1
|
Mayo-Muñoz D, Li H, Mestre MR, Pinilla-Redondo R. The role of noncoding RNAs in bacterial immunity. Trends Microbiol 2024:S0966-842X(24)00250-6. [PMID: 39396887 DOI: 10.1016/j.tim.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Huijuan Li
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Shu X, Wang R, Li Z, Xue Q, Wang J, Liu J, Cheng F, Liu C, Zhao H, Hu C, Li J, Ouyang S, Li M. CRISPR-repressed toxin-antitoxin provides herd immunity against anti-CRISPR elements. Nat Chem Biol 2024:10.1038/s41589-024-01693-3. [PMID: 39075253 DOI: 10.1038/s41589-024-01693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are highly vulnerable to phage-encoded anti-CRISPR (Acr) factors. How CRISPR-Cas systems protect themselves remains unclear. Here we uncovered a broad-spectrum anti-anti-CRISPR strategy involving a phage-derived toxic protein. Transcription of this toxin is normally repressed by the CRISPR-Cas effector but is activated to halt cell division when the effector is inhibited by any anti-CRISPR proteins or RNAs. We showed that this abortive infection-like effect efficiently expels Acr elements from bacterial population. Furthermore, we exploited this anti-anti-CRISPR mechanism to develop a screening method for specific Acr candidates for a CRISPR-Cas system and successfully identified two distinct Acr proteins that enhance the binding of CRISPR effector to nontarget DNA. Our data highlight the broad-spectrum role of CRISPR-repressed toxins in counteracting various types of Acr factors. We propose that the regulatory function of CRISPR-Cas confers host cells herd immunity against Acr-encoding genetic invaders whether they are CRISPR targeted or not.
Collapse
Affiliation(s)
- Xian Shu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Rui Wang
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Zhihua Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiajun Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jingfang Liu
- Institutional Center for Shared Technologies and Facilities of Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feiyue Cheng
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huiwei Zhao
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, Department of Biochemistry, Yong Loo Lin School of Medicine, Precision Medicine Translational Research Programme (TRP), National University of Singapore, Singapore, Singapore
| | - Jie Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of Optoelectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.
| | - Ming Li
- Department of Microbial Physiological & Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Wolf YI, Schurov IV, Makarova KS, Katsnelson MI, Koonin EV. Long range segmentation of prokaryotic genomes by gene age and functionality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591304. [PMID: 38903122 PMCID: PMC11188115 DOI: 10.1101/2024.04.26.591304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Bacterial and archaeal genomes encompass numerous operons that typically consist of two to five genes. On larger scales, however, gene order is poorly conserved through the evolution of prokaryotes. Nevertheless, non-random localization of different classes of genes on prokaryotic chromosomes could reflect important functional and evolutionary constraints. We explored the patterns of genomic localization of evolutionarily conserved (ancient) and variable (young) genes across the diversity of bacteria and archaea. Nearly all bacterial and archaeal chromosomes were found to encompass large segments of 100-300 kilobases that were significantly enriched in either ancient or young genes. Similar clustering of genes with lethal knockout phenotype (essential genes) was observed as well. Mathematical modeling of genome evolution suggests that this long-range gene clustering in prokaryotic chromosomes reflects perpetual genome rearrangement driven by a combination of selective and neutral processes rather than evolutionary conservation.
Collapse
Affiliation(s)
- Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Ilya V. Schurov
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| | - Mikhail I. Katsnelson
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Wu Y, Garushyants SK, van den Hurk A, Aparicio-Maldonado C, Kushwaha SK, King CM, Ou Y, Todeschini TC, Clokie MRJ, Millard AD, Gençay YE, Koonin EV, Nobrega FL. Bacterial defense systems exhibit synergistic anti-phage activity. Cell Host Microbe 2024; 32:557-572.e6. [PMID: 38402614 PMCID: PMC11009048 DOI: 10.1016/j.chom.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Bacterial defense against phage predation involves diverse defense systems acting individually and concurrently, yet their interactions remain poorly understood. We investigated >100 defense systems in 42,925 bacterial genomes and identified numerous instances of their non-random co-occurrence and negative association. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense systems, while tmn exhibits synergy with co-occurring systems Gabija, Septu I, and PrrC. For Gabija, tmn co-opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between defense systems, allowing bacteria to adopt flexible strategies for phage defense.
Collapse
Affiliation(s)
- Yi Wu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anne van den Hurk
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Simran Krishnakant Kushwaha
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Claire M King
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yaqing Ou
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas C Todeschini
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
5
|
Mancilla-Rojano J, Flores V, Cevallos MA, Ochoa SA, Parra-Flores J, Arellano-Galindo J, Xicohtencatl-Cortes J, Cruz-Córdova A. A bioinformatic approach to identify confirmed and probable CRISPR-Cas systems in the Acinetobacter calcoaceticus- Acinetobacter baumannii complex genomes. Front Microbiol 2024; 15:1335997. [PMID: 38655087 PMCID: PMC11035748 DOI: 10.3389/fmicb.2024.1335997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The Acinetobacter calcoaceticus-Acinetobacter baumannii complex, or Acb complex, consists of six species: Acinetobacter baumannii, Acinetobacter calcoaceticus, Acinetobacter nosocomialis, Acinetobacter pittii, Acinetobacter seifertii, and Acinetobacter lactucae. A. baumannii is the most clinically significant of these species and is frequently related to healthcare-associated infections (HCAIs). Clustered regularly interspaced short palindromic repeat (CRISPR) arrays and associated genes (cas) constitute bacterial adaptive immune systems and function as variable genetic elements. This study aimed to conduct a genomic analysis of Acb complex genomes available in databases to describe and characterize CRISPR systems and cas genes. Methods Acb complex genomes available in the NCBI and BV-BRC databases, the identification and characterization of CRISPR-Cas systems were performed using CRISPRCasFinder, CRISPRminer, and CRISPRDetect. Sequence types (STs) were determined using the Oxford scheme and ribosomal multilocus sequence typing (rMLST). Prophages were identified using PHASTER and Prophage Hunter. Results A total of 293 genomes representing six Acb species exhibited CRISPR-related sequences. These genomes originate from various sources, including clinical specimens, animals, medical devices, and environmental samples. Sequence typing identified 145 ribosomal multilocus sequence types (rSTs). CRISPR-Cas systems were confirmed in 26.3% of the genomes, classified as subtypes I-Fa, I-Fb and I-Fv. Probable CRISPR arrays and cas genes associated with CRISPR-Cas subtypes III-A, I-B, and III-B were also detected. Some of the CRISPR-Cas systems are associated with genomic regions related to Cap4 proteins, and toxin-antitoxin systems. Moreover, prophage sequences were prevalent in 68.9% of the genomes. Analysis revealed a connection between these prophages and CRISPR-Cas systems, indicating an ongoing arms race between the bacteria and their bacteriophages. Furthermore, proteins associated with anti-CRISPR systems, such as AcrF11 and AcrF7, were identified in the A. baumannii and A. pittii genomes. Discussion This study elucidates CRISPR-Cas systems and defense mechanisms within the Acb complex, highlighting their diverse distribution and interactions with prophages and other genetic elements. This study also provides valuable insights into the evolution and adaptation of these microorganisms in various environments and clinical settings.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Víctor Flores
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Miguel A. Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sara A. Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - José Arellano-Galindo
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gomez, Mexico, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| | - Ariadnna Cruz-Córdova
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
- Laboratorio de Investigación en Bacteriología Intestinal, Unidad de Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico, Mexico
| |
Collapse
|
6
|
Mayo-Muñoz D, Pinilla-Redondo R, Camara-Wilpert S, Birkholz N, Fineran PC. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat Rev Genet 2024; 25:237-254. [PMID: 38291236 DOI: 10.1038/s41576-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 02/01/2024]
Abstract
To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR-Cas, restriction-modification and a growing list of mechanistically diverse systems, which constitute the bacterial 'immune system'. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Bhushan B, Singh K, Kumar S, Bhardwaj A. Advancements in CRISPR-Based Therapies for Genetic Modulation in Neurodegenerative Disorders. Curr Gene Ther 2024; 25:34-45. [PMID: 38738727 DOI: 10.2174/0115665232292246240426125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Neurodegenerative disorders pose significant challenges in the realm of healthcare, as these conditions manifest in complex, multifaceted ways, often attributed to genetic anomalies. With the emergence of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology, a new frontier has been unveiled in the quest for targeted, precise genetic manipulation. This abstract explores the recent advancements and potential applications of CRISPR-based therapies in addressing genetic components contributing to various neurodegenerative disorders. The review delves into the foundational principles of CRISPR technology, highlighting its unparalleled ability to edit genetic sequences with unprecedented precision. In addition, it talks about the latest progress in using CRISPR to target specific genetic mutations linked to neurodegenerative diseases like Huntington's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Parkinson's disease. It talks about the most important studies and trials that show how well and safely CRISPR-based therapies work. This shows how this technology can change genetic variants that cause diseases. Notably, the discussion emphasizes the challenges and ethical considerations associated with the implementation of CRISPR in clinical settings, including off-target effects, delivery methods, and long-term implications. Furthermore, the article explores the prospects and potential hurdles in the widespread application of CRISPR technology for treating neurodegenerative disorders. It touches upon the need for continued research, improved delivery mechanisms, and ethical frameworks to ensure responsible and equitable access to these groundbreaking therapies.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anjali Bhardwaj
- Department of Pharmaceutics, Durga College of Pharmacy, Sambhal, Uttar Pradesh, India
| |
Collapse
|
8
|
Koonin EV, Krupovic M. New faces of prokaryotic mobile genetic elements: guide RNAs link transposition with host defense mechanisms. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 36:100473. [PMID: 37779558 PMCID: PMC10538440 DOI: 10.1016/j.coisb.2023.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Most life forms harbor multiple, diverse mobile genetic elements (MGE) that widely differ in their rates and mechanisms of mobility. Recent findings on two classes of MGE in prokaryotes revealed a novel mechanism, RNA-guided transposition, where a transposon-encoded guide RNA directs the transposase to a unique site in the host genome. Tn7-like transposons, on multiple occasions, recruited CRISPR systems that lost the capacity to cleave target DNA and instead mediate RNA-guided transposition via CRISPR RNA. Conversely, the abundant transposon-associated, RNA-guided nucleases IscB and TnpB that appear to promote proliferation of IS200/IS605 and IS607 transposons were the likely evolutionary ancestors of type II and type V CRISPR systems, respectively. Thus, RNA-guided target recognition is a major biological phenomenon that connects MGE with host defense mechanisms. More RNA-guided defensive and MGE-associated functionalities are likely to be discovered.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, 75015 Paris
| |
Collapse
|
9
|
Altae-Tran H, Kannan S, Suberski AJ, Mears KS, Demircioglu FE, Moeller L, Kocalar S, Oshiro R, Makarova KS, Macrae RK, Koonin EV, Zhang F. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering. Science 2023; 382:eadi1910. [PMID: 37995242 PMCID: PMC10910872 DOI: 10.1126/science.adi1910] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023]
Abstract
Microbial systems underpin many biotechnologies, including CRISPR, but the exponential growth of sequence databases makes it difficult to find previously unidentified systems. In this work, we develop the fast locality-sensitive hashing-based clustering (FLSHclust) algorithm, which performs deep clustering on massive datasets in linearithmic time. We incorporated FLSHclust into a CRISPR discovery pipeline and identified 188 previously unreported CRISPR-linked gene modules, revealing many additional biochemical functions coupled to adaptive immunity. We experimentally characterized three HNH nuclease-containing CRISPR systems, including the first type IV system with a specified interference mechanism, and engineered them for genome editing. We also identified and characterized a candidate type VII system, which we show acts on RNA. This work opens new avenues for harnessing CRISPR and for the broader exploration of the vast functional diversity of microbial proteins.
Collapse
Affiliation(s)
- Han Altae-Tran
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Soumya Kannan
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Anthony J. Suberski
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kepler S. Mears
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - F. Esra Demircioglu
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Lukas Moeller
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Selin Kocalar
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Rachel Oshiro
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health; Bethesda, MD 20894, USA
| | - Feng Zhang
- Howard Hughes Medical Institute; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- McGovern Institute for Brain Research at MIT; Cambridge, MA 02139, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Kraus C, Sontheimer EJ. Viruses use RNA decoys to thwart CRISPR defences. Nature 2023; 623:490-491. [PMID: 37853195 DOI: 10.1038/d41586-023-03133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
|
11
|
Camara-Wilpert S, Mayo-Muñoz D, Russel J, Fagerlund RD, Madsen JS, Fineran PC, Sørensen SJ, Pinilla-Redondo R. Bacteriophages suppress CRISPR-Cas immunity using RNA-based anti-CRISPRs. Nature 2023; 623:601-607. [PMID: 37853129 PMCID: PMC10651486 DOI: 10.1038/s41586-023-06612-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/05/2023] [Indexed: 10/20/2023]
Abstract
Many bacteria use CRISPR-Cas systems to combat mobile genetic elements, such as bacteriophages and plasmids1. In turn, these invasive elements have evolved anti-CRISPR proteins to block host immunity2,3. Here we unveil a distinct type of CRISPR-Cas Inhibition strategy that is based on small non-coding RNA anti-CRISPRs (Racrs). Racrs mimic the repeats found in CRISPR arrays and are encoded in viral genomes as solitary repeat units4. We show that a prophage-encoded Racr strongly inhibits the type I-F CRISPR-Cas system by interacting specifically with Cas6f and Cas7f, resulting in the formation of an aberrant Cas subcomplex. We identified Racr candidates for almost all CRISPR-Cas types encoded by a diverse range of viruses and plasmids, often in the genetic context of other anti-CRISPR genes5. Functional testing of nine candidates spanning the two CRISPR-Cas classes confirmed their strong immune inhibitory function. Our results demonstrate that molecular mimicry of CRISPR repeats is a widespread anti-CRISPR strategy, which opens the door to potential biotechnological applications6.
Collapse
Affiliation(s)
| | - David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jakob Russel
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Robert D Fagerlund
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Jonas S Madsen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
| | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|