunological epitopes, SARS-CoV-2 mutations and conservation across HCoVs. In addition, we developed an integrated pipeline for epitope prediction named COVEP, which is available from the webpage of CovEpiAb. CovEpiAb is freely accessible at https://pgx.zju.edu.cn/covepiab/.
Collapse
Affiliation(s)
- Xue Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - JingCheng Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Luo
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yilin Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yufang Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruiying Kong
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Chi
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310058, China
- ZJU-UoE Institute, Zhejiang University, Haining 314400, China
| | - Yisheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310015, China
| | - Shuqing Chen
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
| | - Feng Zhu
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310058, China
| | - Zhan Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Innovation Institute for Artificial Intelligence in Medicine, Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou 310018, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 310058, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| |
Collapse
|
4
|
Chen B, Pan Z, Mou M, Zhou Y, Fu W. Is fragment-based graph a better graph-based molecular representation for drug design? A comparison study of graph-based models. Comput Biol Med 2024; 169:107811. [PMID: 38168647 DOI: 10.1016/j.compbiomed.2023.107811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Graph Neural Networks (GNNs) have gained significant traction in various sectors of AI-driven drug design. Over recent years, the integration of fragmentation concepts into GNNs has emerged as a potent strategy to augment the efficacy of molecular generative models. Nonetheless, challenges such as symmetry breaking and potential misrepresentation of intricate cycles and undefined functional groups raise questions about the superiority of fragment-based graph representation over traditional methods. In our research, we undertook a rigorous evaluation, contrasting the predictive prowess of eight models-developed using deep learning algorithms-across 12 benchmark datasets that span a range of properties. These models encompass established methods like GCN, AttentiveFP, and D-MPNN, as well as innovative fragment-based representation techniques. Our results indicate that fragment-based methodologies, notably PharmHGT, significantly improve model performance and interpretability, particularly in scenarios characterized by limited data availability. However, in situations with extensive training, fragment-based molecular graph representations may not necessarily eclipse traditional methods. In summation, we posit that the integration of fragmentation, as an avant-garde technique in drug design, harbors considerable promise for the future of AI-enhanced drug design.
Collapse
Affiliation(s)
- Baiyu Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 202103, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Fu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 202103, China.
| |
Collapse
|
5
|
Amahong K, Zhang W, Liu Y, Li T, Huang S, Han L, Tao L, Zhu F. RVvictor: Virus RNA-directed molecular interactions for RNA virus infection. Comput Biol Med 2024; 169:107886. [PMID: 38157777 DOI: 10.1016/j.compbiomed.2023.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
RNA viruses are major human pathogens that cause seasonal epidemics and occasional pandemic outbreaks. Due to the nature of their RNA genomes, it is anticipated that virus's RNA interacts with host protein (INTPRO), messenger RNA (INTmRNA), and non-coding RNA (INTncRNA) to perform their particular functions during their transcription and replication. In other words, thus, it is urgently needed to have such valuable data on virus RNA-directed molecular interactions (especially INTPROs), which are highly anticipated to attract broad research interests in the fields of RNA virus translation and replication. In this study, a new database was constructed to describe the virus RNA-directed interaction (INTPRO, INTmRNA, INTncRNA) for RNA virus (RVvictor). This database is unique in a) unambiguously characterizing the interactions between viruses RNAs and host proteins, b) providing, for the first time, the most systematic RNA-directed interaction data resources in providing clues to understand the molecular mechanisms of RNA viruses' translation, and replication, and c) in RVvictor, comprehensive enrichment analysis is conducted for each virus RNA based on its associated target genes/proteins, and the enrichment results were explicitly illustrated using various graphs. We found significant enrichment of a suite of pathways related to infection, translation, and replication, e.g., HIV infection, coronavirus disease, regulation of viral genome replication, and so on. Due to the devastating and persistent threat posed by the RNA virus, RVvictor constructed, for the first time, a possible network of cross-talk in RNA-directed interaction, which may ultimately explain the pathogenicity of RNA virus infection. The knowledge base might help develop new anti-viral therapeutic targets in the future. It's now free and publicly accessible at: https://idrblab.org/rvvictor/.
Collapse
Affiliation(s)
- Kuerbannisha Amahong
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Teng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, 315211, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
6
|
Zhang Y, Zhou Y, Zhou Y, Yu X, Shen X, Hong Y, Zhang Y, Wang S, Mou M, Zhang J, Tao L, Gao J, Qiu Y, Chen Y, Zhu F. TheMarker: a comprehensive database of therapeutic biomarkers. Nucleic Acids Res 2024; 52:D1450-D1464. [PMID: 37850638 PMCID: PMC10767989 DOI: 10.1093/nar/gkad862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
Distinct from the traditional diagnostic/prognostic biomarker (adopted as the indicator of disease state/process), the therapeutic biomarker (ThMAR) has emerged to be very crucial in the clinical development and clinical practice of all therapies. There are five types of ThMAR that have been found to play indispensable roles in various stages of drug discovery, such as: Pharmacodynamic Biomarker essential for guaranteeing the pharmacological effects of a therapy, Safety Biomarker critical for assessing the extent or likelihood of therapy-induced toxicity, Monitoring Biomarker indispensable for guiding clinical management by serially measuring patients' status, Predictive Biomarker crucial for maximizing the clinical outcome of a therapy for specific individuals, and Surrogate Endpoint fundamental for accelerating the approval of a therapy. However, these data of ThMARs has not been comprehensively described by any of the existing databases. Herein, a database, named 'TheMarker', was therefore constructed to (a) systematically offer all five types of ThMAR used at different stages of drug development, (b) comprehensively describe ThMAR information for the largest number of drugs among available databases, (c) extensively cover the widest disease classes by not just focusing on anticancer therapies. These data in TheMarker are expected to have great implication and significant impact on drug discovery and clinical practice, and it is freely accessible without any login requirement at: https://idrblab.org/themarker.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yanfeng Hong
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuxin Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The First Affiliated Hospital, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
7
|
Li X, Qin X, Huang C, Lu Y, Cheng J, Wang L, Liu O, Shuai J, Yuan CA. SUnet: A multi-organ segmentation network based on multiple attention. Comput Biol Med 2023; 167:107596. [PMID: 37890423 DOI: 10.1016/j.compbiomed.2023.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Organ segmentation in abdominal or thoracic computed tomography (CT) images plays a crucial role in medical diagnosis as it enables doctors to locate and evaluate organ abnormalities quickly, thereby guiding surgical planning, and aiding treatment decision-making. This paper proposes a novel and efficient medical image segmentation method called SUnet for multi-organ segmentation in the abdomen and thorax. SUnet is a fully attention-based neural network. Firstly, an efficient spatial reduction attention (ESRA) module is introduced not only to extract image features better, but also to reduce overall model parameters, and to alleviate overfitting. Secondly, SUnet's multiple attention-based feature fusion module enables effective cross-scale feature integration. Additionally, an enhanced attention gate (EAG) module is considered by using grouped convolution and residual connections, providing richer semantic features. We evaluate the performance of the proposed model on synapse multiple organ segmentation dataset and automated cardiac diagnostic challenge dataset. SUnet achieves an average Dice of 84.29% and 92.25% on these two datasets, respectively, outperforming other models of similar complexity and size, and achieving state-of-the-art results.
Collapse
Affiliation(s)
- Xiaosen Li
- School of Artificial Intelligence, Guangxi Minzu University, Nanning, 530006, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Xiao Qin
- Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530023, China
| | - Chengliang Huang
- Academy of Artificial Intelligence, Zhejiang Dongfang Polytechnic, Wenzhou, 325025, China
| | - Yuer Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Jinyan Cheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Liansheng Wang
- Department of Computer Science, Xiamen University, Xiamen, 361005, China
| | - Ou Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325105, China.
| | - Chang-An Yuan
- Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University, Nanning, 530023, China; Guangxi Academy of Science, Nanning, 530007, China.
| |
Collapse
|
8
|
Duan L, Tang B, Luo S, Xiong D, Wang Q, Xu X, Zhang JZH. Entropy driven cooperativity effect in multi-site drug optimization targeting SARS-CoV-2 papain-like protease. Cell Mol Life Sci 2023; 80:313. [PMID: 37796323 PMCID: PMC11072831 DOI: 10.1007/s00018-023-04985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Papain-like protease (PLpro), a non-structural protein encoded by SARS-CoV-2, is an important therapeutic target. Regions 1 and 5 of an existing drug, GRL0617, can be optimized to produce cooperativity with PLpro binding, resulting in stronger binding affinity. This work investigated the origin of the cooperativity using molecular dynamics simulations combined with the interaction entropy (IE) method. The regions' improvement exhibits cooperativity by calculating the binding free energies between the complex of PLpro-inhibitor. The thermodynamic integration method further verified the cooperativity generated in the drug improvement. To further determine the specific source of cooperativity, enthalpy and entropy in the complexes were calculated using molecular mechanics/generalized Born surface area and IE. The results show that the entropic change is an important contributor to the cooperativity. Our study also identified residues P248, Q269, and T301 that play a significant role in cooperativity. The optimization of the inhibitor stabilizes these residues and minimizes the entropic loss, and the cooperativity observed in the binding free energy can be attributed to the change in the entropic contribution of these residues. Based on our research, the application of cooperativity can facilitate drug optimization, and provide theoretical ideas for drug development that leverage cooperativity by reducing the contribution of entropy through multi-locus binding.
Collapse
Affiliation(s)
- Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| |
Collapse
|
9
|
Zhang M, Zhao J, Wu J, Wang Y, Zhuang M, Zou L, Mao R, Jiang B, Liu J, Song X. In-depth characterization and identification of translatable lncRNAs. Comput Biol Med 2023; 164:107243. [PMID: 37453378 DOI: 10.1016/j.compbiomed.2023.107243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Long non-coding RNAs (LncRNAs) are non-protein coding transcripts more than 200 nucleotides in length. Deep sequencing technologies have unveiled lncRNAs can harbor translatable short open reading frames (sORFs). Yet the regulatory mechanisms governing lncRNA translation events remain poorly understood. Here, we exhaustively detected the sequence, functional element, and structure features relevant to lncRNA translation in human. Extensive identification and analysis reveal that translatable lncRNAs contain richer protein-coding related sequence features, cap-dependent and cap-independent translation initiation mechanisms, and more stable secondary structures, as compared to untranslatable lncRNAs. These findings strongly support lncRNAs serve as a repository for the production of new small peptides. Based on the feature fusion affecting translation and the extreme gradient boosting (XGBoost) algorithm, we developed the first computational tool that dedicated for predicting translatable lncRNAs, named TransLncPred. Benchmark experimental results show that our method outperforms several state-of-the-art RNA coding potential prediction tools on the same training and testing datasets. The 100-time 10-fold cross-validation tests also demonstrate that regulatory element-derived features, especially N7-methylguanosine (m7G) and internal ribosome entry site (IRES), contribute to the improvement in predictive performance.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, China
| | - Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Minhui Zhuang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Lingxiao Zou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Renlong Mao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Bin Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China.
| |
Collapse
|
10
|
Liang S, Zhao Y, Jin J, Qiao J, Wang D, Wang Y, Wei L. Rm-LR: A long-range-based deep learning model for predicting multiple types of RNA modifications. Comput Biol Med 2023; 164:107238. [PMID: 37515874 DOI: 10.1016/j.compbiomed.2023.107238] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Recent research has highlighted the pivotal role of RNA post-transcriptional modifications in the regulation of RNA expression and function. Accurate identification of RNA modification sites is important for understanding RNA function. In this study, we propose a novel RNA modification prediction method, namely Rm-LR, which leverages a long-range-based deep learning approach to accurately predict multiple types of RNA modifications using RNA sequences only. Rm-LR incorporates two large-scale RNA language pre-trained models to capture discriminative sequential information and learn local important features, which are subsequently integrated through a bilinear attention network. Rm-LR supports a total of ten RNA modification types (m6A, m1A, m5C, m5U, m6Am, Ψ, Am, Cm, Gm, and Um) and significantly outperforms the state-of-the-art methods in terms of predictive capability on benchmark datasets. Experimental results show the effectiveness and superiority of Rm-LR in prediction of various RNA modifications, demonstrating the strong adaptability and robustness of our proposed model. We demonstrate that RNA language pretrained models enable to learn dense biological sequential representations from large-scale long-range RNA corpus, and meanwhile enhance the interpretability of the models. This work contributes to the development of accurate and reliable computational models for RNA modification prediction, providing insights into the complex landscape of RNA modifications.
Collapse
Affiliation(s)
- Sirui Liang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yanxi Zhao
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Junru Jin
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Jianbo Qiao
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Ding Wang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Yu Wang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China.
| |
Collapse
|
11
|
Mishra SK, Priya P, Rai GP, Haque R, Shanker A. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2. Comput Biol Med 2023; 163:107233. [PMID: 37422941 DOI: 10.1016/j.compbiomed.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/03/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
In the recent past several vaccines were developed to combat the COVID-19 disease. Unfortunately, the protective efficacy of the current vaccines has been reduced due to the high mutation rate in SARS-CoV-2. Here, we successfully implemented a coevolution based immunoinformatics approach to design an epitope-based peptide vaccine considering variability in spike protein of SARS-CoV-2. The spike glycoprotein was investigated for B- and T-cell epitope prediction. Identified T-cell epitopes were mapped on previously reported coevolving amino acids in the spike protein to introduce mutation. The non-mutated and mutated vaccine components were constructed by selecting epitopes showing overlapping with the predicted B-cell epitopes and highest antigenicity. Selected epitopes were linked with the help of a linker to construct a single vaccine component. Non-mutated and mutated vaccine component sequences were modelled and validated. The in-silico expression level of the vaccine constructs (non-mutated and mutated) in E. coli K12 shows promising results. The molecular docking analysis of vaccine components with toll-like receptor 5 (TLR5) demonstrated strong binding affinity. The time series calculations including root mean square deviation (RMSD), radius of gyration (RGYR), and energy of the system over 100 ns trajectory obtained from all atom molecular dynamics simulation showed stability of the system. The combined coevolutionary and immunoinformatics approach used in this study will certainly help to design an effective peptide vaccine that may work against different strains of SARS-CoV-2. Moreover, the strategy used in this study can be implemented on other pathogens.
Collapse
Affiliation(s)
- Saurav Kumar Mishra
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Prerna Priya
- Department of Botany, Purnea Mahila College, Purnia, Bihar, India
| | - Gyan Prakash Rai
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
12
|
Systematic Guidelines for Effective Utilization of COVID-19 Databases in Genomic, Epidemiologic, and Clinical Research. Viruses 2023; 15:v15030692. [PMID: 36992400 PMCID: PMC10059256 DOI: 10.3390/v15030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
The pandemic has led to the production and accumulation of various types of data related to coronavirus disease 2019 (COVID-19). To understand the features and characteristics of COVID-19 data, we summarized representative databases and determined the data types, purpose, and utilization details of each database. In addition, we categorized COVID-19 associated databases into epidemiological data, genome and protein data, and drug and target data. We found that the data present in each of these databases have nine separate purposes (clade/variant/lineage, genome browser, protein structure, epidemiological data, visualization, data analysis tool, treatment, literature, and immunity) according to the types of data. Utilizing the databases we investigated, we created four queries as integrative analysis methods that aimed to answer important scientific questions related to COVID-19. Our queries can make effective use of multiple databases to produce valuable results that can reveal novel findings through comprehensive analysis. This allows clinical researchers, epidemiologists, and clinicians to have easy access to COVID-19 data without requiring expert knowledge in computing or data science. We expect that users will be able to reference our examples to construct their own integrative analysis methods, which will act as a basis for further scientific inquiry and data searching.
Collapse
|
13
|
He H, Duo H, Hao Y, Zhang X, Zhou X, Zeng Y, Li Y, Li B. Computational drug repurposing by exploiting large-scale gene expression data: Strategy, methods and applications. Comput Biol Med 2023; 155:106671. [PMID: 36805225 DOI: 10.1016/j.compbiomed.2023.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
De novo drug development is an extremely complex, time-consuming and costly task. Urgent needs for therapies of various diseases have greatly accelerated searches for more effective drug development methods. Luckily, drug repurposing provides a new and effective perspective on disease treatment. Rapidly increased large-scale transcriptome data paints a detailed prospect of gene expression during disease onset and thus has received wide attention in the field of computational drug repurposing. However, how to efficiently mine transcriptome data and identify new indications for old drugs remains a critical challenge. This review discussed the irreplaceable role of transcriptome data in computational drug repurposing and summarized some representative databases, tools and strategies. More importantly, it proposed a practical guideline through establishing the correspondence between three gene expression data types and five strategies, which would facilitate researchers to adopt appropriate strategies to deeply mine large-scale transcriptome data and discover more effective therapies.
Collapse
Affiliation(s)
- Hao He
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, PR China
| | - Hongrui Duo
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Xiaoxi Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Xinyi Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Yujie Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China
| | - Yinghong Li
- The Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, 400065, PR China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 400044, PR China.
| |
Collapse
|
14
|
Yan TC, Yue ZX, Xu HQ, Liu YH, Hong YF, Chen GX, Tao L, Xie T. A systematic review of state-of-the-art strategies for machine learning-based protein function prediction. Comput Biol Med 2023; 154:106446. [PMID: 36680931 DOI: 10.1016/j.compbiomed.2022.106446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
New drug discovery is inseparable from the discovery of drug targets, and the vast majority of the known targets are proteins. At the same time, proteins are essential structural and functional elements of living cells necessary for the maintenance of all forms of life. Therefore, protein functions have become the focus of many pharmacological and biological studies. Traditional experimental techniques are no longer adequate for rapidly growing annotation of protein sequences, and approaches to protein function prediction using computational methods have emerged and flourished. A significant trend has been to use machine learning to achieve this goal. In this review, approaches to protein function prediction based on the sequence, structure, protein-protein interaction (PPI) networks, and fusion of multi-information sources are discussed. The current status of research on protein function prediction using machine learning is considered, and existing challenges and prominent breakthroughs are discussed to provide ideas and methods for future studies.
Collapse
Affiliation(s)
- Tian-Ci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zi-Xuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
15
|
Yue ZX, Yan TC, Xu HQ, Liu YH, Hong YF, Chen GX, Xie T, Tao L. A systematic review on the state-of-the-art strategies for protein representation. Comput Biol Med 2023; 152:106440. [PMID: 36543002 DOI: 10.1016/j.compbiomed.2022.106440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The study of drug-target protein interaction is a key step in drug research. In recent years, machine learning techniques have become attractive for research, including drug research, due to their automated nature, predictive power, and expected efficiency. Protein representation is a key step in the study of drug-target protein interaction by machine learning, which plays a fundamental role in the ultimate accomplishment of accurate research. With the progress of machine learning, protein representation methods have gradually attracted attention and have consequently developed rapidly. Therefore, in this review, we systematically classify current protein representation methods, comprehensively review them, and discuss the latest advances of interest. According to the information extraction methods and information sources, these representation methods are generally divided into structure and sequence-based representation methods. Each primary class can be further divided into specific subcategories. As for the particular representation methods involve both traditional and the latest approaches. This review contains a comprehensive assessment of the various methods which researchers can use as a reference for their specific protein-related research requirements, including drug research.
Collapse
Affiliation(s)
- Zi-Xuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian-Ci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|