1
|
Mukherjee S, Moafinejad SN, Badepally NG, Merdas K, Bujnicki JM. Advances in the field of RNA 3D structure prediction and modeling, with purely theoretical approaches, and with the use of experimental data. Structure 2024; 32:1860-1876. [PMID: 39321802 DOI: 10.1016/j.str.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Recent advancements in RNA three-dimensional (3D) structure prediction have provided significant insights into RNA biology, highlighting the essential role of RNA in cellular functions and its therapeutic potential. This review summarizes the latest developments in computational methods, particularly the incorporation of artificial intelligence and machine learning, which have improved the efficiency and accuracy of RNA structure predictions. We also discuss the integration of new experimental data types, including cryoelectron microscopy (cryo-EM) techniques and high-throughput sequencing, which have transformed RNA structure modeling. The combination of experimental advances with computational methods represents a significant leap in RNA structure determination. We review the outcomes of RNA-Puzzles and critical assessment of structure prediction (CASP) challenges, which assess the state of the field and limitations of existing methods. Future perspectives are discussed, focusing on the impact of RNA 3D structure prediction on understanding RNA mechanisms and its implications for drug discovery and RNA-targeted therapies, opening new avenues in molecular biology.
Collapse
Affiliation(s)
- Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Katarzyna Merdas
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.
| |
Collapse
|
2
|
Wu R, Ingle S, Barnes S, Dahlin H, Khamrui S, Xiang Y, Shi Y, Bechhofer D, Lazarus M. Structural insights into RNA cleavage by a novel family of bacterial RNases. Nucleic Acids Res 2024; 52:10705-10716. [PMID: 39180400 PMCID: PMC11417398 DOI: 10.1093/nar/gkae717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
Processing of RNA is a key regulatory mechanism for all living systems. Escherichia coli protein YicC belongs to the well-conserved YicC family and has been identified as a novel ribonuclease. Here, we report a 2.8-Å-resolution crystal structure of the E. coli YicC apo protein and a 3.2-Å-cryo-EM structure of YicC bound to an RNA substrate. The apo YicC forms a dimer of trimers with a large open channel. In the RNA-bound form, the top trimer of YicC rotates nearly 70° and closes the RNA substrate inside the cavity to form a clamshell-pearl conformation that resembles no other known RNases. The structural information combined with mass spectrometry and biochemical data identified cleavage on the upstream side of an RNA hairpin. Mutagenesis studies demonstrated that the previously uncharacterized domain, DUF1732, is critical in both RNA binding and catalysis. These studies shed light on the mechanism of the previously unexplored YicC RNase family.
Collapse
Affiliation(s)
- Ruoxi Wu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shakti Ingle
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah A Barnes
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Heather R Dahlin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yufei Xiang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yi Shi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - David H Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
3
|
Lawson CL, Kryshtafovych A, Pintilie GD, Burley SK, Černý J, Chen VB, Emsley P, Gobbi A, Joachimiak A, Noreng S, Prisant MG, Read RJ, Richardson JS, Rohou AL, Schneider B, Sellers BD, Shao C, Sourial E, Williams CI, Williams CJ, Yang Y, Abbaraju V, Afonine PV, Baker ML, Bond PS, Blundell TL, Burnley T, Campbell A, Cao R, Cheng J, Chojnowski G, Cowtan KD, DiMaio F, Esmaeeli R, Giri N, Grubmüller H, Hoh SW, Hou J, Hryc CF, Hunte C, Igaev M, Joseph AP, Kao WC, Kihara D, Kumar D, Lang L, Lin S, Maddhuri Venkata Subramaniya SR, Mittal S, Mondal A, Moriarty NW, Muenks A, Murshudov GN, Nicholls RA, Olek M, Palmer CM, Perez A, Pohjolainen E, Pothula KR, Rowley CN, Sarkar D, Schäfer LU, Schlicksup CJ, Schröder GF, Shekhar M, Si D, Singharoy A, Sobolev OV, Terashi G, Vaiana AC, Vedithi SC, Verburgt J, Wang X, Warshamanage R, Winn MD, Weyand S, Yamashita K, Zhao M, Schmid MF, Berman HM, Chiu W. Outcomes of the EMDataResource cryo-EM Ligand Modeling Challenge. Nat Methods 2024; 21:1340-1348. [PMID: 38918604 PMCID: PMC11526832 DOI: 10.1038/s41592-024-02321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.
Collapse
Affiliation(s)
- Catherine L Lawson
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | | | - Grigore D Pintilie
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Stephen K Burley
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- RCSB Protein Data Bank and San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Vincent B Chen
- Department of Biochemistry, Duke University, Durham, NC, USA
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alberto Gobbi
- Discovery Chemistry, Genentech Inc., San Francisco, CA, USA
- , Berlin, Germany
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sigrid Noreng
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
- Protein Science, Septerna, South San Francisco, CA, USA
| | | | - Randy J Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | - Alexis L Rohou
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Bohdan Schneider
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Benjamin D Sellers
- Discovery Chemistry, Genentech Inc., San Francisco, CA, USA
- Computational Chemistry, Vilya, South San Francisco, CA, USA
| | - Chenghua Shao
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | - Ying Yang
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Venkat Abbaraju
- RCSB Protein Data Bank and Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pavel V Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Burnley
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Arthur Campbell
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | | | - K D Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nabin Giri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
| | - Corey F Hryc
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnel P Joseph
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Dilip Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Lijun Lang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
- The Chinese University of Hong Kong, Hong Kong, China
| | - Sean Lin
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Sumit Mittal
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Nigel W Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muenks
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Robert A Nicholls
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Mateusz Olek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Colin M Palmer
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Emmi Pohjolainen
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karunakar R Pothula
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- MSU-DOE Plant Research Laboratory, East Lansing, MI, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Luisa U Schäfer
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Christopher J Schlicksup
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gunnar F Schröder
- Institute of Biological Information Processing (IBI-7, Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dong Si
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Oleg V Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Andrea C Vaiana
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Nature's Toolbox (NTx), Rio Rancho, NM, USA
| | | | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | | | - Martyn D Winn
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Michael F Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Helen M Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Wah Chiu
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
4
|
de Moura TR, Purta E, Bernat A, Martín-Cuevas E, Kurkowska M, Baulin E, Mukherjee S, Nowak J, Biela A, Rawski M, Glatt S, Moreno-Herrero F, Bujnicki J. Conserved structures and dynamics in 5'-proximal regions of Betacoronavirus RNA genomes. Nucleic Acids Res 2024; 52:3419-3432. [PMID: 38426934 PMCID: PMC11014237 DOI: 10.1093/nar/gkae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Tales Rocha de Moura
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Agata Bernat
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Eva M Martín-Cuevas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Małgorzata Kurkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Jakub Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Artur P Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michał Rawski
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Krakow, Poland
| | - Sebastian Glatt
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| |
Collapse
|
5
|
Lawson CL, Kryshtafovych A, Pintilie GD, Burley SK, Černý J, Chen VB, Emsley P, Gobbi A, Joachimiak A, Noreng S, Prisant M, Read RJ, Richardson JS, Rohou AL, Schneider B, Sellers BD, Shao C, Sourial E, Williams CI, Williams CJ, Yang Y, Abbaraju V, Afonine PV, Baker ML, Bond PS, Blundell TL, Burnley T, Campbell A, Cao R, Cheng J, Chojnowski G, Cowtan KD, DiMaio F, Esmaeeli R, Giri N, Grubmüller H, Hoh SW, Hou J, Hryc CF, Hunte C, Igaev M, Joseph AP, Kao WC, Kihara D, Kumar D, Lang L, Lin S, Maddhuri Venkata Subramaniya SR, Mittal S, Mondal A, Moriarty NW, Muenks A, Murshudov GN, Nicholls RA, Olek M, Palmer CM, Perez A, Pohjolainen E, Pothula KR, Rowley CN, Sarkar D, Schäfer LU, Schlicksup CJ, Schröder GF, Shekhar M, Si D, Singharoy A, Sobolev OV, Terashi G, Vaiana AC, Vedithi SC, Verburgt J, Wang X, Warshamanage R, Winn MD, Weyand S, Yamashita K, Zhao M, Schmid MF, Berman HM, Chiu W. Outcomes of the EMDataResource Cryo-EM Ligand Modeling Challenge. RESEARCH SQUARE 2024:rs.3.rs-3864137. [PMID: 38343795 PMCID: PMC10854310 DOI: 10.21203/rs.3.rs-3864137/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.
Collapse
Affiliation(s)
- Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | - Grigore D. Pintilie
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Stephen K. Burley
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ USA
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA USA
| | - Jiří Černý
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, CZ
| | | | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alberto Gobbi
- Discovery Chemistry, Genentech Inc, South San Francisco, USA
| | - Andrzej Joachimiak
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Sigrid Noreng
- Structural Biology, Genentech Inc, South San Francisco, USA
| | | | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | - Bohdan Schneider
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, CZ
| | | | - Chenghua Shao
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | - Ying Yang
- Structural Biology, Genentech Inc, South San Francisco, USA
| | - Venkat Abbaraju
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthew L. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S. Bond
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tom Burnley
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Arthur Campbell
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Renzhi Cao
- Department of Computer Science, Pacific Lutheran University, Tacoma, WA, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | | | - Kevin D. Cowtan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nabin Giri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Helmut Grubmüller
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Soon Wen Hoh
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Jie Hou
- Department of Computer Science, Saint Louis University, St. Louis, MO, USA
| | - Corey F. Hryc
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Maxim Igaev
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnel P. Joseph
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Wei-Chun Kao
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Dilip Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Lijun Lang
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Sean Lin
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Sumit Mittal
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal, India
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Nigel W. Moriarty
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew Muenks
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | | | - Mateusz Olek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Colin M. Palmer
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Emmi Pohjolainen
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karunakar R. Pothula
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | | | - Daipayan Sarkar
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Luisa U. Schäfer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Christopher J. Schlicksup
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gunnar F. Schröder
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
- Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mrinal Shekhar
- Center for Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Dong Si
- Division of Computing & Software Systems, University of Washington, Bothell, WA, USA
| | | | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Andrea C. Vaiana
- Theoretical and Computational Biophysics Department, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Nature’s Toolbox (NTx), Rio Rancho, NM, USA
| | | | - Jacob Verburgt
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Xiao Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Martyn D. Winn
- Scientific Computing Department, UKRI Science and Technology Facilities Council, Research Complex at Harwell, Didcot, UK
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Michael F. Schmid
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Helen M. Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Wah Chiu
- Departments of Bioengineering and of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| |
Collapse
|
6
|
Nguyen TG, Ritter C, Kummer E. Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome. Nat Commun 2023; 14:7991. [PMID: 38042949 PMCID: PMC10693566 DOI: 10.1038/s41467-023-43599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/14/2023] [Indexed: 12/04/2023] Open
Abstract
Mitochondria contain their own genetic information and a dedicated translation system to express it. The mitochondrial ribosome is assembled from mitochondrial-encoded RNA and nuclear-encoded ribosomal proteins. Assembly is coordinated in the mitochondrial matrix by biogenesis factors that transiently associate with the maturing particle. Here, we present a structural snapshot of a large mitoribosomal subunit assembly intermediate containing 7 biogenesis factors including the GTPases GTPBP7 and GTPBP10. Our structure illustrates how GTPBP10 aids the folding of the ribosomal RNA during the biogenesis process, how this process is related to bacterial ribosome biogenesis, and why mitochondria require two biogenesis factors in contrast to only one in bacteria.
Collapse
Affiliation(s)
- Thu Giang Nguyen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Christina Ritter
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Eva Kummer
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|