1
|
Martinez O, Bergen SR, Gareis JB. Comparison of Yamuna (India) and Mississippi River (United States of America) bacterial communities reveals greater diversity below the Yamunotri Glacier. PLoS One 2024; 19:e0304664. [PMID: 38968225 PMCID: PMC11226128 DOI: 10.1371/journal.pone.0304664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 07/07/2024] Open
Abstract
The Yamuna River in India and the Mississippi River in the United States hold significant commercial, cultural, and ecological importance. This preliminary survey compares the bacterial communities sampled in surface waters at 11 sites (Yamuna headwaters, Mississippi headwaters, Yamuna River Yamunotri Town, Mississippi River at Winona, Tons River, Yamuna River at Paonta Sahib, Yamuna River Delhi-1, Yamuna River Delhi-2, Yamuna River before Sangam, Sangam, Ganga River before Sangam). Bacterial 16S rDNA analyses demonstrate dominance of Proteobacteria and Bacteroidetes phyla. Actinobacteria were also dominant at sites near Sangam in India and sites in Minnesota. A dominance of Epsilonbacteraeota were found in Delhi, India. Principal component analysis (PCA) using unique operational taxonomic units (OTUs) resulted in the identification of 3 groups that included the Yamuna River locations in Delhi (Delhi locations), Yamuna headwaters and Yamuna River at Yamunotri (Yamuna River locations below the Glacier) and Mississippi, Ganga, Tons, and other Yamuna River locations. Diversity indices were significantly higher at the Yamuna River locations below the Glacier (Simpson D = 0.986 and Shannon H = 5.06) as compared (p value <0.001) to the Delhi locations (D = 0.951 and H = 4.23) and as compared (p value < 0.001) to Mississippi, Ganga, Tons, and other Yamuna River locations (D = 0.943 and H = 3.96). To our knowledge, this is the first survey to compare Mississippi and Yamuna River bacterial communities. We demonstrate higher diversity in the bacterial communities below the Yamunotri glacier in India.
Collapse
Affiliation(s)
- Osvaldo Martinez
- Biology Department, Winona State University, Winona, MN, United States of America
| | - Silas R. Bergen
- Mathematics and Statistics Department, Winona State University, Winona, MN, United States of America
| | - Jacob B. Gareis
- Mathematics and Statistics Department, Winona State University, Winona, MN, United States of America
| |
Collapse
|
2
|
Yang B, Vaisvil B, Schmitt D, Collins J, Young E, Kapatral V, Rao R. A correlative study of the genomic underpinning of virulence traits and drug tolerance of Candida auris. Infect Immun 2024; 92:e0010324. [PMID: 38722168 PMCID: PMC11326119 DOI: 10.1128/iai.00103-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased β-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.
Collapse
Affiliation(s)
- Bo Yang
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | | | | | - Joseph Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Eric Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | | | - Reeta Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
3
|
Zuchowski R, Schito S, Neuheuser F, Menke P, Berger D, Hollmann N, Gujar S, Sundermeyer L, Mack C, Wirtz A, Weiergräber OH, Polen T, Bott M, Noack S, Baumgart M. Discovery of novel amino acid production traits by evolution of synthetic co-cultures. Microb Cell Fact 2023; 22:71. [PMID: 37061714 PMCID: PMC10105947 DOI: 10.1186/s12934-023-02078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Amino acid production features of Corynebacterium glutamicum were extensively studied in the last two decades. Many metabolic pathways, regulatory and transport principles are known, but purely rational approaches often provide only limited progress in production optimization. We recently generated stable synthetic co-cultures, termed Communities of Niche-optimized Strains (CoNoS), that rely on cross-feeding of amino acids for growth. This setup has the potential to evolve strains with improved production by selection of faster growing communities. RESULTS Here we performed adaptive laboratory evolution (ALE) with a CoNoS to identify mutations that are relevant for amino acid production both in mono- and co-cultures. During ALE with the CoNoS composed of strains auxotrophic for either L-leucine or L-arginine, we obtained a 23% growth rate increase. Via whole-genome sequencing and reverse engineering, we identified several mutations involved in amino acid transport that are beneficial for CoNoS growth. The L-leucine auxotrophic strain carried an expression-promoting mutation in the promoter region of brnQ (cg2537), encoding a branched-chain amino acid transporter in combination with mutations in the genes for the Na+/H+-antiporter Mrp1 (cg0326-cg0321). This suggested an unexpected link of Mrp1 to L-leucine transport. The L-arginine auxotrophic partner evolved expression-promoting mutations near the transcriptional start site of the yet uncharacterized operon argTUV (cg1504-02). By mutation studies and ITC, we characterized ArgTUV as the only L-arginine uptake system of C. glutamicum with an affinity of KD = 30 nM. Finally, deletion of argTUV in an L-arginine producer strain resulted in a faster and 24% higher L-arginine production in comparison to the parental strain. CONCLUSION Our work demonstrates the power of the CoNoS-approach for evolution-guided identification of non-obvious production traits, which can also advance amino acid production in monocultures. Further rounds of evolution with import-optimized strains can potentially reveal beneficial mutations also in metabolic pathway enzymes. The approach can easily be extended to all kinds of metabolite cross-feeding pairings of different organisms or different strains of the same organism, thereby enabling the identification of relevant transport systems and other favorable mutations.
Collapse
Affiliation(s)
- Rico Zuchowski
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Simone Schito
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Friederike Neuheuser
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Philipp Menke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Berger
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Niels Hollmann
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Srushti Gujar
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lea Sundermeyer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Christina Mack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Oliver H Weiergräber
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
4
|
Mendoza RM, Kim SH, Vasquez R, Hwang IC, Park YS, Paik HD, Moon GS, Kang DK. Bioinformatics and its role in the study of the evolution and probiotic potential of lactic acid bacteria. Food Sci Biotechnol 2023; 32:389-412. [PMID: 36911331 PMCID: PMC9992694 DOI: 10.1007/s10068-022-01142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022] Open
Abstract
Due to their numerous well-established applications in the food industry, there have been many studies regarding the adaptation and evolution of lactic acid bacteria (LAB) in a wide variety of hosts and environments. Progress in sequencing technology and continual decreases in its costs have led to the availability of LAB genome sequence data. Bioinformatics has been central to the extraction of valuable information from these raw genome sequence data. This paper presents the roles of bioinformatics tools and databases in understanding the adaptation and evolution of LAB, as well as the bioinformatics methods used in the initial screening of LAB for probiotic potential. Moreover, the advantages, challenges, and limitations of employing bioinformatics for these purposes are discussed.
Collapse
Affiliation(s)
- Remilyn M. Mendoza
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Robie Vasquez
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - In-Chan Hwang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Gi-Seong Moon
- Division of Food Science and Biotechnology, Korea National University of Transportation, Jeungpyeong, 27909 Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, 119 Dandae-ro, Cheonan, 31116 Republic of Korea
| |
Collapse
|
5
|
Bhalla A, Arce J, Ubanwa B, Singh G, Sani RK, Balan V. Thermophilic Geobacillus WSUCF1 Secretome for Saccharification of Ammonia Fiber Expansion and Extractive Ammonia Pretreated Corn Stover. Front Microbiol 2022; 13:844287. [PMID: 35694290 PMCID: PMC9176393 DOI: 10.3389/fmicb.2022.844287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
A thermophilic Geobacillus bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions. The enzyme activity of secretomes also changed depending on the substrate used. The secretomes were used in combination with commercial and purified enzymes to carry out saccharification of ammonia fiber expansion (AFEX)-pretreated corn stover and extractive ammonia (EA)-pretreated corn stover. When WSUCF1 bacterial secretome produced at different conditions was combined with a small percentage of commercial enzymes, we observed efficient saccharification of EA-CS, and the results were comparable to using a commercial enzyme cocktail (87% glucan and 70% xylan conversion). It also opens the possibility of producing CAZymes in a biorefinery using inexpensive substrates, such as AFEX-pretreated corn stover and Avicel, and eliminates expensive enzyme processing steps that are used in enzyme manufacturing. Implementing in-house enzyme production is expected to significantly reduce the cost of enzymes and biofuel processing cost.
Collapse
Affiliation(s)
- Aditya Bhalla
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Science, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
| | - Jessie Arce
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
- Department of Chemistry, Biology and Health Science, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Venkatesh Balan
- Great Lakes Bioenergy Center, Michigan State University, East Lansing, MI, United States
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, United States
- *Correspondence: Venkatesh Balan,
| |
Collapse
|
6
|
IFNγ Regulates NAD+ Metabolism to Promote the Respiratory Burst in Human Monocytes. Blood Adv 2022; 6:3821-3834. [PMID: 35500221 DOI: 10.1182/bloodadvances.2021005776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022] Open
Abstract
IFNγ is an essential and pleiotropic activator of human monocytes, but little is known about the changes in cellular metabolism required for IFNγ-induced activation. We sought to elucidate the mechanisms by which IFNγ reprograms monocyte metabolism to support its immunologic activities. We found that IFNγ increased oxygen consumption rates (OCR) in monocytes, indicative of reactive oxygen species generation by both mitochondria and NADPH oxidase. Transcriptional profiling revealed that this oxidative phenotype was driven by IFNγ-induced reprogramming of NAD+ metabolism, which is dependent on nicotinamide phosphoribosyltransferase (NAMPT)-mediated NAD+ salvage to generate NADH and NADPH for oxidation by mitochondrial complex I and NADPH oxidase, respectively. Consistent with this pathway, monocytes from patients with gain-of-function mutations in STAT1 demonstrated higher than normal OCR. Whereas chemical or genetic disruption of mitochondrial complex I (rotenone treatment or Leigh Syndrome patient monocytes) or NADPH oxidase (DPI treatment or chronic granulomatous disease (CGD) patient monocytes) reduced OCR. Interestingly, inhibition of NAMPT in healthy monocytes completely abrogated the IFNγ-induced oxygen consumption, comparable to levels observed in CGD monocytes. These data identify an IFNγ-induced, NAMPT-dependent, NAD+ salvage pathway that is critical for IFNγ activation of human monocytes.
Collapse
|
7
|
The arginine deaminase system plays distinct roles in Borrelia burgdorferi and Borrelia hermsii. PLoS Pathog 2022; 18:e1010370. [PMID: 35286343 PMCID: PMC8947608 DOI: 10.1371/journal.ppat.1010370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Borrelia species are amino acid auxotrophs that utilize di- and tri- peptides obtained through their oligopeptide transport system to supply amino acids for replicative growth during their enzootic cycles. However, Borrelia species from both the Lyme disease (LD) and relapsing fever (RF) groups harbor an amino acid transport and catabolism system, the Arginine Deiminase System (ADI), that could potentially augment intracellular L-arginine required for growth. RF spirochetes contain a “complete”, four gene ADI (arcA, B, D, and C) while LD spirochetes harbor arcA, B, and sometimes D but lack arcC (encoding carbamate kinase). In this study, we evaluated the role of the ADI system in bacterial survival and virulence and discovered important differences in RF and LD ADIs. Both in vitro and in a murine model of infection, B. hermsii cells significantly reduced extracellular L-arginine levels and that reduction was dependent on arginine deiminase expression. Conversely, B. burgdorferi did not reduce the concentration of L-arginine during in vitro growth experiments nor during infection of the mammalian host, suggesting a fundamental difference in the ability to directly utilize L-arginine compared to B. hermsii. Further experiments using a panel of mutants generated in both B. burgdorferi and B. hermsii, identified important differences in growth characteristics and ADI transcription and protein expression. We also found that the ADI system plays a key role in blood and spleen colonization in RF spirochetes. In this study we have identified divergent metabolic strategies in two closely related human pathogens, that ultimately impacts the host-pathogen interface during infection. Reports of tick-borne diseases have been steadily increasing in the US and the number of Lyme disease cases caused by B. burgdorferi have tripled since the late 1990’s. Although less common, cases of tick-borne relapsing fever, caused by B. hermsii and B. turicatae in the US, have increased as well. While transmitted by different ticks and maintained in unique enzootic cycles, the closely related spirochetes B. burgdorferi and B. hermsii share numerous genetic features including a truncated and streamlined capacity for metabolic activity. In this study we combine genetic and biochemical assays to define the role of the ADI in the infective cycles of B. burgdorferi and B. hermsii. When we compared B. burgdorferi and B. hermsii, we identified important differences in their respective ADI’s including operon arrangement, sensitivity to L-arginine and L-ornithine levels, as well as gene and protein expression. In addition, we show that arginine deiminase is required to reduce host L-arginine levels during murine infection with B. hermsii. This study provides new insights into the metabolic activities of two medically relevant spirochetes and highlights the dynamic nature of host-pathogen interactions.
Collapse
|
8
|
Redhu N, Thakur Z. Network biology and applications. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Renz A, Dräger A. Curating and comparing 114 strain-specific genome-scale metabolic models of Staphylococcus aureus. NPJ Syst Biol Appl 2021; 7:30. [PMID: 34188046 PMCID: PMC8241996 DOI: 10.1038/s41540-021-00188-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies. Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes. Furthermore, all models were quality-controlled using MEMOTE, an open-source application with standardized metabolic tests. Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for a given research question. With the information about the availability, the format, and the strengths and potentials of each model, one can either choose an existing model or combine several models to create models with even higher predictive values. This facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.
Collapse
Affiliation(s)
- Alina Renz
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
- Department of Computer Science, University of Tübingen, Tübingen, Germany.
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Mol V, Bennett M, Sánchez BJ, Lisowska BK, Herrgård MJ, Nielsen AT, Leak DJ, Sonnenschein N. Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metab Eng 2021; 65:123-134. [PMID: 33753231 DOI: 10.1016/j.ymben.2021.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Parageobacillus thermoglucosidasius represents a thermophilic, facultative anaerobic bacterial chassis, with several desirable traits for metabolic engineering and industrial production. To further optimize strain productivity, a systems level understanding of its metabolism is needed, which can be facilitated by a genome-scale metabolic model. Here, we present p-thermo, the most complete, curated and validated genome-scale model (to date) of Parageobacillus thermoglucosidasius NCIMB 11955. It spans a total of 890 metabolites, 1175 reactions and 917 metabolic genes, forming an extensive knowledge base for P. thermoglucosidasius NCIMB 11955 metabolism. The model accurately predicts aerobic utilization of 22 carbon sources, and the predictive quality of internal fluxes was validated with previously published 13C-fluxomics data. In an application case, p-thermo was used to facilitate more in-depth analysis of reported metabolic engineering efforts, giving additional insight into fermentative metabolism. Finally, p-thermo was used to resolve a previously uncharacterised bottleneck in anaerobic metabolism, by identifying the minimal required supplemented nutrients (thiamin, biotin and iron(III)) needed to sustain anaerobic growth. This highlights the usefulness of p-thermo for guiding the generation of experimental hypotheses and for facilitating data-driven metabolic engineering, expanding the use of P. thermoglucosidasius as a high yield production platform.
Collapse
Affiliation(s)
- Viviënne Mol
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martyn Bennett
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benjamín J Sánchez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Beata K Lisowska
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark; BioInnovation Institute, Copenhagen N, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - David J Leak
- The Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom; The Centre for Sustainable Chemical Technologies (CSCT), University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Kraxner KJ, Polen T, Baumgart M, Bott M. The conserved actinobacterial transcriptional regulator FtsR controls expression of ftsZ and further target genes and influences growth and cell division in Corynebacterium glutamicum. BMC Microbiol 2019; 19:179. [PMID: 31382874 PMCID: PMC6683498 DOI: 10.1186/s12866-019-1553-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/24/2019] [Indexed: 01/11/2023] Open
Abstract
Background Key mechanisms of cell division and its regulation are well understood in model bacteria such as Escherichia coli and Bacillus subtilis. In contrast, current knowledge on the regulation of cell division in Actinobacteria is rather limited. FtsZ is one of the key players in this process, but nothing is known about its transcriptional regulation in Corynebacterium glutamicum, a model organism of the Corynebacteriales. Results In this study, we used DNA affinity chromatography to search for transcriptional regulators of ftsZ in C. glutamicum and identified the Cg1631 protein as candidate, which was named FtsR. Both deletion and overexpression of ftsR caused growth defects and an altered cell morphology. Plasmid-based expression of native ftsR or of homologs of the pathogenic relatives Corynebacterium diphtheriae and Mycobacterium tuberculosis in the ΔftsR mutant could at least partially reverse the mutant phenotype. Absence of ftsR caused decreased expression of ftsZ, in line with an activator function of FtsR. In vivo crosslinking followed by affinity purification of FtsR and next generation sequencing of the enriched DNA fragments confirmed the ftsZ promoter as in vivo binding site of FtsR and revealed additional potential target genes and a DNA-binding motif. Analysis of strains expressing ftsZ under control of the gluconate-inducible gntK promoter revealed that the phenotype of the ΔftsR mutant is not solely caused by reduced ftsZ expression, but involves further targets. Conclusions In this study, we identified and characterized FtsR as the first transcriptional regulator of FtsZ described for C. glutamicum. Both the absence and the overproduction of FtsR had severe effects on growth and cell morphology, underlining the importance of this regulatory protein. FtsR and its DNA-binding site in the promoter region of ftsZ are highly conserved in Actinobacteria, which suggests that this regulatory mechanism is also relevant for the control of cell division in related Actinobacteria. Electronic supplementary material The online version of this article (10.1186/s12866-019-1553-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kim Julia Kraxner
- IBG-1: Biotechnology, Institute for Bio- und Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute for Bio- und Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute for Bio- und Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Michael Bott
- IBG-1: Biotechnology, Institute for Bio- und Geosciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
12
|
Bontemps-Gallo S, Gaviard C, Richards CL, Kentache T, Raffel SJ, Lawrence KA, Schindler JC, Lovelace J, Dulebohn DP, Cluss RG, Hardouin J, Gherardini FC. Global Profiling of Lysine Acetylation in Borrelia burgdorferi B31 Reveals Its Role in Central Metabolism. Front Microbiol 2018; 9:2036. [PMID: 30233522 PMCID: PMC6127242 DOI: 10.3389/fmicb.2018.02036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
The post-translational modification of proteins has been shown to be extremely important in prokaryotes. Using a highly sensitive mass spectrometry-based proteomics approach, we have characterized the acetylome of B. burgdorferi. As previously reported for other bacteria, a relatively low number (5%) of the potential genome-encoded proteins of B. burgdorferi were acetylated. Of these, the vast majority were involved in central metabolism and cellular information processing (transcription, translation, etc.). Interestingly, these critical cell functions were targeted during both ML (mid-log) and S (stationary) phases of growth. However, acetylation of target proteins in ML phase was limited to single lysine residues while these same proteins were acetylated at multiple sites during S phase. To determine the acetyl donor in B. burgdorferi, we used mutants that targeted the sole acetate metabolic/anabolic pathway in B. burgdorferi (lipid I synthesis). B. burgdorferi strains B31-A3, B31-A3 ΔackA (acetyl-P- and acetyl-CoA-) and B31-A3 Δpta (acetyl-P+ and acetyl-CoA-) were grown to S phase and the acetylation profiles were analyzed. While only two proteins were acetylated in the ΔackA mutant, 140 proteins were acetylated in the Δpta mutant suggesting that acetyl-P was the primary acetyl donor in B. burgdorferi. Using specific enzymatic assays, we were able to demonstrate that hyperacetylation of proteins in S phase appeared to play a role in decreasing the enzymatic activity of at least two glycolytic proteins. Currently, we hypothesize that acetylation is used to modulate enzyme activities during different stages of growth. This strategy would allow the bacteria to post-translationally stimulate the activity of key glycolytic enzymes by deacetylation rather than expending excessive energy synthesizing new proteins. This would be an appealing, low-energy strategy for a bacterium with limited metabolic capabilities. Future work focuses on identifying potential protein deacetylase(s) to complete our understanding of this important biological process.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Charlotte Gaviard
- CNRS UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, Université de Rouen, Mont-Saint-Aignan, France.,PISSARO Proteomic Facility, Institut de Recherche et d'Innovation Biomédicale, Mont-Saint-Aignan, France
| | - Crystal L Richards
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Takfarinas Kentache
- CNRS UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, Université de Rouen, Mont-Saint-Aignan, France.,PISSARO Proteomic Facility, Institut de Recherche et d'Innovation Biomédicale, Mont-Saint-Aignan, France
| | - Sandra J Raffel
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Kevin A Lawrence
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Joseph C Schindler
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Joseph Lovelace
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Daniel P Dulebohn
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Robert G Cluss
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, United States
| | - Julie Hardouin
- CNRS UMR 6270 Polymères, Biopolymères, Surfaces Laboratory, Université de Rouen, Mont-Saint-Aignan, France.,PISSARO Proteomic Facility, Institut de Recherche et d'Innovation Biomédicale, Mont-Saint-Aignan, France
| | - Frank C Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| |
Collapse
|
13
|
Cesur MF, Abdik E, Güven-Gülhan Ü, Durmuş S, Çakır T. Computational Systems Biology of Metabolism in Infection. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:235-282. [PMID: 30535602 DOI: 10.1007/978-3-319-74932-7_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A systems approach to elucidate the effect of infection on cell metabolism provides several opportunities from a better understanding of molecular mechanisms to the identification of potential biomarkers and drug targets. This is obvious from the fact that we have witnessed the accelerated use of computational systems biology in the last five years to study metabolic changes in pathogen and/or host cells in response to infection. In this chapter, we aim to present a comprehensive review of the recent research by focusing on genome-scale metabolic network models of pathogen-host systems and genome-wide metabolomics and fluxomics analysis of infected cells.
Collapse
Affiliation(s)
- Müberra Fatma Cesur
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ecehan Abdik
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Ünzile Güven-Gülhan
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Saliha Durmuş
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
14
|
Genome Sequence and Comparative Pathogenic Determinants of Multidrug Resistant Uropathogenic Escherichia coli O25b:H4, A Clinical Isolate from Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2016. [DOI: 10.22207/jpam.10.4.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Cuevas DA, Edirisinghe J, Henry CS, Overbeek R, O’Connell TG, Edwards RA. From DNA to FBA: How to Build Your Own Genome-Scale Metabolic Model. Front Microbiol 2016; 7:907. [PMID: 27379044 PMCID: PMC4911401 DOI: 10.3389/fmicb.2016.00907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022] Open
Abstract
Microbiological studies are increasingly relying on in silico methods to perform exploration and rapid analysis of genomic data, and functional genomics studies are supplemented by the new perspectives that genome-scale metabolic models offer. A mathematical model consisting of a microbe's entire metabolic map can be rapidly determined from whole-genome sequencing and annotating the genomic material encoded in its DNA. Flux-balance analysis (FBA), a linear programming technique that uses metabolic models to predict the phenotypic responses imposed by environmental elements and factors, is the leading method to simulate and manipulate cellular growth in silico. However, the process of creating an accurate model to use in FBA consists of a series of steps involving a multitude of connections between bioinformatics databases, enzyme resources, and metabolic pathways. We present the methodology and procedure to obtain a metabolic model using PyFBA, an extensible Python-based open-source software package aimed to provide a platform where functional annotations are used to build metabolic models (http://linsalrob.github.io/PyFBA). Backed by the Model SEED biochemistry database, PyFBA contains methods to reconstruct a microbe's metabolic map, run FBA upon different media conditions, and gap-fill its metabolism. The extensibility of PyFBA facilitates novel techniques in creating accurate genome-scale metabolic models.
Collapse
Affiliation(s)
- Daniel A. Cuevas
- Computational Science Research Center, San Diego State University, San DiegoCA, USA
| | - Janaka Edirisinghe
- Mathematics and Computer Science Division, Argonne National Laboratory, ArgonneIL, USA
| | - Chris S. Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, ArgonneIL, USA
| | - Ross Overbeek
- Fellowship for Interpretation of Genomes, Burr RidgeIL, USA
| | - Taylor G. O’Connell
- Biological and Medical Informatics Research Center, San Diego State University, San DiegoCA, USA
| | - Robert A. Edwards
- Computational Science Research Center, San Diego State University, San DiegoCA, USA
- Biological and Medical Informatics Research Center, San Diego State University, San DiegoCA, USA
- Department of Computer Science, San Diego State University, San DiegoCA, USA
- Department of Biology, San Diego State University, San DiegoCA, USA
| |
Collapse
|
16
|
Wilder HK, Raffel SJ, Barbour AG, Porcella SF, Sturdevant DE, Vaisvil B, Kapatral V, Schmitt DP, Schwan TG, Lopez JE. Transcriptional Profiling the 150 kb Linear Megaplasmid of Borrelia turicatae Suggests a Role in Vector Colonization and Initiating Mammalian Infection. PLoS One 2016; 11:e0147707. [PMID: 26845332 PMCID: PMC4741519 DOI: 10.1371/journal.pone.0147707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 11/28/2022] Open
Abstract
Adaptation is key for survival as vector-borne pathogens transmit between the arthropod and vertebrate, and temperature change is an environmental signal inducing alterations in gene expression of tick-borne spirochetes. While plasmids are often associated with adaptation, complex genomes of relapsing fever spirochetes have hindered progress in understanding the mechanisms of vector colonization and transmission. We utilized recent advances in genome sequencing to generate the most complete version of the Borrelia turicatae 150 kb linear megaplasmid (lp150). Additionally, a transcriptional analysis of open reading frames (ORFs) in lp150 was conducted and identified regions that were up-regulated during in vitro cultivation at tick-like growth temperatures (22°C), relative to bacteria grown at 35°C and infected murine blood. Evaluation of the 3’ end of lp150 identified a cluster of ORFs that code for putative surface lipoproteins. With a microbe’s surface proteome serving important roles in pathogenesis, we confirmed the ORFs expression in vitro and in the tick compared to spirochetes infecting murine blood. Transcriptional evaluation of lp150 indicates the plasmid likely has essential roles in vector colonization and/or initiating mammalian infection. These results also provide a much needed transcriptional framework to delineate the molecular mechanisms utilized by relapsing fever spirochetes during their enzootic cycle.
Collapse
Affiliation(s)
- Hannah K. Wilder
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
| | - Sandra J. Raffel
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Alan G. Barbour
- Departments of Microbiology & Molecular Genetics, Medicine, and Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America
| | - Stephen F. Porcella
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | | | | | | | - Tom G. Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Job E. Lopez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Liberal R, Lisowska BK, Leak DJ, Pinney JW. PathwayBooster: a tool to support the curation of metabolic pathways. BMC Bioinformatics 2015; 16:86. [PMID: 25887214 PMCID: PMC4367891 DOI: 10.1186/s12859-014-0447-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 11/03/2014] [Indexed: 12/28/2022] Open
Abstract
Background Despite several recent advances in the automated generation of draft metabolic reconstructions, the manual curation of these networks to produce high quality genome-scale metabolic models remains a labour-intensive and challenging task. Results We present PathwayBooster, an open-source software tool to support the manual comparison and curation of metabolic models. It combines gene annotations from GenBank files and other sources with information retrieved from the metabolic databases BRENDA and KEGG to produce a set of pathway diagrams and reports summarising the evidence for the presence of a reaction in a given organism’s metabolic network. By comparing multiple sources of evidence within a common framework, PathwayBooster assists the curator in the identification of likely false positive (misannotated enzyme) and false negative (pathway hole) reactions. Reaction evidence may be taken from alternative annotations of the same genome and/or a set of closely related organisms. Conclusions By integrating and visualising evidence from multiple sources, PathwayBooster reduces the manual effort required in the curation of a metabolic model. The software is available online at http://www.theosysbio.bio.ic.ac.uk/resources/pathwaybooster/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-014-0447-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodrigo Liberal
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Beata K Lisowska
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2, 7AY, UK.
| | - David J Leak
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2, 7AY, UK.
| | - John W Pinney
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Vongsawan AA, Kapatral V, Vaisvil B, Burd H, Serichantalergs O, Venkatesan MM, Mason CJ. The genome of Shigella dysenteriae strain Sd1617 comparison to representative strains in evaluating pathogenesis. FEMS Microbiol Lett 2015; 362:fnv011. [PMID: 25743074 PMCID: PMC4445032 DOI: 10.1093/femsle/fnv011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We sequenced and analyzed Shigella dysenteriae strain Sd1617 serotype 1 that is widely used as model strain for vaccine design, trials and research. A combination of next-generation sequencing platforms and assembly yielded two contigs representing a chromosome size of 4.34 Mb and the large virulence plasmid of 177 kb. This genome sequence is compared with other Shigella genomes in order to understand gene complexity and pathogenic factors. The Shigella dysenteriae strain Sd1617 serotype 1 has been sequenced and analyzed. It is widely used as model strain for vaccine design, trials and research. A combination of next-generation sequencing platforms and assembly yielded two contigs representing a chromosome size of 4.34 Mb and the large virulence plasmid of 177 kb.
Collapse
Affiliation(s)
- Ajchara A Vongsawan
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | | | | | | | - Oralak Serichantalergs
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Malabi M Venkatesan
- Walter Reed Army Institute of Research, Division of Bacterial and Rickettsial Diseases, Silver Spring, MD 20910, USA
| | - Carl J Mason
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| |
Collapse
|
19
|
Abstract
Here we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenic Escherichia coli (APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78—O78:H19 ST88 isolate 789 (O78-9)—and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. coli type 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of the Yersinia high-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum. Avian colisepticemia is a severe systemic disease of birds causing high morbidity and mortality and resulting in severe economic losses. The bacteria associated with avian colisepticemia are highly antibiotic resistant, making antibiotic treatment ineffective, and there is no effective vaccine due to the multitude of serotypes involved. To understand the disease and work out strategies to combat it, we performed an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78, the major cause of the disease. We identified several potential virulence factors, conserved in all the colisepticemic strains examined, and determined their contribution to growth in serum, an absolute requirement for septicemia. These findings raise the possibility that specific vaccines or drugs can be developed against these critical virulence factors to help combat this economically important disease.
Collapse
|
20
|
Abstract
Systems toxicology combines novel and historical experimental data to generate increasingly complex models of the biological response to chemical exposure.
Collapse
Affiliation(s)
- Nick J. Plant
- School of Biosciences and Medicine
- University of Surrey
- Guildford
- UK
| |
Collapse
|
21
|
Lacroix T, Loux V, Gendrault A, Hoebeke M, Gibrat JF. Insyght: navigating amongst abundant homologues, syntenies and gene functional annotations in bacteria, it's that symbol! Nucleic Acids Res 2014; 42:gku867. [PMID: 25249626 PMCID: PMC4245967 DOI: 10.1093/nar/gku867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 11/14/2022] Open
Abstract
High-throughput techniques have considerably increased the potential of comparative genomics whilst simultaneously posing many new challenges. One of those challenges involves efficiently mining the large amount of data produced and exploring the landscape of both conserved and idiosyncratic genomic regions across multiple genomes. Domains of application of these analyses are diverse: identification of evolutionary events, inference of gene functions, detection of niche-specific genes or phylogenetic profiling. Insyght is a comparative genomic visualization tool that combines three complementary displays: (i) a table for thoroughly browsing amongst homologues, (ii) a comparator of orthologue functional annotations and (iii) a genomic organization view designed to improve the legibility of rearrangements and distinctive loci. The latter display combines symbolic and proportional graphical paradigms. Synchronized navigation across multiple species and interoperability between the views are core features of Insyght. A gene filter mechanism is provided that helps the user to build a biologically relevant gene set according to multiple criteria such as presence/absence of homologues and/or various annotations. We illustrate the use of Insyght with scenarios. Currently, only Bacteria and Archaea are supported. A public instance is available at http://genome.jouy.inra.fr/Insyght. The tool is freely downloadable for private data set analysis.
Collapse
Affiliation(s)
- Thomas Lacroix
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Valentin Loux
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Annie Gendrault
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Mark Hoebeke
- CNRS, UPMC, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | |
Collapse
|
22
|
Kostner D, Luchterhand B, Junker A, Volland S, Daniel R, Büchs J, Liebl W, Ehrenreich A. The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol 2014; 99:375-86. [PMID: 25267158 DOI: 10.1007/s00253-014-6069-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Acetic acid bacteria such as Gluconobacter oxydans are used in several biotechnological processes due to their ability to perform rapid incomplete regio- and stereo-selective oxidations of a great variety of carbohydrates, alcohols, and related compounds by their membrane-bound dehydrogenases. In order to understand the growth physiology of industrial strains such as G. oxydans ATCC 621H that has high substrate oxidation rates but poor growth yields, we compared its genome sequence to the genome sequence of strain DSM 3504 that reaches an almost three times higher optical density. Although the genome sequences are very similar, DSM 3504 has additional copies of genes that are absent from ATCC 621H. Most importantly, strain DSM 3504 contains an additional type II NADH dehydrogenase (ndh) gene and an additional triosephosphate isomerase (tpi) gene. We deleted these additional paralogs from DSM 3504, overexpressed NADH dehydrogenase in ATCC 621H, and monitored biomass and the concentration of the representative cell components as well as O2 and CO2 transfer rates in growth experiments on mannitol. The data revealed a clear competition of membrane-bound dehydrogenases and NADH dehydrogenase for channeling electrons in the electron transport chain of Gluconobacter and an important role of the additional NADH dehydrogenase for increased growth yields. The less active the NADH dehydrogenase is, the more active is the membrane-bound polyol dehydrogenase. These results were confirmed by introducing additional ndh genes via plasmid pAJ78 in strain ATCC 621H, which leads to a marked increase of the growth rate.
Collapse
Affiliation(s)
- D Kostner
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann Str. 4, 85354, Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Complete Genome Sequence of Flavobacterium psychrophilum Strain CSF259-93, Used To Select Rainbow Trout for Increased Genetic Resistance against Bacterial Cold Water Disease. GENOME ANNOUNCEMENTS 2014; 2:2/5/e00889-14. [PMID: 25237017 PMCID: PMC4172266 DOI: 10.1128/genomea.00889-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genome sequence of Flavobacterium psychrophilum strain CSF259-93, isolated from rainbow trout (Oncorhynchus mykiss), consists of a single circular genome of 2,900,735 bp and 2,701 predicted open reading frames (ORFs). Strain CSF259-93 has been used to select a line of rainbow trout with increased genetic resistance against bacterial cold water disease.
Collapse
|
24
|
Olofsson TC, Alsterfjord M, Nilson B, Butler È, Vásquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 2014; 64:3109-3119. [PMID: 24944337 PMCID: PMC4156108 DOI: 10.1099/ijs.0.059600-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously discovered a symbiotic lactic acid bacterial (LAB) microbiota in the honey stomach of the honeybee Apis mellifera. The microbiota was composed of several phylotypes of Bifidobacterium and Lactobacillus. 16S rRNA gene sequence analyses and phenotypic and genetic characteristics revealed that the phylotypes isolated represent seven novel species. One grouped with Lactobacillus kunkeei and the others belong to the Lactobacillus buchneri and Lactobacillus delbrueckii subgroups of Lactobacillus. We propose the names Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov. for these novel species, with the respective type strains being Fhon13N(T) ( = DSM 26257(T) = CCUG 63287(T)), Bin4N(T) ( = DSM 26254(T) = CCUG 63291(T)), Hon2N(T) ( = DSM 26255(T) = CCUG 63289(T)), Hma8N(T) ( = DSM 26256(T) = CCUG 63629(T)), Hma2N(T) ( = DSM 26263(T) = CCUG 63633(T)), Bma5N(T) ( = DSM 26265(T) = CCUG 63301(T)) and Biut2N(T) ( = DSM 26262(T) = CCUG 63631(T)).
Collapse
|
25
|
Groshong AM, Blevins JS. Insights into the biology of Borrelia burgdorferi gained through the application of molecular genetics. ADVANCES IN APPLIED MICROBIOLOGY 2014; 86:41-143. [PMID: 24377854 DOI: 10.1016/b978-0-12-800262-9.00002-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Borrelia burgdorferi, the vector-borne bacterium that causes Lyme disease, was first identified in 1982. It is known that much of the pathology associated with Lyme borreliosis is due to the spirochete's ability to infect, colonize, disseminate, and survive within the vertebrate host. Early studies aimed at defining the biological contributions of individual genes during infection and transmission were hindered by the lack of adequate tools and techniques for molecular genetic analysis of the spirochete. The development of genetic manipulation techniques, paired with elucidation and annotation of the B. burgdorferi genome sequence, has led to major advancements in our understanding of the virulence factors and the molecular events associated with Lyme disease. Since the dawn of this genetic era of Lyme research, genes required for vector or host adaptation have garnered significant attention and highlighted the central role that these components play in the enzootic cycle of this pathogen. This chapter covers the progress made in the Borrelia field since the application of mutagenesis techniques and how they have allowed researchers to begin ascribing roles to individual genes. Understanding the complex process of adaptation and survival as the spirochete cycles between the tick vector and vertebrate host will lead to the development of more effective diagnostic tools as well as identification of novel therapeutic and vaccine targets. In this chapter, the Borrelia genes are presented in the context of their general biological roles in global gene regulation, motility, cell processes, immune evasion, and colonization/dissemination.
Collapse
Affiliation(s)
- Ashley M Groshong
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jon S Blevins
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
26
|
Wübbeler JH, Hiessl S, Schuldes J, Thürmer A, Daniel R, Steinbüchel A. Unravelling the complete genome sequence of Advenella mimigardefordensis strain DPN7T and novel insights in the catabolism of the xenobiotic polythioester precursor 3,3'-dithiodipropionate. MICROBIOLOGY-SGM 2014; 160:1401-1416. [PMID: 24739217 DOI: 10.1099/mic.0.078279-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advenella mimigardefordensis strain DPN7(T) is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3'-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of A. mimigardefordensis strain DPN7(T) was sequenced and annotated. The circular chromosome was found to be composed of 4,740,516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23,610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn5: :mob-induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.
Collapse
Affiliation(s)
- Jan Hendrik Wübbeler
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Jörg Schuldes
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Faculty of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
27
|
Christopher LP, Kapatral V, Vaisvil B, Emel G, DeVeaux LC. Draft Genome Sequence of a New Homofermentative, Lactic Acid-Producing Enterococcus faecalis Isolate, CBRD01. GENOME ANNOUNCEMENTS 2014; 2:e00147-14. [PMID: 24675849 PMCID: PMC3968327 DOI: 10.1128/genomea.00147-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023]
Abstract
We report here the draft genome sequence of the novel homofermentative Enterococcus faecalis isolate CBRD01, which is capable of high lactic acid productivity and yields, with minimal nutritional requirements. The genome is 2.8 Mbp, with 37% G+C, and contains genes for two lactate dehydrogenase (LDH) enzymes found in related organisms.
Collapse
Affiliation(s)
- Lew P. Christopher
- Center for Bioprocessing Research & Development and Civil & Environmental Engineering, South Dakota School of Mines & Technology, Rapid City, South Dakota, USA
| | | | | | | | - Linda C. DeVeaux
- Department of Chemistry & Applied Biological Sciences, South Dakota School of Mines & Technology, Rapid City, South Dakota, USA
| |
Collapse
|
28
|
Ahn YY, Lee DS, Burd H, Blank W, Kapatral V. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents. PLoS One 2014; 9:e85195. [PMID: 24454817 PMCID: PMC3893172 DOI: 10.1371/journal.pone.0085195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.
Collapse
Affiliation(s)
- Yong-Yeol Ahn
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Deok-Sun Lee
- Department of Natural Medical Sciences and Department of Physics, Inha University, Incheon, Korea
| | - Henry Burd
- Igenbio.Inc, Chicago, Illinois, United States of America
| | - William Blank
- Igenbio.Inc, Chicago, Illinois, United States of America
| | - Vinayak Kapatral
- Igenbio.Inc, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Combining chemoinformatics with bioinformatics: in silico prediction of bacterial flavor-forming pathways by a chemical systems biology approach "reverse pathway engineering". PLoS One 2014; 9:e84769. [PMID: 24416282 PMCID: PMC3885609 DOI: 10.1371/journal.pone.0084769] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/18/2013] [Indexed: 12/05/2022] Open
Abstract
The incompleteness of genome-scale metabolic models is a major bottleneck for systems biology approaches, which are based on large numbers of metabolites as identified and quantified by metabolomics. Many of the revealed secondary metabolites and/or their derivatives, such as flavor compounds, are non-essential in metabolism, and many of their synthesis pathways are unknown. In this study, we describe a novel approach, Reverse Pathway Engineering (RPE), which combines chemoinformatics and bioinformatics analyses, to predict the “missing links” between compounds of interest and their possible metabolic precursors by providing plausible chemical and/or enzymatic reactions. We demonstrate the added-value of the approach by using flavor-forming pathways in lactic acid bacteria (LAB) as an example. Established metabolic routes leading to the formation of flavor compounds from leucine were successfully replicated. Novel reactions involved in flavor formation, i.e. the conversion of alpha-hydroxy-isocaproate to 3-methylbutanoic acid and the synthesis of dimethyl sulfide, as well as the involved enzymes were successfully predicted. These new insights into the flavor-formation mechanisms in LAB can have a significant impact on improving the control of aroma formation in fermented food products. Since the input reaction databases and compounds are highly flexible, the RPE approach can be easily extended to a broad spectrum of applications, amongst others health/disease biomarker discovery as well as synthetic biology.
Collapse
|
30
|
Wiegand S, Dietrich S, Hertel R, Bongaerts J, Evers S, Volland S, Daniel R, Liesegang H. RNA-Seq of Bacillus licheniformis: active regulatory RNA features expressed within a productive fermentation. BMC Genomics 2013; 14:667. [PMID: 24079885 PMCID: PMC3871023 DOI: 10.1186/1471-2164-14-667] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 09/25/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The production of enzymes by an industrial strain requires a complex adaption of the bacterial metabolism to the conditions within the fermenter. Regulatory events within the process result in a dynamic change of the transcriptional activity of the genome. This complex network of genes is orchestrated by proteins as well as regulatory RNA elements. Here we present an RNA-Seq based study considering selected phases of an industry-oriented fermentation of Bacillus licheniformis. RESULTS A detailed analysis of 20 strand-specific RNA-Seq datasets revealed a multitude of transcriptionally active genomic regions. 3314 RNA features encoded by such active loci have been identified and sorted into ten functional classes. The identified sequences include the expected RNA features like housekeeping sRNAs, metabolic riboswitches and RNA switches well known from studies on Bacillus subtilis as well as a multitude of completely new candidates for regulatory RNAs. An unexpectedly high number of 855 RNA features are encoded antisense to annotated protein and RNA genes, in addition to 461 independently transcribed small RNAs. These antisense transcripts contain molecules with a remarkable size range variation from 38 to 6348 base pairs in length. The genome of the type strain B. licheniformis DSM13 was completely reannotated using data obtained from RNA-Seq analyses and from public databases. CONCLUSION The hereby generated data-sets represent a solid amount of knowledge on the dynamic transcriptional activities during the investigated fermentation stages. The identified regulatory elements enable research on the understanding and the optimization of crucial metabolic activities during a productive fermentation of Bacillus licheniformis strains.
Collapse
Affiliation(s)
- Sandra Wiegand
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik, Norddeutsches Zentrum für Mikrobielle Genomforschung, Georg-August-Universität Göttingen, Grisebachstr, 8, D-37077 Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Draft Genome Sequence of Lignocellulose-Degrading Thermophilic Bacterium Geobacillus sp. Strain WSUCF1. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00595-13. [PMID: 23950119 PMCID: PMC3744675 DOI: 10.1128/genomea.00595-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Geobacillus sp. strain WSUCF1 is a thermophilic spore-forming member of the phylum Firmicutes, isolated from a soil sample collected from the compost facility. We report the draft genome sequence of this isolate with an estimated genome size of 3.4 Mb. The genome sequence of this isolate revealed several genes encoding glycoside hydrolases, making it a potential candidate for plant biomass degradation.
Collapse
|
32
|
First Insights into the Completely Annotated Genome Sequence of Bacillus licheniformis Strain 9945A. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00525-13. [PMID: 23908277 PMCID: PMC3731831 DOI: 10.1128/genomea.00525-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Strains of the species Bacillus licheniformis are widely used in biotechnology for the production of enzymes and antibiotics (M. Schallmey, A. Singh, and O. P. Ward, Can. J. Microbiol. 50:1–17, 2004). However, research and application of B. licheniformis strains are adversely affected by poor genetic accessibility. Thus, for a closer inspection of natural competence in B. licheniformis, the genome of strain 9945A, of which derivatives are known to be naturally competent (C. B. Thorne and H. B. Stull, J. Bacteriol. 91:1012–1020, 1966), was completely sequenced and manually annotated.
Collapse
|
33
|
Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, Brinkhoff T, Simon M, Daniel R. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS One 2013; 8:e63422. [PMID: 23671678 PMCID: PMC3646047 DOI: 10.1371/journal.pone.0063422] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/03/2013] [Indexed: 12/11/2022] Open
Abstract
The genus Octadecabacter is a member of the ubiquitous marine Roseobacter clade. The two described species of this genus, Octadecabacter arcticus and Octadecabacter antarcticus, are psychrophilic and display a bipolar distribution. Here we provide the manually annotated and finished genome sequences of the type strains O. arcticus 238 and O. antarcticus 307, isolated from sea ice of the Arctic and Antarctic, respectively. Both genomes exhibit a high genome plasticity caused by an unusually high density and diversity of transposable elements. This could explain the discrepancy between the low genome synteny and high 16S rRNA gene sequence similarity between both strains. Numerous characteristic features were identified in the Octadecabacter genomes, which show indications of horizontal gene transfer and may represent specific adaptations to the habitats of the strains. These include a gene cluster encoding the synthesis and degradation of cyanophycin in O. arcticus 238, which is absent in O. antarcticus 307 and unique among the Roseobacter clade. Furthermore, genes representing a new subgroup of xanthorhodopsins as an adaptation to icy environments are present in both Octadecabacter strains. This new xanthorhodopsin subgroup differs from the previously characterized xanthorhodopsins of Salinibacter ruber and Gloeobacter violaceus in phylogeny, biogeography and the potential to bind 4-keto-carotenoids. Biochemical characterization of the Octadecabacter xanthorhodopsins revealed that they function as light-driven proton pumps.
Collapse
Affiliation(s)
- John Vollmers
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Sonja Voget
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Sascha Dietrich
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Kathleen Gollnow
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Maike Smits
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Katja Meyer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
34
|
Hornung C, Poehlein A, Haack FS, Schmidt M, Dierking K, Pohlen A, Schulenburg H, Blokesch M, Plener L, Jung K, Bonge A, Krohn-Molt I, Utpatel C, Timmermann G, Spieck E, Pommerening-Röser A, Bode E, Bode HB, Daniel R, Schmeisser C, Streit WR. The Janthinobacterium sp. HH01 genome encodes a homologue of the V. cholerae CqsA and L. pneumophila LqsA autoinducer synthases. PLoS One 2013; 8:e55045. [PMID: 23405110 PMCID: PMC3566124 DOI: 10.1371/journal.pone.0055045] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/18/2012] [Indexed: 01/13/2023] Open
Abstract
Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes.
Collapse
Affiliation(s)
- Claudia Hornung
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Anja Poehlein
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Frederike S. Haack
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Martina Schmidt
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Andrea Pohlen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laure Plener
- Center for integrated Protein Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Center for integrated Protein Science Munich (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Andreas Bonge
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Ines Krohn-Molt
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Christian Utpatel
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Gabriele Timmermann
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Eva Spieck
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Andreas Pommerening-Röser
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Edna Bode
- Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B. Bode
- Molekulare Biotechnologie, Institut für Molekulare Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Rolf Daniel
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Christel Schmeisser
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Wolfgang R. Streit
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
35
|
Oehler D, Poehlein A, Leimbach A, Müller N, Daniel R, Gottschalk G, Schink B. Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics 2012; 13:723. [PMID: 23259483 PMCID: PMC3551663 DOI: 10.1186/1471-2164-13-723] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thermacetogenium phaeum is a thermophilic strictly anaerobic bacterium oxidizing acetate to CO(2) in syntrophic association with a methanogenic partner. It can also grow in pure culture, e.g., by fermentation of methanol to acetate. The key enzymes of homoacetate fermentation (Wood-Ljungdahl pathway) are used both in acetate oxidation and acetate formation. The obvious reversibility of this pathway in this organism is of specific interest since syntrophic acetate oxidation operates close to the energetic limitations of microbial life. RESULTS The genome of Th. phaeum is organized on a single circular chromosome and has a total size of 2,939,057 bp. It comprises 3.215 open reading frames of which 75% could be assigned to a gene function. The G+C content is 53.88 mol%. Many CRISPR sequences were found, indicating heavy phage attack in the past. A complete gene set for a phage was found in the genome, and indications of phage action could also be observed in culture. The genome contained all genes required for CO(2) reduction through the Wood-Ljungdahl pathway, including two formyl tetrahydrofolate ligases, three carbon monoxide dehydrogenases, one formate hydrogenlyase complex, three further formate dehydrogenases, and three further hydrogenases. The bacterium contains a menaquinone MQ-7. No indications of cytochromes or Rnf complexes could be found in the genome. CONCLUSIONS The information obtained from the genome sequence indicates that Th. phaeum differs basically from the three homoacetogenic bacteria sequenced so far, i.e., the sodium ion-dependent Acetobacterium woodii, the ethanol-producing Clostridium ljungdahlii, and the cytochrome-containing Moorella thermoacetica. The specific enzyme outfit of Th. phaeum obviously allows ATP formation both in acetate formation and acetate oxidation.
Collapse
Affiliation(s)
- Dirk Oehler
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Andreas Leimbach
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
- Department of Microbiology and Institute for Genomic Biology, University of Illinois, 601 S. Goodwin, Urbana, IL, 61801, USA
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Gerhard Gottschalk
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, D-37077, Germany
| | - Bernhard Schink
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|
36
|
The purine-utilizing bacterium Clostridium acidurici 9a: a genome-guided metabolic reconsideration. PLoS One 2012; 7:e51662. [PMID: 23240052 PMCID: PMC3519856 DOI: 10.1371/journal.pone.0051662] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022] Open
Abstract
Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. The only amino acid that can be degraded by C. acidurici is glycine but growth on glycine only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyltransferase and acetate kinase, whereas the transcription levels of formate dehydrogenase-encoding genes decreased. Sugars could not be utilized by C. acidurici but the full genetic repertoire for glycolysis was detected. In addition, genes encoding enzymes that mediate resistance against several antimicrobials and metals were identified. High resistance of C. acidurici towards bacitracin, acriflavine and azaleucine was experimentally confirmed.
Collapse
|
37
|
Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, Nowka B, Schmeisser C, Lebedeva EV, Rattei T, Böhm C, Schmid M, Galushko A, Hatzenpichler R, Weinmaier T, Daniel R, Schleper C, Spieck E, Streit W, Wagner M. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol 2012; 14:3122-45. [PMID: 23057602 DOI: 10.1111/j.1462-2920.2012.02893.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/01/2012] [Indexed: 01/21/2023]
Abstract
The cohort of the ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota is a diverse, widespread and functionally important group of microorganisms in many ecosystems. However, our understanding of their biology is still very rudimentary in part because all available genome sequences of this phylum are from members of the Nitrosopumilus cluster. Here we report on the complete genome sequence of Candidatus Nitrososphaera gargensis obtained from an enrichment culture, representing a different evolutionary lineage of AOA frequently found in high numbers in many terrestrial environments. With its 2.83 Mb the genome is much larger than that of other AOA. The presence of a high number of (active) IS elements/transposases, genomic islands, gene duplications and a complete CRISPR/Cas defence system testifies to its dynamic evolution consistent with low degree of synteny with other thaumarchaeal genomes. As expected, the repertoire of conserved enzymes proposed to be required for archaeal ammonia oxidation is encoded by N. gargensis, but it can also use urea and possibly cyanate as alternative ammonia sources. Furthermore, its carbon metabolism is more flexible at the central pyruvate switch point, encompasses the ability to take up small organic compounds and might even include an oxidative pentose phosphate pathway. Furthermore, we show that thaumarchaeota produce cofactor F420 as well as polyhydroxyalkanoates. Lateral gene transfer from bacteria and euryarchaeota has contributed to the metabolic versatility of N. gargensis. This organisms is well adapted to its niche in a heavy metal-containing thermal spring by encoding a multitude of heavy metal resistance genes, chaperones and mannosylglycerate as compatible solute and has the genetic ability to respond to environmental changes by signal transduction via a large number of two-component systems, by chemotaxis and flagella-mediated motility and possibly even by gas vacuole formation. These findings extend our understanding of thaumarchaeal evolution and physiology and offer many testable hypotheses for future experimental research on these nitrifiers.
Collapse
Affiliation(s)
- Anja Spang
- Department of Genetics in Ecology, University of Vienna, Althanstr. 14, 1090, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, Thomas T, Brinkhoff T. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME JOURNAL 2012; 6:2229-44. [PMID: 22717884 DOI: 10.1038/ismej.2012.62] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts.
Collapse
Affiliation(s)
- Sebastian Thole
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes. PLoS Comput Biol 2012; 8:e1002540. [PMID: 22693442 PMCID: PMC3364942 DOI: 10.1371/journal.pcbi.1002540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 04/01/2012] [Indexed: 12/17/2022] Open
Abstract
Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes), a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short). The first step locates “genomic metabolons”, i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12. The discovery of the various metabolic functions catalyzed by enzymes encoded by the genes from the exponentially increasing number of sequenced genomes is one of the main focuses of bioinformatics tools today. However, most of these tools rely on already identified enzyme-coding gene or protein sequence information to predict known enzymatic activities in new genomes. Therefore, they cannot be used to reveal metabolic activities without any corresponding sequenced genes, dubbed “sequence-orphan activities”. In such cases, the best approach is the bioanalysis of target genes by human expert curators, manually integrating so-called “context-based information” (such as gene co-localization on the genome, or the presence of incomplete metabolic pathways) to infer novel functions. Few bioinformatics tools exploit such information and render accessible results in an automated way. Here, we present “CanOE”, a strategy that uses contextual information to propose and rank Candidate genes for Orphan Enzymes in Bacteria and Archaea. Beyond the merit of extending our knowledge and comprehension of prokaryote metabolism, identifying coding genes for sequence-orphan activities opens new opportunities for functional annotation (homology-based transfer made accessible), drug design (new metabolic targets), synthetic biology (new building blocks) and biotechnology applications (new biocatalysts).
Collapse
|
40
|
Computational analysis of cysteine and methionine metabolism and its regulation in dairy starter and related bacteria. J Bacteriol 2012; 194:3522-33. [PMID: 22522891 DOI: 10.1128/jb.06816-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfuric volatile compounds derived from cysteine and methionine provide many dairy products with a characteristic odor and taste. To better understand and control the environmental dependencies of sulfuric volatile compound formation by the dairy starter bacteria, we have used the available genome sequence and experimental information to systematically evaluate the presence of the key enzymes and to reconstruct the general modes of transcription regulation for the corresponding genes. The genomic organization of the key genes is suggestive of a subdivision of the reaction network into five modules, where we observed distinct differences in the modular composition between the families Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, on the one hand, and the family Streptococcaceae, on the other. These differences are mirrored by the way in which transcription regulation of the genes is structured in these families. In the Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, the main shared mode of transcription regulation is methionine (Met) T-box-mediated regulation. In addition, the gene metK, encoding S-adenosylmethionine (SAM) synthetase, is controlled via the S(MK) box (SAM). The S(MK) box is also found upstream of metK in species of the family Streptococcaceae. However, the transcription control of the other modules is mediated via three different LysR-family regulators, MetR/MtaR (methionine), CmbR (O-acetyl[homo]serine), and HomR (O-acetylhomoserine). Redefinition of the associated DNA-binding motifs helped to identify/disentangle the related regulons, which appeared to perfectly match the proposed subdivision of the reaction network.
Collapse
|
41
|
From C, van der Voort M, Abee T, Granum PE. Characterization of a spore-specific protein of the Bacillus cereus group. FEMS Microbiol Lett 2012; 331:152-9. [PMID: 22458449 DOI: 10.1111/j.1574-6968.2012.02562.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022] Open
Abstract
Bc1245 is a monocistronic chromosomal gene of Bacillus cereus ATCC 14579 encoding a putative protein of 143 amino acids identified in this study to have a spore-related function in B. cereus. Bc1245 is highly conserved in the genome of members of the B. cereus group, indicating an important function of the gene in this group of bacteria. Quantitative PCR revealed that bc1245 is transcribed late in sporulation (upon formation of phase-bright spores) and at the same time as the mother cell-specific transcription factor σ(K) . The σ(K) regulon includes structural components of the spore (such as coat proteins), and it is therefore plausible that bc1245 might encode a structural outer spore protein. This was confirmed by detection of BC1245 in exosporium extracts from B. cereus by immunoblotting against BC1245 antiserum.
Collapse
Affiliation(s)
- Cecilie From
- Department of Food Safety and Infection Biology, Section for Food Safety, Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | |
Collapse
|
42
|
Involvement of two latex-clearing proteins during rubber degradation and insights into the subsequent degradation pathway revealed by the genome sequence of Gordonia polyisoprenivorans strain VH2. Appl Environ Microbiol 2012; 78:2874-87. [PMID: 22327575 DOI: 10.1128/aem.07969-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increasing production of synthetic and natural poly(cis-1,4-isoprene) rubber leads to huge challenges in waste management. Only a few bacteria are known to degrade rubber, and little is known about the mechanism of microbial rubber degradation. The genome of Gordonia polyisoprenivorans strain VH2, which is one of the most effective rubber-degrading bacteria, was sequenced and annotated to elucidate the degradation pathway and other features of this actinomycete. The genome consists of a circular chromosome of 5,669,805 bp and a circular plasmid of 174,494 bp with average GC contents of 67.0% and 65.7%, respectively. It contains 5,110 putative protein-coding sequences, including many candidate genes responsible for rubber degradation and other biotechnically relevant pathways. Furthermore, we detected two homologues of a latex-clearing protein, which is supposed to be a key enzyme in rubber degradation. The deletion of these two genes for the first time revealed clear evidence that latex-clearing protein is essential for the microbial utilization of rubber. Based on the genome sequence, we predict a pathway for the microbial degradation of rubber which is supported by previous and current data on transposon mutagenesis, deletion mutants, applied comparative genomics, and literature search.
Collapse
|
43
|
Complete resequencing and reannotation of the Lactobacillus plantarum WCFS1 genome. J Bacteriol 2012; 194:195-6. [PMID: 22156394 DOI: 10.1128/jb.06275-11] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is growing interest in the beneficial effects of Lactobacillus plantarum on human health. The genome of L. plantarum WCFS1, first sequenced in 2001, was resequenced using Solexa technology. We identified 116 nucleotide corrections and improved function prediction for nearly 1,200 proteins, with a focus on metabolic functions and cell surface-associated proteins.
Collapse
|
44
|
Brinkhoff T, Fischer D, Vollmers J, Voget S, Beardsley C, Thole S, Mussmann M, Kunze B, Wagner-Döbler I, Daniel R, Simon M. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME JOURNAL 2011; 6:1260-72. [PMID: 22189493 DOI: 10.1038/ismej.2011.190] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myxobacteria are common in terrestrial habitats and well known for their formation of fruiting bodies and production of secondary metabolites. We studied a cluster of myxobacteria consisting only of sequences of marine origin (marine myxobacteria cluster, MMC) in sediments of the North Sea. Using a specific PCR, MMC sequences were detected in North Sea sediments down to 2.2 m depth, but not in the limnetic section of the Weser estuary and other freshwater habitats. In the water column, this cluster was only detected on aggregates up to a few meters above the sediment surface, but never in the fraction of free-living bacteria. A quantitative real-time PCR approach revealed that the MMC constituted up to 13% of total bacterial 16S rRNA genes in surface sediments of the North Sea. In a global survey, including sediments from the Mediterranean Sea, the Atlantic, Pacific and Indian Ocean and various climatic regions, the MMC was detected in most samples and to a water depth of 4300 m. Two fosmids of a library from sediment of the southern North Sea containing 16S rRNA genes affiliated with the MMC were sequenced. Both fosmids have a single unlinked 16S rRNA gene and no complete rRNA operon as found in most bacteria. No synteny to other myxobacterial genomes was found. The highest numbers of orthologues for both fosmids were assigned to Sorangium cellulosum and Haliangium ochraceum. Our results show that the MMC is an important and widely distributed but largely unknown component of marine sediment-associated bacterial communities.
Collapse
Affiliation(s)
- Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Genome sequence of the probiotic strain Bifidobacterium animalis subsp. lactis CNCM I-2494. J Bacteriol 2011; 193:5560-1. [PMID: 21914878 DOI: 10.1128/jb.05716-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium animalis subsp. lactis CNCM I-2494 is part of a commercialized fermented dairy product with documented health benefits revealed by multiple randomized placebo-controlled clinical trials. Here we report the complete genome sequence of this strain, which has a circular genome of 1,943,113 bp with 1,660 open reading frames and 4 ribosomal operons.
Collapse
|
46
|
Okamoto A, Yamada K. Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome. BMC Microbiol 2011; 11:249. [PMID: 22070424 PMCID: PMC3224786 DOI: 10.1186/1471-2180-11-249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/10/2011] [Indexed: 12/02/2022] Open
Abstract
Background The genome data of Streptococcus pyogenes SF370 has been widely used by many researchers and provides a vast array of interesting findings. Nevertheless, approximately 40% of genes remain classified as hypothetical proteins, and several coding sequences (CDSs) have been unrecognized. In this study, we attempted a shotgun proteomic analysis with a six-frame database that was independent of genome annotation. Results Nine proteins encoded by novel ORFs were found by shotgun proteomic analysis, and their specific mRNAs were verified by reverse transcriptional PCR (RT-PCR). We also provided functional annotations for hypothetical genes using proteomic analysis from three different culture conditions that were separated into three fractions: supernatant, soluble, and insoluble. Consequently, we identified 567 proteins on re-evaluation of the proteomic data using an in-house database comprising 1,697 annotated and nine non-annotated CDSs. We provided functional annotations for 126 hypothetical proteins (18.9% out of the 668 hypothetical proteins) based on their cellular fractions and expression profiles under different culture conditions. Conclusions The list of amino acid sequences that were annotated by genome analysis contains outdated information and unrecognized protein-coding sequences. We suggest that the six-frame database derived from actual DNA sequences be used for reliable proteomic analysis. In addition, the experimental evidence from functional proteomic analysis is useful for the re-evaluation of previously sequenced genomes.
Collapse
Affiliation(s)
- Akira Okamoto
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | |
Collapse
|
47
|
Yelton AP, Thomas BC, Simmons SL, Wilmes P, Zemla A, Thelen MP, Justice N, Banfield JF. A semi-quantitative, synteny-based method to improve functional predictions for hypothetical and poorly annotated bacterial and archaeal genes. PLoS Comput Biol 2011; 7:e1002230. [PMID: 22028637 PMCID: PMC3197636 DOI: 10.1371/journal.pcbi.1002230] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/30/2011] [Indexed: 11/19/2022] Open
Abstract
During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application.
Collapse
Affiliation(s)
- Alexis P. Yelton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
| | - Brian C. Thomas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
| | - Sheri L. Simmons
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
| | - Paul Wilmes
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
| | - Adam Zemla
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Michael P. Thelen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Nicholas Justice
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Jillian F. Banfield
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
- Department of Earth and Planetary Sciences, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Murray RW, Watts JL, Schwarz S. ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes. J Antimicrob Chemother 2011; 67:84-90. [PMID: 22001175 DOI: 10.1093/jac/dkr406] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In recent years, multiresistant Pasteurella multocida isolates from bovine respiratory tract infections have been identified. These isolates have exhibited resistance to most classes of antimicrobial agents commonly used in veterinary medicine, the genetic basis of which, however, is largely unknown. METHODS Genomic DNA of a representative P. multocida isolate was subjected to whole genome sequencing. Genes have been predicted by the YACOP program, compared with the SWISSProt/EMBL databases and manually curated using the annotation software ERGO. Susceptibility testing was performed by broth microdilution according to CLSI recommendations. RESULTS The analysis of one representative P. multocida isolate identified an 82 kb integrative and conjugative element (ICE) integrated into the chromosomal DNA. This ICE, designated ICEPmu1, harboured 11 resistance genes, which confer resistance to streptomycin/spectinomycin (aadA25), streptomycin (strA and strB), gentamicin (aadB), kanamycin/neomycin (aphA1), tetracycline [tetR-tet(H)], chloramphenicol/florfenicol (floR), sulphonamides (sul2), tilmicosin/clindamycin [erm(42)] or tilmicosin/tulathromycin [msr(E)-mph(E)]. In addition, a complete bla(OXA-2) gene was detected, which, however, appeared to be functionally inactive in P. multocida. These resistance genes were organized in two regions of approximately 15.7 and 9.8 kb. Based on the sequences obtained, it is likely that plasmids, gene cassettes and insertion sequences have played a role in the development of the two resistance gene regions within this ICE. CONCLUSIONS The observation that 12 resistance genes, organized in two resistance gene regions, represent part of an ICE in P. multocida underlines the risk of simultaneous acquisition of multiple resistance genes via a single horizontal gene transfer event.
Collapse
|
49
|
Santos F, Spinler JK, Saulnier DMA, Molenaar D, Teusink B, de Vos WM, Versalovic J, Hugenholtz J. Functional identification in Lactobacillus reuteri of a PocR-like transcription factor regulating glycerol utilization and vitamin B12 synthesis. Microb Cell Fact 2011; 10:55. [PMID: 21777454 PMCID: PMC3162504 DOI: 10.1186/1475-2859-10-55] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/21/2011] [Indexed: 11/25/2022] Open
Abstract
Background Lactobacillus reuteri harbors the genes responsible for glycerol utilization and vitamin B12 synthesis within a genetic island phylogenetically related to gamma-Proteobacteria. Within this island, resides a gene (lreu_1750) that based on its genomic context has been suggested to encode the regulatory protein PocR and presumably control the expression of the neighboring loci. However, this functional assignment is not fully supported by sequence homology, and hitherto, completely lacks experimental confirmation. Results In this contribution, we have overexpressed and inactivated the gene encoding the putative PocR in L. reuteri. The comparison of these strains provided metabolic and transcriptional evidence that this regulatory protein controls the expression of the operons encoding glycerol utilization and vitamin B12 synthesis. Conclusions We provide clear experimental evidence for assigning Lreu_1750 as PocR in Lactobacillus reuteri. Our genome-wide transcriptional analysis further identifies the loci contained in the PocR regulon. The findings reported here could be used to improve the production-yield of vitamin B12, 1,3-propanediol and reuterin, all industrially relevant compounds.
Collapse
Affiliation(s)
- Filipe Santos
- Center for Integrative Bioinformatics, Vrije Universiteit Amsterdam, Boelelaan1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Brzuszkiewicz E, Weiner J, Wollherr A, Thürmer A, Hüpeden J, Lomholt HB, Kilian M, Gottschalk G, Daniel R, Mollenkopf HJ, Meyer TF, Brüggemann H. Comparative genomics and transcriptomics of Propionibacterium acnes. PLoS One 2011; 6:e21581. [PMID: 21738717 PMCID: PMC3124536 DOI: 10.1371/journal.pone.0021581] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/03/2011] [Indexed: 11/19/2022] Open
Abstract
The anaerobic gram-positive bacterium Propionibacterium acnes is a human skin commensal that is occasionally associated with inflammatory diseases. Recent work has indicated that evolutionary distinct lineages of P. acnes play etiologic roles in disease while others are associated with maintenance of skin homeostasis. To shed light on the molecular basis for differential strain properties, we carried out genomic and transcriptomic analysis of distinct P. acnes strains. We sequenced the genome of the P. acnes strain 266, a type I-1a strain. Comparative genome analysis of strain 266 and four other P. acnes strains revealed that overall genome plasticity is relatively low; however, a number of island-like genomic regions, encoding a variety of putative virulence-associated and fitness traits differ between phylotypes, as judged from PCR analysis of a collection of P. acnes strains. Comparative transcriptome analysis of strains KPA171202 (type I-2) and 266 during exponential growth revealed inter-strain differences in gene expression of transport systems and metabolic pathways. In addition, transcript levels of genes encoding possible virulence factors such as dermatan-sulphate adhesin, polyunsaturated fatty acid isomerase, iron acquisition protein HtaA and lipase GehA were upregulated in strain 266. We investigated differential gene expression during exponential and stationary growth phases. Genes encoding components of the energy-conserving respiratory chain as well as secreted and virulence-associated factors were transcribed during the exponential phase, while the stationary growth phase was characterized by upregulation of genes involved in stress responses and amino acid metabolism. Our data highlight the genomic basis for strain diversity and identify, for the first time, the actively transcribed part of the genome, underlining the important role growth status plays in the inflammation-inducing activity of P. acnes. We argue that the disease-causing potential of different P. acnes strains is not only determined by the phylotype-specific genome content but also by variable gene expression.
Collapse
Affiliation(s)
- Elzbieta Brzuszkiewicz
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - January Weiner
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Antje Wollherr
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Andrea Thürmer
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Jennifer Hüpeden
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Hans B. Lomholt
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Mogens Kilian
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Gerhard Gottschalk
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | | | - Thomas F. Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Holger Brüggemann
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|