1
|
Praditsap O, Ahsan NF, Nettuwakul C, Sawasdee N, Sritippayawan S, Yenchitsomanus PT, Rungroj N. Whole exome sequencing reveals heparan sulfate proteoglycan 2 (HSPG2) as a potential causative gene for kidney stone disease in a Thai family. Urolithiasis 2024; 53:7. [PMID: 39680213 DOI: 10.1007/s00240-024-01674-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Kidney stone disease (KSD) is a prevalent and complex condition, with an incidence of 85 cases per 100,000 individuals in Thailand. Notably, over 40% of cases are concentrated in the northeastern region, indicating a potential genetic influence, which is supported by genetic mutations reported in several families by our research group. Despite this, the genetic basis of KSD remains largely unknown for many Thai families. This study aimed to identify the genetic mutation responsible for KSD in a specific Thai family, the UBRS131 family, which includes four affected individuals. Whole exome sequencing was performed, and variant filtering using the VarCards2 program identified 10 potentially causative mutations across 9 genes. These mutations were subjected to segregation analysis among family members and screened in 180 control and 179 case samples using real-time PCR-HRM or PCR-RFLP techniques. Prioritization of these variants using GeneDistiller identified the p.Asp775Glu mutation in the heparan sulfate proteoglycan 2 (HSPG2) gene as the likely causative mutation for KSD in this family. The Asp775 residue is highly conserved across vertebrates, and structural analysis suggests that the Glu775 substitution may disrupt the formation of two crucial hydrogen bonds, potentially altering the mutant protein's configuration. Immunohistochemistry confirmed the presence of perlecan (HSPG2 protein) in the proximal tubules in nephrons. These findings highlight the significant role of the HSPG2 gene in familial KSD within this study family.
Collapse
Affiliation(s)
- Oranud Praditsap
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nawara Faiza Ahsan
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Immunology Graduate Program, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Choochai Nettuwakul
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nunghathai Sawasdee
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suchai Sritippayawan
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nanyawan Rungroj
- Siriraj Genomics, Office of the Dean, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Luo S, Rollins S, Schmitz-Abe K, Tam A, Li Q, Shi J, Lin J, Wang R, Agrawal PB. The solute carrier family 26 member 9 modifies rapidly progressing cystic fibrosis associated with homozygous F508del CFTR mutation. Clin Chim Acta 2024; 561:119765. [PMID: 38852790 DOI: 10.1016/j.cca.2024.119765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND AIMS Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations to the CF transmembrane conductance regulator (CFTR). Symptoms and severity of the disease can be quite variable suggesting modifier genes play an important role. MATERIALS AND METHODS Exome sequencing was performed on six individuals carrying homozygous deltaF508 for CFTR genotype but present with rapidly progressing CF (RPCF). Data was analyzed using an unbiased genome-wide genetic burden test against 3076 controls. Single cell RNA sequencing data from LungMAP was utilized to evaluate unique and co-expression of candidate genes, and structural modeling to evaluate the deleterious effects of identified candidate variants. RESULTS We have identified solute carrier family 26 member 9 (SLC26A9) as a modifier gene to be associated with RPCF. Two rare missense SLC26A9 variants were discovered in three of six individuals deemed to have RPCF: c.229G > A; p.G77S (present in two patients), and c.1885C > T; p.P629S. Co-expression of SLC26A9 and CFTR mRNA is limited across different lung cell types, with the highest level of co-expression seen in human (6.3 %) and mouse (9.0 %) alveolar type 2 (AT2) cells. Structural modeling suggests deleterious effects of these mutations as they are in critical protein domains which might affect the anion transport capability of SLC26A9. CONCLUSION The enrichment of rare and potentially deleterious SLC26A9 mutations in patients with RPCF suggests SLC26A9 may act as an alternative anion transporter in CF and is a modifier gene associated with this lung phenotype.
Collapse
Affiliation(s)
- Shiyu Luo
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stuart Rollins
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA
| | - Klaus Schmitz-Abe
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Tam
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Lin
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruobing Wang
- Division of Pulmonary Medicine, Boston Children's Hospital, USA; Department of Medicine, Harvard Medical School, USA; Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02115, USA.
| | - Pankaj B Agrawal
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health System, Miami, FL 33136, USA; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Iwata-Otsubo A, Skraban CM, Yoshimura A, Sakata T, Alves CAP, Fiordaliso SK, Kuroda Y, Vengoechea J, Grochowsky A, Ernste P, Lulis L, Nesbitt A, Tayoun AA, Gray C, Towne MC, Radtke K, Normand EA, Rhodes L, Seiler C, Shirahige K, Izumi K. Biallelic variants in GTF3C5, a regulator of RNA polymerase III-mediated transcription, cause a multisystem developmental disorder. Hum Genet 2024; 143:437-453. [PMID: 38520561 DOI: 10.1007/s00439-024-02656-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 03/25/2024]
Abstract
General transcription factor IIIC subunit 5 (GTF3C5) encodes transcription factor IIIC63 (TFIIIC63). It binds to DNA to recruit another transcription factor, TFIIIB, and RNA polymerase III (Pol III) to mediate the transcription of small noncoding RNAs, such as tRNAs. Here, we report four individuals from three families presenting with a multisystem developmental disorder phenotype with biallelic variants in GTF3C5. The overlapping features include growth retardation, developmental delay, intellectual disability, dental anomalies, cerebellar malformations, delayed bone age, skeletal anomalies, and facial dysmorphism. Using lymphoblastoid cell lines (LCLs) from two affected individuals, we observed a reduction in TFIIIC63 protein levels compared to control LCLs. Genome binding of TFIIIC63 protein is also reduced in LCL from one of the affected individuals. Additionally, approximately 40% of Pol III binding regions exhibited reduction in the level of Pol III occupancy in the mutant genome relative to the control, while approximately 54% of target regions showed comparable levels of Pol III occupancy between the two, indicating partial impairment of Pol III occupancy in the mutant genome. Yeasts with subject-specific variants showed temperature sensitivity and impaired growth, supporting the notion that the identified variants have deleterious effects. gtf3c5 mutant zebrafish showed developmental defects, including a smaller body, head, and eyes. Taken together, our data show that GTF3C5 plays an important role in embryonic development, and that biallelic variants in this gene cause a multisystem developmental disorder. Our study adds GTF3C5-related disorder to the growing list of genetic disorders associated with Pol III transcription machinery.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pathology, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| | - Cara M Skraban
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Atsunori Yoshimura
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Toyonori Sakata
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Cesar Augusto P Alves
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sarah K Fiordaliso
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yukiko Kuroda
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jaime Vengoechea
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Angela Grochowsky
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Paige Ernste
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Invitae, San Francisco, CA, 94103, USA
| | - Lauren Lulis
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Addie Nesbitt
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Veritas Genetics, Danvers, MA, 01923, USA
| | - Ahmad Abou Tayoun
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Center for Genomic Discovery, Mohammed Bin Rashid University, Dubai Health, UAE
| | - Christopher Gray
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | | | | | - Christoph Seiler
- Zebrafish Core, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Kosuke Izumi
- Division of Human Genetics/Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-8573, USA.
| |
Collapse
|
4
|
Rigden DJ, Fernández XM. The 2024 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res 2024; 52:D1-D9. [PMID: 38035367 PMCID: PMC10767945 DOI: 10.1093/nar/gkad1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
The 2024 Nucleic Acids Research database issue contains 180 papers from across biology and neighbouring disciplines. There are 90 papers reporting on new databases and 83 updates from resources previously published in the Issue. Updates from databases most recently published elsewhere account for a further seven. Nucleic acid databases include the new NAKB for structural information and updates from Genbank, ENA, GEO, Tarbase and JASPAR. The Issue's Breakthrough Article concerns NMPFamsDB for novel prokaryotic protein families and the AlphaFold Protein Structure Database has an important update. Metabolism is covered by updates from Reactome, Wikipathways and Metabolights. Microbes are covered by RefSeq, UNITE, SPIRE and P10K; viruses by ViralZone and PhageScope. Medically-oriented databases include the familiar COSMIC, Drugbank and TTD. Genomics-related resources include Ensembl, UCSC Genome Browser and Monarch. New arrivals cover plant imaging (OPIA and PlantPAD) and crop plants (SoyMD, TCOD and CropGS-Hub). The entire Database Issue is freely available online on the Nucleic Acids Research website (https://academic.oup.com/nar). Over the last year the NAR online Molecular Biology Database Collection has been updated, reviewing 1060 entries, adding 97 new resources and eliminating 388 discontinued URLs bringing the current total to 1959 databases. It is available at http://www.oxfordjournals.org/nar/database/c/.
Collapse
Affiliation(s)
- Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | | |
Collapse
|