1
|
Kohm K, Clanner AV, Hertel R, Commichau FM. Closely related and yet special - how SPβ family phages control lysis-lysogeny decisions. Trends Microbiol 2024:S0966-842X(24)00291-9. [PMID: 39645480 DOI: 10.1016/j.tim.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Soon after the discovery of genetic competence in the Gram-positive bacterium Bacillus subtilis, lytic and temperate phages that infect this organism were isolated. For instance, the lytic phage ϕ29 became a model for studying processes such as viral DNA packaging, replication, and transcription. By contrast, only a handful of temperate B. subtilis phages have been comprehensively characterized. However, the discovery of a peptide-based quorum sensing (QS) system in 2017 has brought temperate B. subtilis phages, particularly those of the SPβ family, back into the focus of research. The QS system is used by these phages to modulate lysis-lysogeny decisions. Meanwhile, many key components of the lysis-lysogeny management system have been identified. It turned out that a complex co-adaptation between the B. subtilis host cell and SPβ-like phages occurred during evolution and that a host-encoded toxin-antitoxin system plays a key role in controlling lysis-lysogeny decisions. There are many similarities and many important differences between the two well-studied model phages. Thus, a further comparative analysis of the lysis-lysogeny systems is essential to uncover the fundamental differences between ϕ3T and SPβ. Moreover, we believe that it would be exciting to revive research on temperate B. subtilis phages that are not related to SPβ-family phages.
Collapse
Affiliation(s)
- Katharina Kohm
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Annabel V Clanner
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Robert Hertel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Germany
| | - Fabian M Commichau
- FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
2
|
Bischoff A, Ortelt J, Dünschede B, Zegarra V, Bedrunka P, Bange G, Schünemann D. The role of chloroplast SRP54 domains and its C-terminal tail region in post- and co-translational protein transport in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5734-5749. [PMID: 38989593 PMCID: PMC11427828 DOI: 10.1093/jxb/erae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In the chloroplast, the 54 kDa subunit of the signal recognition particle (cpSRP54) is involved in the post-translational transport of the light-harvesting chlorophyll a/b-binding proteins (LHCPs) and the co-translational transport of plastid-encoded subunits of the photosynthetic complexes to the thylakoid membrane. It forms a high-affinity complex with plastid-specific cpSRP43 for post-translational transport, while a ribosome-associated pool coordinates its co-translational function. CpSRP54 constitutes a conserved multidomain protein, comprising a GTPase (NG) and a methionine-rich (M) domain linked by a flexible region. It is further characterized by a plastid-specific C-terminal tail region containing the cpSRP43-binding motif. To characterize the physiological role of the various regions of cpSRP54 in thylakoid membrane protein transport, we generated Arabidopsis cpSRP54 knockout (ffc1-2) lines producing truncated cpSRP54 variants or a GTPase point mutation variant. Phenotypic characterization of the complementation lines demonstrated that the C-terminal tail region of cpSRP54 plays an important role exclusively in post-translational LHCP transport. Furthermore, we show that the GTPase activity of cpSRP54 plays an essential role in the transport pathways for both nuclear as well as plastid-encoded proteins. In addition, our data revealed that plants expressing cpSRP54 without the C-terminal region exhibit a strongly increased accumulation of a photosystem I assembly intermediate.
Collapse
Affiliation(s)
- Annika Bischoff
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Ortelt
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Beatrix Dünschede
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| | - Victor Zegarra
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, University of Marburg, Marburg, Germany
- Max-Planck-Institute for terrestrial Microbiology, Marburg, Germany
| | - Danja Schünemann
- Molecular Biology of Plant Organelles, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Desmecht S, Latka A, Ceyssens PJ, Garcia-Pino A, Gillis A, Lavigne R, Lima-Mendez G, Matthijnssens J, Vázquez R, Venneman J, Wagemans J, Briers Y, Thiry D. Meeting Report of the Second Symposium of the Belgian Society for Viruses of Microbes and Launch of the Phage Valley. Viruses 2024; 16:299. [PMID: 38400074 PMCID: PMC10891784 DOI: 10.3390/v16020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The second symposium of the Belgian Society for Viruses of Microbes (BSVoM) took place on 8 September 2023 at the University of Liège with 141 participants from 10 countries. The meeting program covered three thematic sessions opened by international keynote speakers: two sessions were devoted to "Fundamental research in phage ecology and biology" and the third one to the "Present and future applications of phages". During this one day symposium, four invited keynote lectures, nine selected talks and eight student pitches were given along with thirty presented posters. The president of the Belgian Society for Viruses of Microbes, Prof. Yves Briers, took advantage of this symposium to launch the Phage Valley concept that will put the spotlight on the exceptionally high density of researchers investigating viruses of microbes as well as the successful triple helix approach between academia, industry and government in Belgium.
Collapse
Affiliation(s)
- Salomé Desmecht
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège (ULiège), 4000 Liège, Belgium;
| | - Agnieszka Latka
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | | | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculty of Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Gipsi Lima-Mendez
- Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium;
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
| | - Jolien Venneman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
| | - Damien Thiry
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège (ULiège), 4000 Liège, Belgium;
| |
Collapse
|
4
|
Guler P, Bendori SO, Borenstein T, Aframian N, Kessel A, Eldar A. Arbitrium communication controls phage lysogeny through non-lethal modulation of a host toxin-antitoxin defence system. Nat Microbiol 2024; 9:150-160. [PMID: 38177304 DOI: 10.1038/s41564-023-01551-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
Temperate Bacillus phages often utilize arbitrium communication to control lysis/lysogeny decisions, but the mechanisms by which this control is exerted remains largely unknown. Here we find that the arbitrium system of Bacillus subtilis phage ϕ3T modulates the host-encoded MazEF toxin-antitoxin system to this aim. Upon infection, the MazF ribonuclease is activated by three phage genes. At low arbitrium signal concentrations, MazF is inactivated by two phage-encoded MazE homologues: the arbitrium-controlled AimX and the later-expressed YosL proteins. At high signal, MazF remains active, promoting lysogeny without harming the bacterial host. MazF cleavage sites are enriched on transcripts of phage lytic genes but absent from the phage repressor in ϕ3T and other Spβ-like phages. Combined with low activation levels of MazF during infections, this pattern explains the phage-specific effect. Our results show how a bacterial toxin-antitoxin system has been co-opted by a phage to control lysis/lysogeny decisions without compromising host viability.
Collapse
Affiliation(s)
- Polina Guler
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Shira Omer Bendori
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Tom Borenstein
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nitzan Aframian
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
5
|
Brady A, Cabello-Yeves E, Gallego Del Sol F, Chmielowska C, Mancheño-Bonillo J, Zamora-Caballero S, Omer SB, Torres-Puente M, Eldar A, Quiles-Puchalt N, Marina A, Penadés JR. Characterization of a unique repression system present in arbitrium phages of the SPbeta family. Cell Host Microbe 2023; 31:2023-2037.e8. [PMID: 38035880 DOI: 10.1016/j.chom.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Arbitrium-coding phages use peptides to communicate and coordinate the decision between lysis and lysogeny. However, the mechanism by which these phages establish lysogeny remains unknown. Here, focusing on the SPbeta phage family's model phages phi3T and SPβ, we report that a six-gene operon called the "SPbeta phages repressor operon" (sro) expresses not one but two master repressors, SroE and SroF, the latter of which folds like a classical phage integrase. To promote lysogeny, these repressors bind to multiple sites in the phage genome. SroD serves as an auxiliary repressor that, with SroEF, forms the repression module necessary for lysogeny establishment and maintenance. Additionally, the proteins SroABC within the operon are proposed to constitute the transducer module, connecting the arbitrium communication system to the activity of the repression module. Overall, this research sheds light on the intricate and specialized repression system employed by arbitrium SPβ-like phages in making lysis-lysogeny decisions.
Collapse
Affiliation(s)
- Aisling Brady
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Elena Cabello-Yeves
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Cora Chmielowska
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK
| | - Javier Mancheño-Bonillo
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Sara Zamora-Caballero
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Shira Bendori Omer
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Avigdor Eldar
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Nuria Quiles-Puchalt
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK; Department of Biomedical Sciences, Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Alfara del Patriarca 46115, Spain
| | - Alberto Marina
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain; CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain.
| | - José R Penadés
- Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|