1
|
Chu HY, Peng J, Mou Y, Wong ASL. Quantifying Protein-Nucleic Acid Interactions for Engineering Useful CRISPR-Cas9 Genome-Editing Variants. Methods Mol Biol 2025; 2870:227-243. [PMID: 39543038 DOI: 10.1007/978-1-0716-4213-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Numerous high-specificity Cas9 variants have been engineered for precision genome editing. These variants typically harbor multiple mutations designed to alter the Cas9-single guide RNA (sgRNA)-DNA complex interactions for reduced off-target cleavage. By dissecting the contributions of individual mutations, we attempt to derive principles for designing high-specificity Cas9 variants. Here, we computationally modeled the specificity harnessing mutations of the widely used Cas9 isolated from Streptococcus pyogenes (SpCas9) and investigated their individual mutational effects. We quantified the mutational effects in terms of energy and contact changes by comparing the wild-type and mutant structures. We found that these mutations disrupt the protein-protein or protein-DNA contacts within the Cas9-sgRNA-DNA complex. We also identified additional impacted amino acid sites via energy changes that constitute the structural microenvironment encompassing the focal mutation, giving insights into how the mutations contribute to the high-specificity phenotype of SpCas9. Our method outlines a strategy to evaluate mutational effects that can facilitate rational design for Cas9 optimization.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jiaxing Peng
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yuanbiao Mou
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Alan S L Wong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
2
|
Chen F, Chen L, Yan Z, Xu J, Feng L, He N, Guo M, Zhao J, Chen Z, Chen H, Yao G, Liu C. Recent advances of CRISPR-based genome editing for enhancing staple crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1478398. [PMID: 39376239 PMCID: PMC11456538 DOI: 10.3389/fpls.2024.1478398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024]
Abstract
An increasing population, climate change, and diminishing natural resources present severe threats to global food security, with traditional breeding and genetic engineering methods often falling short in addressing these rapidly evolving challenges. CRISPR/Cas systems have emerged as revolutionary tools for precise genetic modifications in crops, offering significant advancements in resilience, yield, and nutritional value, particularly in staple crops like rice and maize. This review highlights the transformative potential of CRISPR/Cas technology, emphasizing recent innovations such as prime and base editing, and the development of novel CRISPR-associated proteins, which have significantly improved the specificity, efficiency, and scope of genome editing in agriculture. These advancements enable targeted genetic modifications that enhance tolerance to abiotic stresses as well as biotic stresses. Additionally, CRISPR/Cas plays a crucial role in improving crop yield and quality by enhancing photosynthetic efficiency, nutrient uptake, and resistance to lodging, while also improving taste, texture, shelf life, and nutritional content through biofortification. Despite challenges such as off-target effects, the need for more efficient delivery methods, and ethical and regulatory concerns, the review underscores the importance of CRISPR/Cas in addressing global food security and sustainability challenges. It calls for continued research and integration of CRISPR with other emerging technologies like nanotechnology, synthetic biology, and machine learning to fully realize its potential in developing resilient, productive, and sustainable agricultural systems.
Collapse
Affiliation(s)
- Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Lu Chen
- Pharma Technology A/S, Køge, Denmark
| | - Zhao Yan
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Jingyuan Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Luoluo Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Na He
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Suzhou, Jiangsu, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Li J, Wu P, Cao Z, Huang G, Lu Z, Yan J, Zhang H, Zhou Y, Liu R, Chen H, Ma L, Luo M. Machine learning-based prediction models to guide the selection of Cas9 variants for efficient gene editing. Cell Rep 2024; 43:113765. [PMID: 38358884 DOI: 10.1016/j.celrep.2024.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
The increasing emergence of Cas9 variants has attracted broad interest, as these variants were designed to expand CRISPR applications. New Cas9 variants typically feature higher editing efficiency, improved editing specificity, or alternative PAM sequences. To select Cas9 variants and gRNAs for high-fidelity and efficient genome editing, it is crucial to systematically quantify the editing performances of gRNAs and develop prediction models based on high-quality datasets. Using synthetic gRNA-target paired libraries and next-generation sequencing, we compared the activity and specificity of gRNAs of four SpCas9 variants. The nucleotide composition in the PAM-distal region had more influence on the editing efficiency of HiFi Cas9 and LZ3 Cas9. We further developed machine learning models to predict the gRNA efficiency and specificity for the four Cas9 variants. To aid users from broad research areas, the machine learning models for the predictions of gRNA editing efficiency within human genome sites are available on our website.
Collapse
Affiliation(s)
- Jianbo Li
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China; AIdit Therapeutics, 1 Yunmeng Road, Building 1, Hangzhou 310024, Zhejiang, China; Westlake Laboratory, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Panfeng Wu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China; AIdit Therapeutics, 1 Yunmeng Road, Building 1, Hangzhou 310024, Zhejiang, China; Westlake Laboratory, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Zhoutao Cao
- AIdit Therapeutics, 1 Yunmeng Road, Building 1, Hangzhou 310024, Zhejiang, China
| | - Guanlan Huang
- AIdit Therapeutics, 1 Yunmeng Road, Building 1, Hangzhou 310024, Zhejiang, China
| | - Zhike Lu
- Westlake Laboratory, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Jianfeng Yan
- AIdit Therapeutics, 1 Yunmeng Road, Building 1, Hangzhou 310024, Zhejiang, China
| | - Heng Zhang
- AIdit Therapeutics, 1 Yunmeng Road, Building 1, Hangzhou 310024, Zhejiang, China; Westlake Laboratory, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Yangfan Zhou
- Westlake Laboratory, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Rong Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Chen
- AIdit Therapeutics, 1 Yunmeng Road, Building 1, Hangzhou 310024, Zhejiang, China
| | - Lijia Ma
- Westlake Laboratory, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China.
| | - Mengcheng Luo
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Center for Life and Medical Sciences, School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|