1
|
Le AV, Hartman MCT. Improved synthesis of the unnatural base NaM, and evaluation of its orthogonality in in vitro transcription and translation. RSC Chem Biol 2024; 5:d4cb00121d. [PMID: 39279876 PMCID: PMC11389374 DOI: 10.1039/d4cb00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
Unnatural base pairs (UBP) promise to diversify cellular function through expansion of the genetic code. Some of the most successful UBPs are the hydrophobic base pairs 5SICS:NaM and TPT3:NaM developed by Romesberg. Much of the research on these UBPs has emphasized strategies to enable their efficient replication, transcription and translation in living organisms. These experiments have achieved spectacular success in certain cases; however, the complexity of working in vivo places strong constraints on the types of experiments that can be done to optimize and improve the system. Testing UBPs in vitro, on the other hand, offers advantages including minimization of scale, the ability to precisely control the concentration of reagents, and simpler purification of products. Here we investigate the orthogonality of NaM-containing base pairs in transcription and translation, looking at background readthrough of NaM codons by the native machinery. We also describe an improved synthesis of NaM triphosphate (NaM-TP) and a new assay for testing the purity of UBP containing RNAs.
Collapse
Affiliation(s)
- Anthony V Le
- Virginia Commonwealth University, Department of Chemistry 1001 W Main St. Richmond VA 23284 USA
- Virginia Commonwealth University, Massey Cancer Center 401 College St. Richmond VA 23219 USA
| | - Matthew C T Hartman
- Virginia Commonwealth University, Department of Chemistry 1001 W Main St. Richmond VA 23284 USA
- Virginia Commonwealth University, Massey Cancer Center 401 College St. Richmond VA 23219 USA
| |
Collapse
|
2
|
Xu Q, Cao J, Rai KR, Zhu B, Liu D, Wan C. Codon usage bias of goose circovirus and its adaptation to host. Poult Sci 2024; 103:103775. [PMID: 38713985 PMCID: PMC11091504 DOI: 10.1016/j.psj.2024.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/09/2024] Open
Abstract
Goose circovirus (GoCV), a potential immunosuppressive virus possessing a circular single-stranded DNA genome, is widely distributed in both domesticated and wild geese. This virus infection causes significant economic losses in the waterfowl industry. The codon usage patterns of viruses reflect the evolutionary history and genetic architecture, allowing them to adapt quickly to changes in the external environment, particularly to their hosts. In this study, we retrieved the coding sequences (Rep and Cap) and the genome of GoCV from GenBank, conducting comprehensive research to explore the codon usage patterns in 144 GoCV strains. The overall codon usage of the GoCV strains was relatively similar and exhibited a slight bias. The effective number of codons (ENC) indicated a low overall extent of codon usage bias (CUB) in GoCV. Combined with the base composition and relative synonymous codon usage (RSCU) analysis, the results revealed a bias toward A- and G-ending codons in the overall codon usage. Analysis of the ENC-GC3s plot and neutrality plot suggested that natural selection plays an important role in shaping the codon usage pattern of GoCV, with mutation pressure having a minor influence. Furthermore, the correlations between ENC and relative indices, as well as correspondence analysis (COA), showed that hydrophobicity and geographical distribution also contribute to codon usage variation in GoCV, suggesting the possible involvement of natural selection. In conclusion, GoCV exhibits comparatively slight CUB, with natural selection being the major factor shaping the codon usage pattern of GoCV. Our research contributes to a deeper understanding of GoCV evolution and its host adaptation, providing valuable insights for future basic studies and vaccine design related to GoCV.
Collapse
Affiliation(s)
- Quanming Xu
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Jie Cao
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou 350007, China
| | - Kul Raj Rai
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binling Zhu
- Department of Forensic Science, Fujian Police College, Fuzhou 350007, China
| | - Dan Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Chunhe Wan
- Institute of Animal Husbandry and Veterinary Medicine/Fujian Key Laboratory for Avian Diseases Control and Prevention/Fujian Animal Diseases Control Technology Development Centre, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.
| |
Collapse
|
3
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Kerestesy GN, Dods KK, McFeely CAL, Hartman MCT. Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids. ACS Synth Biol 2024; 13:119-128. [PMID: 38194520 PMCID: PMC11165968 DOI: 10.1021/acssynbio.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The tolerance of the translation apparatus toward noncanonical amino acids (ncAAs) has enabled the creation of diverse natural-product-like peptide libraries using mRNA display for use in drug discovery. Typical experiments testing for ribosomal ncAA incorporation involve radioactive end point assays to measure yield alongside mass spectrometry experiments to validate incorporation. These end point assays require significant postexperimental manipulation for analysis and prevent higher throughput analysis and optimization experiments. Continuous assays for in vitro translation involve the synthesis of fluorescent proteins which require the full complement of canonical AAs for function and are therefore of limited utility for testing of ncAAs. Here, we describe a new, continuous fluorescence assay for in vitro translation based on detection of a short peptide tag using an affinity clamp protein, which exhibits changes in its fluorescent properties upon binding. Using this assay in a 384-well format, we were able to validate the incorporation of a variety of ncAAs and also quickly test for the codon reading specificities of a variety of Escherichia coli tRNAs. This assay enables rapid assessment of ncAAs and optimization of translation components and is therefore expected to advance the engineering of the translation apparatus for drug discovery and synthetic biology.
Collapse
Affiliation(s)
- Gianna N Kerestesy
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Kara K Dods
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Clinton A L McFeely
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| | - Matthew C T Hartman
- Chemistry, Virginia Commonwealth University, 1001 W Main Street, Richmond, 23220 Virginia, United States
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, 23298-0037 Virginia, United States
| |
Collapse
|
6
|
McFeely CAL, Shakya B, Makovsky CA, Haney AK, Ashton Cropp T, Hartman MCT. Extensive breaking of genetic code degeneracy with non-canonical amino acids. Nat Commun 2023; 14:5008. [PMID: 37591858 PMCID: PMC10435567 DOI: 10.1038/s41467-023-40529-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic code expansion (GCE) offers many exciting opportunities for the creation of synthetic organisms and for drug discovery methods that utilize in vitro translation. One type of GCE, sense codon reassignment (SCR), focuses on breaking the degeneracy of the 61 sense codons which encode for only 20 amino acids. SCR has great potential for genetic code expansion, but extensive SCR is limited by the post-transcriptional modifications on tRNAs and wobble reading of these tRNAs by the ribosome. To better understand codon-tRNA pairing, here we develop an assay to evaluate the ability of aminoacyl-tRNAs to compete with each other for a given codon. We then show that hyperaccurate ribosome mutants demonstrate reduced wobble reading, and when paired with unmodified tRNAs lead to extensive and predictable SCR. Together, we encode seven distinct amino acids across nine codons spanning just two codon boxes, thereby demonstrating that the genetic code hosts far more re-assignable space than previously expected, opening the door to extensive genetic code engineering.
Collapse
Affiliation(s)
- Clinton A L McFeely
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Bipasana Shakya
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Chelsea A Makovsky
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA
| | - Aidan K Haney
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University, 1001 W Main St., Richmond, VA, 23284, USA.
- Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA, 23219, USA.
| |
Collapse
|
7
|
Noor F, Ashfaq UA, Bakar A, Qasim M, Masoud MS, Alshammari A, Alharbi M, Riaz MS. Identification and characterization of codon usage pattern and influencing factors in HFRS-causing hantaviruses. Front Immunol 2023; 14:1131647. [PMID: 37492567 PMCID: PMC10364125 DOI: 10.3389/fimmu.2023.1131647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral zoonosis carried and transmitted by infected rodents through urine, droppings, or saliva. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors which hinder the development of potential therapeutic solutions for HFRS. Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), Seoul virus (SEOV), and Puumala virus (PUUV) are predominantly found in hantaviral species that cause HFRS in patients. Despite ongoing prevention and control efforts, HFRS remains a serious economic burden worldwide. Furthermore, recent studies reported that the hantavirus nucleocapsid protein is a multi-functional protein and plays a major role in the replication cycle of the hantavirus. However, the precise mechanism of the nucleoproteins in viral pathogenesis is not completely understood. In the framework of the current study, various in silico approaches were employed to identify the factors influencing the codon usage pattern of hantaviral nucleoproteins. Based on the relative synonymous codon usage (RSCU) values, a comparative analysis was performed between HFRS-causing hantavirus and their hosts, suggesting that HTNV, DOBV, SEOV, and PUUV, were inclined to evolve their codon usage patterns that were comparable to those of their hosts. The results indicated that most of the overrepresented codons had AU-endings, which revealed that mutational pressure is the major force shaping codon usage patterns. However, the influence of natural selection and geographical factors cannot be ignored on viral codon usage bias. Further analysis also demonstrated that HFRS causing hantaviruses adapted host-specific codon usage patterns to sustain successful replication and transmission chains within hosts. To our knowledge, no study to date reported the factors influencing the codon usage pattern within hantaviral nucleoproteins. Thus, the proposed computational scheme can help in understanding the underlying mechanism of codon usage patterns in HFRS-causing hantaviruses which lend a helping hand in designing effective anti-HFRS treatments in future. This study, although comprehensive, relies on in silico methods and thus necessitates experimental validation for more solid outcomes. Beyond the identified factors influencing viral behavior, there could be other yet undiscovered influences. These potential factors should be targets for further research to improve HFRS therapeutic strategies.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abu Bakar
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
8
|
Schultz SK, Kothe U. Fluorescent labeling of tRNA for rapid kinetic interaction studies with tRNA-binding proteins. Methods Enzymol 2023; 692:103-126. [PMID: 37925176 DOI: 10.1016/bs.mie.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Transfer RNA (tRNA) plays a critical role during translation and interacts with numerous proteins during its biogenesis, functional cycle and degradation. In particular, tRNA is extensively post-transcriptionally modified by various tRNA modifying enzymes which each target a specific nucleotide at different positions within tRNAs to introduce different chemical modifications. Fluorescent assays can be used to study the interaction between a protein and tRNA. Moreover, rapid mixing fluorescence stopped-flow assays provide insights into the kinetics of the tRNA-protein interaction in order to elucidate the tRNA binding mechanism for the given protein. A prerequisite for these studies is a fluorescently labeled molecule, such as fluorescent tRNA, wherein a change in fluorescence occurs upon protein binding. In this chapter, we discuss the utilization of tRNA modifications in order to introduce fluorophores at particular positions within tRNAs. Particularly, we focus on in vitro thiolation of a uridine at position 8 within tRNAs using the tRNA modification enzyme ThiI, followed by labeling of the thiol group with fluorescein. As such, this fluorescently labeled tRNA is primarily unmodified, with the exception of the thiolation modification to which the fluorophore is attached, and can be used as a substrate to study the binding of different tRNA-interacting factors. Herein, we discuss the example of studying the tRNA binding mechanism of the tRNA modifying enzymes TrmB and DusA using internally fluorescein-labeled tRNA.
Collapse
Affiliation(s)
- Sarah K Schultz
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|