1
|
Park J, Kirkland JG. The role of the polybromo-associated BAF complex in development. Biochem Cell Biol 2025; 103:1-8. [PMID: 39541575 PMCID: PMC11752563 DOI: 10.1139/bcb-2024-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Chromatin is dynamically regulated during development, where structural changes affect the transcription of genes required to promote different cell types. One of the chromatin regulatory factors responsible for transcriptional regulation during development is the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, an ATP-dependent chromatin remodeling factor conserved throughout eukaryotes. The catalytic subunit of this complex, BRG1, is shared in all three SWI/SNF complexes subfamilies and is essential for developing most cell lineages. Interestingly, many human developmental diseases have correlative or causative mutations in different SWI/SNF subunits. Many polybromo-associated BAF (pBAF) complex-specific subunit genetic alterations result in developmental failures in tissue-specific ways. This observation suggests that the pBAF complex plays a vital role in development and differentiation, and studying the pBAF complex may provide an opportunity to better understand gene regulation during development. In this mini-view, we will focus on the functions of pBAF-specific subunits and their influence on the development of various cell and tissue types by regulating developmental gene expression.
Collapse
Affiliation(s)
- JinYoung Park
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Jacob G. Kirkland
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
3
|
Shu X, Hua G, Zheng X, Chen Z, Zhang J, Zhuang W, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken oviduct tract. Poult Sci 2024; 103:103980. [PMID: 38959666 PMCID: PMC11269787 DOI: 10.1016/j.psj.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Utilizing publicly available RNA-seq data to screen for ideal reference genes is more efficient and accurate than traditional methods. Previous studies have identified optimal reference genes in various chicken tissues, but none have specifically focused on the oviduct (including the infundibulum, magnum, isthmus, uterus, and vagina), which is crucial for egg production. Identifying stable reference genes in the oviduct is essential for improving research on gene expression levels. This study investigated genes with consistent expression patterns in the chicken oviduct, encompassing both individual oviduct tract tissues and the entire oviduct, by utilizing multiple RNA-seq datasets. The screening results revealed the discovery of 100 novel reference genes in each segment of oviduct tissues, primarily associated with cell cycle regulation and RNA binding. Moreover, the majority of housekeeping genes (HKGs) showed inconsistent expression levels across distinct samples, suggesting their lack of stability under varying conditions. The stability of the newly identified reference genes was assessed in comparison to previously validated stable reference genes in chicken oviduct and commonly utilized HKGs, employing traditional reference gene screening methods. HERPUD2, CSDE1, VPS35, PBRM1, LSM14A, and YWHAB were identified to be suitable novel reference gene for different parts of the oviduct. HERPUD2 and YWHAB were reliable for gene expression normalization throughout the oviduct tract. Furthermore, overexpression and interference assays in DF1 cells showed LSM14A and YWHAB play a crucial role in cell proliferation, highlighting the importance of these newly reference genes for further research. Overall, this study has expanded the options for reference genes in RT-qPCR experiments in different segments of the chicken oviduct and the entire oviduct.
Collapse
Affiliation(s)
- Xin Shu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
4
|
Bursch KL, Goetz CJ, Jiao G, Nuñez R, Olp MD, Dhiman A, Khurana M, Zimmermann MT, Urrutia RA, Dykhuizen EC, Smith BC. Cancer-associated polybromo-1 bromodomain 4 missense variants variably impact bromodomain ligand binding and cell growth suppression. J Biol Chem 2024; 300:107146. [PMID: 38460939 PMCID: PMC11002309 DOI: 10.1016/j.jbc.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
The polybromo, brahma-related gene 1-associated factors (PBAF) chromatin remodeling complex subunit polybromo-1 (PBRM1) contains six bromodomains that recognize and bind acetylated lysine residues on histone tails and other nuclear proteins. PBRM1 bromodomains thus provide a link between epigenetic posttranslational modifications and PBAF modulation of chromatin accessibility and transcription. As a putative tumor suppressor in several cancers, PBRM1 protein expression is often abrogated by truncations and deletions. However, ∼33% of PBRM1 mutations in cancer are missense and cluster within its bromodomains. Such mutations may generate full-length PBRM1 variant proteins with undetermined structural and functional characteristics. Here, we employed computational, biophysical, and cellular assays to interrogate the effects of PBRM1 bromodomain missense variants on bromodomain stability and function. Since mutations in the fourth bromodomain of PBRM1 (PBRM1-BD4) comprise nearly 20% of all cancer-associated PBRM1 missense mutations, we focused our analysis on PBRM1-BD4 missense protein variants. Selecting 16 potentially deleterious PBRM1-BD4 missense protein variants for further study based on high residue mutational frequency and/or conservation, we show that cancer-associated PBRM1-BD4 missense variants exhibit varied bromodomain stability and ability to bind acetylated histones. Our results demonstrate the effectiveness of identifying the unique impacts of individual PBRM1-BD4 missense variants on protein structure and function, based on affected residue location within the bromodomain. This knowledge provides a foundation for drawing correlations between specific cancer-associated PBRM1 missense variants and distinct alterations in PBRM1 function, informing future cancer personalized medicine approaches.
Collapse
Affiliation(s)
- Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Mallika Khurana
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael T Zimmermann
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raul A Urrutia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
5
|
Avila-Lopez P, Lauberth SM. Exploring new roles for RNA-binding proteins in epigenetic and gene regulation. Curr Opin Genet Dev 2024; 84:102136. [PMID: 38128453 PMCID: PMC11245729 DOI: 10.1016/j.gde.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A significant portion of the human proteome comprises RNA-binding proteins (RBPs) that play fundamental roles in numerous biological processes. In the last decade, there has been a staggering increase in RBP identification and classification, which has fueled interest in the evolving roles of RBPs and RBP-driven molecular mechanisms. Here, we focus on recent insights into RBP-dependent regulation of the epigenetic and transcriptional landscape. We describe advances in methodologies that define the RNA-protein interactome and machine-learning algorithms that are streamlining RBP discovery and predicting new RNA-binding regions. Finally, we present how RBP dysregulation leads to alterations in tumor-promoting gene expression and discuss the potential for targeting these RBPs for the development of new cancer therapeutics.
Collapse
Affiliation(s)
- Pedro Avila-Lopez
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shannon M Lauberth
- Simpson Querrey Institute for Epigenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
6
|
Ordonez-Rubiano SC, Maschinot CA, Wang S, Sood S, Baracaldo-Lancheros LF, Strohmier BP, McQuade AJ, Smith BC, Dykhuizen EC. Rational Design and Development of Selective BRD7 Bromodomain Inhibitors and Their Activity in Prostate Cancer. J Med Chem 2023; 66:11250-11270. [PMID: 37552884 PMCID: PMC10641717 DOI: 10.1021/acs.jmedchem.3c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bromodomain-containing proteins are readers of acetylated lysine and play important roles in cancer. Bromodomain-containing protein 7 (BRD7) is implicated in multiple malignancies; however, there are no selective chemical probes to study its function in disease. Using crystal structures of BRD7 and BRD9 bromodomains (BDs) bound to BRD9-selective ligands, we identified a binding pocket exclusive to BRD7. We synthesized a series of ligands designed to occupy this binding region and identified two inhibitors with increased selectivity toward BRD7, 1-78 and 2-77, which bind with submicromolar affinity to the BRD7 BD. Our binding mode analyses indicate that these ligands occupy a uniquely accessible binding cleft in BRD7 and maintain key interactions with the asparagine and tyrosine residues critical for acetylated lysine binding. Finally, we validated the utility and selectivity of the compounds in cell-based models of prostate cancer.
Collapse
Affiliation(s)
- Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Chad A Maschinot
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Surbhi Sood
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Luisa F Baracaldo-Lancheros
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Alexander J McQuade
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Brian C Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University. Robert Heine Pharmacy Building 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
- Purdue Center for Cancer Research, College of Pharmacy, Purdue University, 201 S University St., West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Petell CJ, Burkholder NT, Ruiz PA, Skela J, Foreman JR, Southwell LE, Temple BR, Krajewski K, Strahl BD. The bromo-adjacent homology domains of PBRM1 associate with histone tails and contribute to PBAF-mediated gene regulation. J Biol Chem 2023; 299:104996. [PMID: 37394010 PMCID: PMC10425938 DOI: 10.1016/j.jbc.2023.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
A critical component of gene regulation is recognition of histones and their post-translational modifications by transcription-associated proteins or complexes. Although many histone-binding reader modules have been characterized, the bromo-adjacent homology (BAH) domain family of readers is still poorly characterized. A pre-eminent member of this family is PBRM1 (BAF180), a component of the PBAF chromatin-remodeling complex. PBRM1 contains two adjacent BAH domains of unknown histone-binding potential. We evaluated the tandem BAH domains for their capacity to associate with histones and to contribute to PBAF-mediated gene regulation. The BAH1 and BAH2 domains of human PBRM1 broadly interacted with histone tails, but they showed a preference for unmodified N-termini of histones H3 and H4. Molecular modeling and comparison of the BAH1 and BAH2 domains with other BAH readers pointed to a conserved binding mode via an extended open pocket and, in general, an aromatic cage for histone lysine binding. Point mutants that were predicted to disrupt the interaction between the BAH domains and histones reduced histone binding in vitro and resulted in dysregulation of genes targeted by PBAF in cellulo. Although the BAH domains in PBRM1 were important for PBAF-mediated gene regulation, we found that overall chromatin targeting of PBRM1 was not dependent on BAH-histone interaction. Our findings identify a function of the PBRM1 BAH domains in PBAF activity that is likely mediated by histone tail interaction.
Collapse
Affiliation(s)
- Christopher J Petell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nathaniel T Burkholder
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paloma A Ruiz
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jessica Skela
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jake R Foreman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lauren E Southwell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brenda R Temple
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; R L Juliano Structural Bioinformatics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian D Strahl
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|