1
|
Ashari H, Liu LS, Dagong MIA, Cai ZF, Xie GL, Yin TT, Zhang YP, Han JL, Peng MS. Genome sequencing and assembly of feral chickens in the wild of Sulawesi, Indonesia. Anim Genet 2025; 56:e13497. [PMID: 39710860 DOI: 10.1111/age.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/24/2024]
Abstract
The feralization of domestic chicken makes the conservation and management of red jungle fowl (Gallus gallus) more complicated and challenging. We collected two Sulawesi feral chickens, located east of the Wallace Line, for whole-genome sequencing and de novo genome assembly. Phylogenetic and f4-statistics analyses indicated that the Sulawesi feralized domestic chickens (G. g. domesticus) received gene flow from G. g. gallus. We integrated ~45× ultra-long Oxford Nanopore Technology reads and ~28× PacBio HiFi reads to generate a de novo genome assembly of a female Sulawesi feral chicken (GGsula) with a contig N50 of 19.88 Mbp. We characterized structural variations in GGsula, and found some were related to nervous system. Our study provides the first genome assembly of feral chickens, which is a unique genomic resource to explore the process of chicken domestication and feralization.
Collapse
Affiliation(s)
- Hidayat Ashari
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Graduate School of Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Li-Sheng Liu
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | | | - Zheng-Fei Cai
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Guo-Li Xie
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ting-Ting Yin
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min-Sheng Peng
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Tao L, Liu H, Adeola AC, Xie HB, Feng ST, Zhang YP. The effects of runs-of-homozygosity on pig domestication and breeding. BMC Genomics 2025; 26:6. [PMID: 39762732 PMCID: PMC11702194 DOI: 10.1186/s12864-024-11189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression. RESULTS Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits. Our study revealed differential ROH landscapes during domestication and artificial selection of Eurasian pigs. We observed associations between ROH burden and phenotypic traits such as body conformation and susceptibility to diseases like scrotal hernia. By examining associations of whole-genome and regional ROH burden with gene expression, we identified specific genes and pathways affected by inbreeding depression. Associations of regional ROH burden with gene expression also enabled the discovery of novel regulatory elements. Lastly, we inferred recessive lethal mutations by examining depletion of ROH in an inbred population with relatively small sample size, following by fine mapping with sequencing data. CONCLUSIONS These findings suggested that both phenotypic and genetic variations have been reshaped by inbreeding, and provided insights to the genetic mechanisms underlying inbreeding depression.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Liu
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Adeniyi C Adeola
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hai-Bing Xie
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shu-Tang Feng
- Beijing Grand-Life Science and Technology Company, Beijing, 102206, China.
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Science, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
3
|
Du H, Zhou L, Liu Z, Zhuo Y, Zhang M, Huang Q, Lu S, Xing K, Jiang L, Liu JF. The 1000 Chinese Indigenous Pig Genomes Project provides insights into the genomic architecture of pigs. Nat Commun 2024; 15:10137. [PMID: 39578420 PMCID: PMC11584710 DOI: 10.1038/s41467-024-54471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Pigs play a central role in human livelihoods in China, but a lack of systematic large-scale whole-genome sequencing of Chinese domestic pigs has hindered genetic studies. Here, we present the 1000 Chinese Indigenous Pig Genomes Project sequencing dataset, comprising 1011 indigenous individuals from 50 pig populations covering approximately two-thirds of China's administrative divisions. Based on the deep sequencing (~25.95×) of these pigs, we identify 63.62 million genomic variants, and provide a population-specific reference panel to improve the imputation performance of Chinese domestic pig populations. Using a combination of methods, we detect an ancient admixture event related to a human immigration climax in the 13th century, which may have contributed to the formation of southeast-central Chinese pig populations. Analyzing the haplotypes of the Y chromosome shows that the indigenous populations residing around the Taihu Lake Basin exhibit a unique haplotype. Furthermore, we find a 13 kb region in the THSD7A gene that may relate to high-altitude adaptation, and a 0.47 Mb region on chromosome 7 that is significantly associated with body size traits. These results highlight the value of our genomic resource in facilitating genomic architecture and complex traits studies in pigs.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lei Zhou
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yue Zhuo
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meilin Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qianqian Huang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyu Lu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Xing
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Feng Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
4
|
Liu Y, Wang Y, Sun J, Kong D, Zhou B, Ding M, Meng Y, Duan G, Cui Y, Fan Z, Zhang YP, Zhao W, Tang B. iDog: a multi-omics resource for canids study. Nucleic Acids Res 2024:gkae1031. [PMID: 39526388 DOI: 10.1093/nar/gkae1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
iDog (https://ngdc.cncb.ac.cn/idog/) is a comprehensive public resource for domestic dogs (Canis lupus familiaris) and wild canids, designed to integrate multi-omics data and provide data services for the worldwide canine research community. Notably, iDog 2.0 features a 15-fold increase in genomic samples, including 29.55 million single nucleotide polymorphisms (SNPs) and 16.54 million insertions/deletions (InDels) from 1929 modern samples and 29.09 million SNPs from 111 ancient Canis samples. Additionally, 43487 breed-specific SNPs and 530 disease/trait-associated variants have been identified and integrated. The platform also includes data from 141 BioProjects involving gene expression analyses and a single-cell transcriptome module containing data from 105 057 Beagle hippocampus cells. iDog 2.0 also includes an epignome module that evaluates DNA methylation patterns across 547 samples and chromatin accessibility across 87 samples for the analysis of gene expression regulation. Additionally, it provies phenotypic data for 897 dog diseases, 3207 genotype-to-phenotype (G2P) pairs, and 349 dog disease-associated genes, along with two newly constructed ontologies for breed and disease standardization. Finally, 13 new analytical tools have been added. Given these enhancements, the updated iDog 2.0 is an invaluable resource for the global cannie research community.
Collapse
Affiliation(s)
- Yanhu Liu
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Yibo Wang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Sun
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Demian Kong
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Zhou
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Mengting Ding
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Yuyan Meng
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Guangya Duan
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cui
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Wenming Zhao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixia Tang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Guo Y, Hu M, Peng H, Zhang Y, Kuang R, Han Z, Wang D, Liao Y, Ma R, Xu Z, Sun J, Shen Y, Zhao C, Ma H, Liu D, Zhao S, Zhao Y. Epigenomic features associated with body temperature stabilize tissues during cold exposure in cold-resistant pigs. J Genet Genomics 2024; 51:1252-1264. [PMID: 38969257 DOI: 10.1016/j.jgg.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Cold stress in low-temperature environments can trigger changes in gene expression, but epigenomics regulation of temperature stability in vital tissues, including the fat and diencephalon, is still unclear. Here, we explore the cold-induced changes in epigenomic features in the diencephalon and fat tissues of two cold-resistant Chinese pig breeds, Min and Enshi black (ES) pigs, utilizing H3K27ac CUT&Tag, RNA-seq, and selective signature analysis. Our results show significant alterations in H3K27ac modifications in the diencephalon of Min pigs and the fat of ES pigs after cold exposure. Dramatic changes in H3K27ac modifications in the diencephalon of Min pig are primarily associated with genes involved in energy metabolism and hormone regulation, whereas those in the fat of ES pig are primarily associated with immunity-related genes. Moreover, transcription factors PRDM1 and HSF1, which show evidence of selection, are enriched in genomic regions presenting cold-responsive alterations in H3K27ac modification in the Min pig diencephalon and ES pig fat, respectively. Our results indicate the diversity of epigenomic response mechanisms to cold exposure between Min and ES pigs, providing unique epigenetic resources for studies of low-temperature adaptation in large mammals.
Collapse
Affiliation(s)
- Yaping Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingyang Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Hao Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yan Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Renzhuo Kuang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zheyu Han
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daoyuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinlong Liao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Ruixian Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhixiang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiahao Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu Shen
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Hong Ma
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China.
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, Sanya, Hainan 572000, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China.
| | - Yunxia Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yazhouwan National Laboratory, Sanya, Hainan 572000, China.
| |
Collapse
|
6
|
Ghavi Hossein-Zadeh N. An overview of recent technological developments in bovine genomics. Vet Anim Sci 2024; 25:100382. [PMID: 39166173 PMCID: PMC11334705 DOI: 10.1016/j.vas.2024.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Cattle are regarded as highly valuable animals because of their milk, beef, dung, fur, and ability to draft. The scientific community has tried a number of strategies to improve the genetic makeup of bovine germplasm. To ensure higher returns for the dairy and beef industries, researchers face their greatest challenge in improving commercially important traits. One of the biggest developments in the last few decades in the creation of instruments for cattle genetic improvement is the discovery of the genome. Breeding livestock is being revolutionized by genomic selection made possible by the availability of medium- and high-density single nucleotide polymorphism (SNP) arrays coupled with sophisticated statistical techniques. It is becoming easier to access high-dimensional genomic data in cattle. Continuously declining genotyping costs and an increase in services that use genomic data to increase return on investment have both made a significant contribution to this. The field of genomics has come a long way thanks to groundbreaking discoveries such as radiation-hybrid mapping, in situ hybridization, synteny analysis, somatic cell genetics, cytogenetic maps, molecular markers, association studies for quantitative trait loci, high-throughput SNP genotyping, whole-genome shotgun sequencing to whole-genome mapping, and genome editing. These advancements have had a significant positive impact on the field of cattle genomics. This manuscript aimed to review recent advances in genomic technologies for cattle breeding and future prospects in this field.
Collapse
Affiliation(s)
- Navid Ghavi Hossein-Zadeh
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, 41635-1314, Iran
| |
Collapse
|
7
|
Du X, Sun Y, Fu T, Gao T, Zhang T. Research Progress and Applications of Bovine Genome in the Tribe Bovini. Genes (Basel) 2024; 15:509. [PMID: 38674443 PMCID: PMC11050176 DOI: 10.3390/genes15040509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Various bovine species have been domesticated and bred for thousands of years, and they provide adequate animal-derived products, including meat, milk, and leather, to meet human requirements. Despite the review studies on economic traits in cattle, the genetic basis of traits has only been partially explained by phenotype and pedigree breeding methods, due to the complexity of genomic regulation during animal development and growth. With the advent of next-generation sequencing technology, genomics projects, such as the 1000 Bull Genomes Project, Functional Annotation of Animal Genomes project, and Bovine Pangenome Consortium, have advanced bovine genomic research. These large-scale genomics projects gave us a comprehensive concept, technology, and public resources. In this review, we summarize the genomics research progress of the main bovine species during the past decade, including cattle (Bos taurus), yak (Bos grunniens), water buffalo (Bubalus bubalis), zebu (Bos indicus), and gayal (Bos frontalis). We mainly discuss the development of genome sequencing and functional annotation, focusing on how genomic analysis reveals genetic variation and its impact on phenotypes in several bovine species.
Collapse
Affiliation(s)
- Xingjie Du
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tianliu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (X.D.); (Y.S.); (T.F.); (T.G.)
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
8
|
Xue R, Wang Y, Geng L, Xiao H, Kumar V, Lan X, Malhotra A, Singhal PC, Chen J. Comprehensive analysis of the gene expression profile of the male and female BTBR mice with diabetic nephropathy. Int J Biol Macromol 2024; 257:128720. [PMID: 38101684 DOI: 10.1016/j.ijbiomac.2023.128720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Comprehensive insight into the gender-based gene expression-related omics data in a rodent model of diabetic nephropathy (DN) is scarce. In the present study, the gender-based genes regulating different pathways involved in the progression of DN were explored through an unbiased RNA sequence of kidneys from BTBR mice with DN. We identified 17,739 and 17,981 genes in male and female DN mice; 1121 and 655 genes were expressed differentially (DEGs, differentially expressed genes) in male and female DN mice; both genders displayed only 195 DEGs. In the male DN mice, the number of upregulated genes was nearly the same as that of the down-regulated genes. In contrast, the number of upregulated genes was lesser than that of the down-regulated genes in the female DN mice, manifesting a remarkable gender disparity during the progression of DN in this animal model. Gene Ontology (GO) and KEGG-enriched results showed that most of these DEGs were related to the critical biological processes, including metabolic pathways, natural oxidation, bile secretion, and PPAR signaling; all are highly associated with DN. Notably, the DEGs significantly enriched for steroid hormone biosynthesis pathway were identified in both genders; the number of DEGs increased was 22 in male DN mice and 14 in female DN mice. Specifically, the Ugt1a10, Akr1c12, and Akr1c14 were upregulated in both genders. Interestingly, the Hsd11b1 gene was upregulated in female DN mice but downregulated in male DN mice. These results suggest that a significant gender-based variance in the gene expression occurs during the progression of DN and may be playing a role in the advancement of DN in the BTBR mouse model.
Collapse
Affiliation(s)
- Rui Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Lei Geng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haiting Xiao
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Vinod Kumar
- Department of Dermatology, Postgraduate Institute for Medical Education and Research, Chandigarh 160012, India
| | - Xiqian Lan
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ashwani Malhotra
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, United States
| | - Pravin C Singhal
- Feinstein Institute for Medical Research and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY 11030, United States.
| | - Jianning Chen
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
9
|
Kang H, Huang T, Duan G, Meng Y, Chen X, He S, Xia Z, Zhou X, Chao J, Tang B, Wang Z, Zhu J, Du Z, Sun Y, Zhang S, Xiao J, Tian W, Wang W, Zhao W. TCOD: an integrated resource for tropical crops. Nucleic Acids Res 2024; 52:D1651-D1660. [PMID: 37843152 PMCID: PMC10767838 DOI: 10.1093/nar/gkad870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data integration and sharing. However, the existing databases cannot fully satisfy researchers' requirements due to the relatively limited integration level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics data, enabling cross-species comparisons based on homology relationships, but also offers user-friendly online tools for efficient data mining and visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective breeding and trait biology of tropical crops.
Collapse
Affiliation(s)
- Hailong Kang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Huang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangya Duan
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyan Meng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoning Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang He
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Xincheng Zhou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinquan Chao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bixia Tang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhonghuang Wang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhenglin Du
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yanlin Sun
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Sisi Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jingfa Xiao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Tian
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenquan Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Wenming Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang K, Liang J, Fu Y, Chu J, Fu L, Wang Y, Li W, Zhou Y, Li J, Yin X, Wang H, Liu X, Mou C, Wang C, Wang H, Dong X, Yan D, Yu M, Zhao S, Li X, Ma Y. AGIDB: a versatile database for genotype imputation and variant decoding across species. Nucleic Acids Res 2024; 52:D835-D849. [PMID: 37889051 PMCID: PMC10767904 DOI: 10.1093/nar/gkad913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The high cost of large-scale, high-coverage whole-genome sequencing has limited its application in genomics and genetics research. The common approach has been to impute whole-genome sequence variants obtained from a few individuals for a larger population of interest individually genotyped using SNP chip. An alternative involves low-coverage whole-genome sequencing (lcWGS) of all individuals in the larger population, followed by imputation to sequence resolution. To overcome limitations of processing lcWGS data and meeting specific genotype imputation requirements, we developed AGIDB (https://agidb.pro), a website comprising tools and database with an unprecedented sample size and comprehensive variant decoding for animals. AGIDB integrates whole-genome sequencing and chip data from 17 360 and 174 945 individuals, respectively, across 89 species to identify over one billion variants, totaling a massive 688.57 TB of processed data. AGIDB focuses on integrating multiple genotype imputation scenarios. It also provides user-friendly searching and data analysis modules that enable comprehensive annotation of genetic variants for specific populations. To meet a wide range of research requirements, AGIDB offers downloadable reference panels for each species in addition to its extensive dataset, variant decoding and utility tools. We hope that AGIDB will become a key foundational resource in genetics and breeding, providing robust support to researchers.
Collapse
Affiliation(s)
- Kaili Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiete Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinyu Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Wangjiao Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - You Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhua Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoxiao Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Chonglong Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Heng Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Guangzhou 510642, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Lingnan Modern Agricultural Science and Technology Guangdong Laboratory, Guangzhou 510642, China
| |
Collapse
|
11
|
Wang W, Sun Y, Xu P, Liang H, Wang Y, Deng D, Cao J, Yu M. Epigenomic analysis of the myometrium during late implantation revealed regulatory elements in genes related to the cellular zinc homeostasis pathway in pigs. Genomics 2024; 116:110768. [PMID: 38128703 DOI: 10.1016/j.ygeno.2023.110768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The myometrium, composed of the inner circular muscle (CM) and outer longitudinal muscle (LM), is crucial in establishing and maintaining early pregnancy. However, the molecular mechanisms involved are not well understood. In this study, we identified the transcriptomic features of the CM and LM collected from the mesometrial (M) and anti-mesometrial (AM) sides of the pig uterus on day 18 of pregnancy during the placentation initiation phase. Some genes in the cellular zinc ion level regulatory pathways (MT-1A, MT-1D, MT-2B, SLC30A2, and SLC39A2) were spatially and highly enriched in uterine CM at the mesometrial side. In addition, the histone modification profiles of H3K27ac and H3K4me3 in uterine CM and LM collected from the mesometrial side were characterized. Genomic regions associated with the expression of genes regulating the cellular zinc ion level were detected. Moreover, six highly linked variants in the H3K27ac-enriched region of the pig SLC30A2 gene were identified and found to be significantly associated with the total number born at the second parity (P < 0.05). In conclusion, the genes in the pathways of cellular zinc homeostasis and their regulatory elements identified have implications for pig reproduction trait improvement and warrant further investigations.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yan Sun
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Pengfei Xu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hao Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yue Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dadong Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jianhua Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- Frontiers Science Center for Animal Breeding and Sustainable Production (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|