1
|
Goncalves T, Bhatnagar H, Cunniffe S, Gibbons RJ, Rose AM, Clynes D. Phosphorylation of 'SDT-like' motifs in ATRX mediates its interaction with the MRN complex and is important for ALT pathway suppression. Open Biol 2024; 14:240205. [PMID: 39657822 PMCID: PMC11631451 DOI: 10.1098/rsob.240205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/12/2024] Open
Abstract
Approximately 10-15% of human cancers are telomerase-negative and maintain their telomeres through a recombination-based process known as the alternative lengthening of telomeres (ALT) pathway. Loss of the alpha-thalassemia/mental retardation, X-linked (ATRX) chromatin remodeller is a common event in ALT-positive cancers, but is generally insufficient to drive ALT induction in isolation. We previously demonstrated that ATRX binds to the MRN complex, which is also known to be important in the ALT pathway, but the molecular basis of this interaction remained elusive. Here, we demonstrate that the interaction between ATRX and MRN is dependent on the N-terminal forkhead-associated and BRCA1 C-terminal domains of NBS1, analogous to the previously reported NBS1-MDC1 interaction. A number of conserved 'SDT-like' motifs (serine and threonine residues with aspartic/glutamic acid residues at proximal positions) in the central unstructured region of ATRX were found to be crucial for the ATRX-MRN interaction. Furthermore, treatment with a casein kinase 2 inhibitor prevented the ability of ATRX to bind MRN, suggesting that phosphorylation of these residues by casein kinase 2 is also important for the interaction. Finally, we show that a functional ATRX-MRN interaction is important for the ability of ATRX to prevent induction of ALT hallmarks in the presence of chemotherapeutically induced DNA-protein crosslinks, and might also have implications for individuals with ATR-X syndrome.
Collapse
Affiliation(s)
- Tomas Goncalves
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
- Department of Paediatrics, University of Oxford, OxfordOX3 9DU, UK
| | | | | | - Richard J. Gibbons
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
| | - Anna M. Rose
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OxfordOX3 9DS, UK
- Department of Paediatrics, University of Oxford, OxfordOX3 9DU, UK
| | - David Clynes
- Department of Oncology, University of Oxford, OxfordOX3 7DQ, UK
| |
Collapse
|
2
|
Froney MM, Cook CR, Cadiz AM, Flinter KA, Ledeboer ST, Chan B, Burris LE, Hardy BP, Pearce KH, Wardell AC, Golitz BT, Jarstfer MB, Pattenden SG. A First-in-Class High-Throughput Screen to Discover Modulators of the Alternative Lengthening of Telomeres (ALT) Pathway. ACS Pharmacol Transl Sci 2024; 7:2799-2819. [PMID: 39296266 PMCID: PMC11406699 DOI: 10.1021/acsptsci.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Telomeres are a protective cap that prevents chromosome ends from being recognized as double-stranded breaks. In somatic cells, telomeres shorten with each cell division due to the end replication problem, which eventually leads to senescence, a checkpoint proposed to prevent uncontrolled cell growth. Tumor cells avoid telomere shortening by activating one of two telomere maintenance mechanisms (TMMs): telomerase reactivation or alternative lengthening of telomeres (ALT). TMMs are a viable target for cancer treatment as they are not active in normal, differentiated cells. Whereas there is a telomerase inhibitor currently undergoing clinical trials, there are no known ALT inhibitors in development, partially because the complex ALT pathway is still poorly understood. For cancers such as neuroblastoma and osteosarcoma, the ALT-positive status is associated with an aggressive phenotype and few therapeutic options. Thus, methods that characterize the key biological pathways driving ALT will provide important mechanistic insight. We have developed a first-in-class phenotypic high-throughput screen to identify small-molecule inhibitors of ALT. Our screen measures relative C-circle level, an ALT-specific biomarker, to detect changes in ALT activity induced by compound treatment. To investigate epigenetic mechanisms that contribute to ALT, we screened osteosarcoma and neuroblastoma cells against an epigenetic-targeted compound library. Hits included compounds that target chromatin-regulating proteins and DNA damage repair pathways. Overall, the high-throughput C-circle assay will help expand the repertoire of potential ALT-specific therapeutic targets and increase our understanding of ALT biology.
Collapse
Affiliation(s)
- Merrill M Froney
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christian R Cook
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alyssa M Cadiz
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Katherine A Flinter
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sara T Ledeboer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bianca Chan
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E Burris
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian P Hardy
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H Pearce
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Medicinal Chemistry, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexis C Wardell
- UNC Lineberger Comprehensive Cancer Center, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brian T Golitz
- UNC Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Michael B Jarstfer
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G Pattenden
- UNC Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Gaela VM, Hsia HY, Joseph NA, Tzeng WY, Ting PC, Shen YL, Tsai CT, Boudier T, Chen LY. Orphan nuclear receptors-induced ALT-associated PML bodies are targets for ALT inhibition. Nucleic Acids Res 2024; 52:6472-6489. [PMID: 38752489 PMCID: PMC11194075 DOI: 10.1093/nar/gkae389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Orphan nuclear receptors (NRs), such as COUP-TF1, COUP-TF2, EAR2, TR2 and TR4, are implicated in telomerase-negative cancers that maintain their telomeres through the alternative lengthening of telomeres (ALT) mechanism. However, how telomere association of orphan NRs is involved in ALT activation remains unclear. Here, we demonstrate that telomeric tethering of orphan NRs in human fibroblasts initiates formation of ALT-associated PML bodies (APBs) and features of ALT activity, including ALT telomere DNA synthesis, telomere sister chromatid exchange, and telomeric C-circle generation, suggesting de novo ALT induction. Overexpression of orphan NRs exacerbates ALT phenotypes in ALT cells, while their depletion limits ALT. Orphan NRs initiate ALT via the zinc finger protein 827, suggesting the involvement of chromatin structure alterations for ALT activation. Furthermore, we found that orphan NRs and deficiency of the ALT suppressor ATRX-DAXX complex operate in concert to promote ALT activation. Moreover, PML depletion by gene knockout or arsenic trioxide treatment inhibited ALT induction in fibroblasts and ALT cancer cells, suggesting that APB formation underlies the orphan NR-induced ALT activation. Importantly, arsenic trioxide administration abolished APB formation and features of ALT activity in ALT cancer cell line-derived mouse xenografts, suggesting its potential for further therapeutic development to treat ALT cancers.
Collapse
Affiliation(s)
- Venus Marie Gaela
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Hsia
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nithila A Joseph
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wan-Yi Tzeng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Insitute of Molecular and Cellular Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Pin-Chao Ting
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Tsen Tsai
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Thomas Boudier
- CENTURI multi-engineering platform, Aix-Marseille Université, Marseille 13288, France
| | - Liuh-Yow Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11529, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Wei B, Zhou Y, Li Q, Zhen S, Wu Q, Xiao Z, Liao J, Zhu B, Duan J, Yang X, Liang F. Outdoor fine particulate matter exposure and telomere length in humans: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116206. [PMID: 38518608 DOI: 10.1016/j.ecoenv.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/17/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Although the association between changes in human telomere length (TL) and ambient fine particulate matter (PM2.5) has been documented, there remains disagreement among the related literature. Our study conducted a systematic review and meta-analysis of epidemiological studies to investigate the health effects of outdoor PM2.5 exposure on human TL after a thorough database search. To quantify the overall effect estimates of TL changes associated with every 10 μg/m3 increase in PM2.5 exposure, we focused on two main topics, which were outdoor long-term exposure and prenatal exposure of PM2.5. Additionally, we included a summary of short-term PM2.5 exposure and its impact on TL due to limited data availability. Our qualitative analysis included 20 studies with 483,600 participants. The meta-analysis showed a statistically significant association between outdoor PM2.5 exposure and shorter human TL, with pooled impact estimates (β) of -0.12 (95% CI: -0.20, -0.03, I2= 95.4%) for general long-term exposure and -0.07 (95% CI: -0.15, 0.00, I2= 74.3%) for prenatal exposure. In conclusion, our findings suggest that outdoor PM2.5 exposure may contribute to TL shortening, and noteworthy associations were observed in specific subgroups, suggesting the impact of various research variables. Larger, high-quality studies using standardized methodologies are necessary to strengthen these conclusions further.
Collapse
Affiliation(s)
- Bincai Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yawen Zhou
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingyao Wu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyi Xiao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Liao
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiahao Duan
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China..
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Azzalin CM. TERRA and the alternative lengthening of telomeres: a dangerous affair. FEBS Lett 2024. [PMID: 38445359 DOI: 10.1002/1873-3468.14844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic telomeres are transcribed into the long noncoding RNA TERRA. A fraction of TERRA remains associated with telomeres by forming RNA:DNA hybrids dubbed telR-loops. TERRA and telR-loops are essential to promote telomere elongation in human cancer cells that maintain telomeres through a homology-directed repair pathway known as alternative lengthening of telomeres or ALT. However, TERRA and telR-loops compromise telomere integrity and cell viability if their levels are not finely tuned. The study of telomere transcription in ALT cells will enormously expand our understanding of the ALT mechanism and of how genome integrity is maintained. Moreover, telomere transcription, TERRA and telR-loops are likely to become exceptionally suited targets for the development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Portugal
| |
Collapse
|
6
|
Thosar SA, Barnes RP, Detwiler A, Bhargava R, Wondisford A, O'Sullivan RJ, Opresko PL. Oxidative guanine base damage plays a dual role in regulating productive ALT-associated homology-directed repair. Cell Rep 2024; 43:113656. [PMID: 38194346 PMCID: PMC10851105 DOI: 10.1016/j.celrep.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer cells maintain telomeres by upregulating telomerase or alternative lengthening of telomeres (ALT) via homology-directed repair at telomeric DNA breaks. 8-Oxoguanine (8oxoG) is a highly prevalent endogenous DNA lesion in telomeric sequences, altering telomere structure and telomerase activity, but its impact on ALT is unclear. Here, we demonstrate that targeted 8oxoG formation at telomeres stimulates ALT activity and homologous recombination specifically in ALT cancer cells. Mechanistically, an acute 8oxoG induction increases replication stress, as evidenced by increased telomere fragility and ATR kinase activation at ALT telomeres. Furthermore, ALT cells are more sensitive to chronic telomeric 8oxoG damage than telomerase-positive cancer cells, consistent with increased 8oxoG-induced replication stress. However, telomeric 8oxoG production in G2 phase, when ALT telomere elongation occurs, impairs telomeric DNA synthesis. Our study demonstrates that a common oxidative base lesion has a dual role in regulating ALT depending on when the damage arises in the cell cycle.
Collapse
Affiliation(s)
- Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan P Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ariana Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ragini Bhargava
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anne Wondisford
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roderick J O'Sullivan
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Zhou Q, Wang Y, Xin C, Wei X, Yao Y, Xia L. Identification of telomere-associated gene signatures to predict prognosis and drug sensitivity in glioma. Comput Biol Med 2024; 168:107750. [PMID: 38029531 DOI: 10.1016/j.compbiomed.2023.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties, leading to significant mortality and morbidity. Emerging evidence shows telomere maintenance has implicated in glioma susceptibility and prognosis. In this study, we comprehensively analyzed gene signatures related to telomere maintenance in glioma and their predictive values for predicting the prognosis and drug sensitivity in glioma. METHODS We initially identified telomere-related genes differentially expressed between low-grade glioma (LGG) and glioblastoma (GBM) and accordingly developed a risk model by univariate and multivariate Cox analysis to assess the expressions of telomere-related genes across the risk groups. Finally, to assess these genes in immune function the anti-tumor medications often used in the clinical treatment of glioma, we computed immune cell infiltration analysis and drug sensitivity analysis. RESULTS The consensus clustering analysis identified 20 telomere-related genes which split LGG patients into two distinct subtypes. The patient survival, the expressions of key telomere-related DEGs, and immune cell infiltration significantly differed between Cluster 1 and Cluster 2. The LASSO risk model [riskScore=(0.086)*HOXA7+(0.242)*WEE1+(0.247)*IGF2BP3+(0.052)*DUSP10] showed significant differences regarding the 1-, 3-, 5-year overall survival, immune cell infiltration, and drug sensitivity between high- and low-risk groups. The predictive nomogram constructed to quantify the survival probability of each sample at 1, 3, and 5 years was consistent with the actual patient survival. CONCLUSION Our comprehensive characterization of telomere-associated gene signatures in glioma reveals their possible roles in the development, tumor microenvironment, and prognosis. The study provides some suggestive relationships between four telomere-related genes (HOXA7, WEE1, IGF2BP3, and DUSP10) and glioma prognosis.
Collapse
Affiliation(s)
- Qingqing Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Yangtze University, Jingzhou First People's Hospital, Jingzhou, 434000, People's Republic of China
| | - Yamei Wang
- Department of Neurology, The First Affiliated Hospital of Yangtze University, Jingzhou First People's Hospital, Jingzhou, 434000, People's Republic of China
| | - Chenqi Xin
- Department of Scientific Research, The First Affiliated Hospital of Yangtze University, Jingzhou First People's Hospital, Jingzhou, 434000, People's Republic of China
| | - XiaoMing Wei
- Department of Neurosurgery, The First Affiliated Hospital of Yangtze University, Jingzhou First People's Hospital, Jingzhou, 434000, People's Republic of China
| | - Yuan Yao
- Department of Neurosurgery, The First Affiliated Hospital of Yangtze University, Jingzhou First People's Hospital, Jingzhou, 434000, People's Republic of China.
| | - Liang Xia
- Department of Neurosurgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
8
|
Belyayev A, Kalendar R, Josefiová J, Paštová L, Habibi F, Mahelka V, Mandák B, Krak K. Telomere sequence variability in genotypes from natural plant populations: unusual block-organized double-monomer terminal telomeric arrays. BMC Genomics 2023; 24:572. [PMID: 37752451 PMCID: PMC10521516 DOI: 10.1186/s12864-023-09657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Telomeres are the nucleoprotein complexes that physically cap the ends of eukaryotic chromosomes. Most plants possess Arabidopsis-type telomere sequences (TSs). In addition to terminal TSs, more diverse interstitial TSs exists in plants. Although telomeres have been sufficiently studied, the actual diversity of TSs in land plants is underestimated. RESULTS We investigate genotypes from seven natural populations with contrasting environments of four Chenopodium species to reveal the variability in TSs by analyzing Oxford Nanopore reads. Fluorescent in situ hybridization was used to localize telomeric repeats on chromosomes. We identified a number of derivative monomers that arise in part of both terminal and interstitial telomeric arrays of a single genotype. The former presents a case of block-organized double-monomer telomers, where blocks of Arabidopsis-type TTTAGGG motifs were interspersed with blocks of derivative TTTAAAA motifs. The latter is an integral part of the satellitome with transformations specific to the inactive genome fraction. CONCLUSIONS We suggested two alternative models for the possible formation of derivative monomers from telomeric heptamer motifs of Arabidopsis-type. It was assumed that derivatization of TSs is a ubiquitous process in the plant genome but occurrence and frequencies of derivatives may be genotype-specific. We also propose that the formation of non-canonical arrays of TSs, especially at chromosomal termini, may be a source for genomic variability in nature.
Collapse
Affiliation(s)
- Alexander Belyayev
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.
| | - Ruslan Kalendar
- Institute of Biotechnology HiLIFE, University of Helsinki, P.O. Box 65, Helsinki, FI-00014, Finland
- National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave, Nur- Sultan, 010000, Kazakhstan
| | - Jiřina Josefiová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Ladislava Paštová
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Farzaneh Habibi
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol, 165 00, Czech Republic
| | - Václav Mahelka
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Bohumil Mandák
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol, 165 00, Czech Republic
| | - Karol Krak
- Institute of Botany, Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol, 165 00, Czech Republic
| |
Collapse
|