1
|
Jing Q, Wu Y, Li Y, Zhou C, Zhang J, Xia J, Li K, Shen Y, Yao H, Tong X, Du J, Yu L, Wang Y. Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma. Biol Direct 2025; 20:7. [PMID: 39815362 PMCID: PMC11734572 DOI: 10.1186/s13062-025-00594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal. Mechanistically, our present study revealed that thiotert treatment effectively inhibited the function of the TRX1/TRXR1 system and telomerase reverse transcriptase (TERT), rendering oxidative damage and impairment of telomeres. Meanwhile, pharmacological administration of glutathione (GSH), N-acetylcysteine (NAC), and mitoquinone (MitoQ), or genetic overexpression of TRX1 or TERT in MDS and cells could dampen the toxicity caused by thiotert. Remarkably, the in vivo mouse model of MDS demonstrated that thiotert administration exhibited greater efficacy in tumor reduction compared to the conventional chemotherapy drug cytarabine. Collectively, these results provide experimental insights into the mechanism of thiotert-induced MDS and lymphoma cell death and unveil that thiotert may be an effective and promising new drug for future MDS and lymphoma treatment.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, Zhejiang, 323000, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Keyi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongfeng Yao
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311800, China
| | - Xiangmin Tong
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China.
| | - Ying Wang
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Ando S, Isozaki T, Xu YZ, Suzuki T. Simultaneous Two-Photon Absorption of the Thioguanosine Analogue 2',3',5'-Tri- O-acetyl-6,8-dithioguanosine with Its Potential Application to Photodynamic Therapy. J Phys Chem A 2020; 124:7024-7030. [PMID: 32786980 DOI: 10.1021/acs.jpca.0c03747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
2',3',5'-Tri-O-acetyl-6,8-dithioguanosine (taDTGuo) is an analogue of nucleosides and currently under investigation as a potential agent for photodynamic therapy (PDT). Excitation by simultaneous two-photon absorption of visible or near-infrared light would provide an efficient PDT for deep-seated tumors. The two-photon absorption spectrum of taDTGuo was obtained by optical-probing photoacoustic spectroscopy (OPPAS). A two-photon absorption band corresponding to the S5 ← S0 transition was observed at 556 nm, and the two-photon absorption cross-section σ(2) was determined to be 26 ± 3 GM, which was much larger than that of other nucleobases and nucleosides. Quantum chemical calculations suggested that the large σ(2) value of taDTGuo was responsible for large transition dipole moments and small detuning energy resulting from the thiocarbonyl group at 6- and 8-positions. This is the first report on two-photon absorption spectra and cross-sections of thionucleoside analogues, which could be used to develop a more specific PDT for cancers in deep regions.
Collapse
Affiliation(s)
- Saki Ando
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Tasuku Isozaki
- Division of Natural Sciences, College of Arts and Sciences, J. F. Oberlin University, Tokiwa-machi, Machida, Tokyo 194-0294, Japan
| | - Yao-Zhong Xu
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, U.K
| | - Tadashi Suzuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
3
|
Jena S, Tulsiyan KD, Rana A, Choudhury SS, Biswal HS. Non-conventional Hydrogen Bonding and Aromaticity: A Systematic Study on Model Nucleobases and Their Solvated Clusters. Chemphyschem 2020; 21:1826-1835. [PMID: 32506748 DOI: 10.1002/cphc.202000386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Indexed: 12/25/2022]
Abstract
The conceptual development of aromaticity is essential to rationalize and understand the structure and behavior of aromatic heterocycles. This work addresses for the first time, the interconnection between aromaticity and sulfur/selenium centered hydrogen bonds (S/SeCHBs) involved in representative heterocycle models of canonical nucleobases (2-Pyridone; 2PY) and its sulfur (2-Thiopyridone; 2TPY) and selenium (2-Selenopyridone; 2SePY) analogs. The nucleus-independent chemical shift (NICS) and gauge induced magnetic current density (GIMIC) values suggested significant reduction of aromaticity upon replacement of exocyclic carbonyl oxygen with sulfur and selenium. However, we observed two-fold (57 %) and three-fold (80 %) enhancement in the aromaticity for 2TPY dimer, and 2SePY dimer, respectively which are connected through S/SeCHBs. Aromaticity enhancement was also noticed in 1 : 1 H-bonded complexes (heterodimers), micro hydrated clusters and for bulk hydration. It is expected that exocyclic S and Se incorporation into heterocycles without compromising aromatic loss would definitely reinforce to design new supramolecular building blocks via S/SeCH-bonded complexes.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Shubhranshu S Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050, Bhubaneswar, INDIA.,Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, INDIA
| |
Collapse
|
4
|
Sun Z, Wang X, Zhang JZH, He Q. Sulfur-substitution-induced base flipping in the DNA duplex. Phys Chem Chem Phys 2019; 21:14923-14940. [PMID: 31233058 DOI: 10.1039/c9cp01989h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Base flipping is widely observed in a number of important biological processes. The genetic codes deposited inside the DNA duplex become accessible to external agents upon base flipping. The sulfur substitution of guanine leads to thioguanine, which alters the thermodynamic stability of the GC base pairs and the GT mismatches. Experimental studies conclude that the sulfur substitution decreases the lifetime of the GC base pair. In this work, under three AMBER force fields for nucleotide systems, we firstly performed equilibrium and nonequilibrium free energy simulations to investigate the variation of the thermodynamic profiles in base flipping upon sulfur substitution. It is found that the bsc0 modification, the bsc1 modification and the OL15 modification of AMBER force fields are able to qualitatively describe the sulfur-substitution dependent behavior of the thermodynamics. However, only the two last-generation AMBER force fields are able to provide quantitatively correct predictions. The second computational study on the sulfur substitutions focused on the relative stability of the S6G-C base pair and the S6G-T mismatch. Two conflicting experimental observations were reported by the same authors. One suggested that the S6G-C base pair was more stable, while the other concludes that the S6G-T mismatch was more stable. We answered this question by constructing the free energy profiles along the base flipping pathway computationally.
Collapse
Affiliation(s)
- Zhaoxi Sun
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich 52425, Germany.
| | - Xiaohui Wang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and Institute of Computational Science, Università della Svizzera italiana (USI), Via Giuseppe Buffi 13, CH-6900, Lugano, Ticino, Switzerland
| | - John Z H Zhang
- State Key Laboratory of Precision Spectroscopy, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China and NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China and Department of Chemistry, New York University, NY, NY 10003, USA
| | - Qiaole He
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany. and State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Gładysz M, Andrałojć W, Czapik T, Gdaniec Z, Kierzek R. Thermodynamic and structural contributions of the 6-thioguanosine residue to helical properties of RNA. Sci Rep 2019; 9:4385. [PMID: 30867505 PMCID: PMC6416399 DOI: 10.1038/s41598-019-40715-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Thionucleotides, especially 4-thiouridine and 6-thioguanosine, are photosensitive molecules that photocrosslink to both proteins and nucleic acids, and this feature is a major reason for their application in various investigations. To get insight into the thermodynamic and structural contributions of 6-thioguanosine to the properties of RNA duplexes a systematic study was performed. In a series of RNA duplexes, selected guanosine residues located in G-C base pairs, mismatches (G-G, G-U, and G-A), or 5' and 3'-dangling ends were replaced with 6-thioguanosine. Generally, the presence of 6-thioguanosine diminishes the thermodynamic stability of RNA duplexes. This effect depends on its position within duplexes and the sequence of adjacent base pairs. However, when placed at a dangling end a 6-thioguanosine residue actually exerts a weak stabilizing effect. Furthermore, the structural effect of 6-thioguanosine substitution appears to be minimal based on NMR and Circular Dichroism (CD) data.
Collapse
Affiliation(s)
- Michał Gładysz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Tomasz Czapik
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Noskowskiego 12/14, Poland.
| |
Collapse
|
6
|
Sierpe R, Noyong M, Simon U, Aguayo D, Huerta J, Kogan MJ, Yutronic N. Construction of 6-thioguanine and 6-mercaptopurine carriers based on βcyclodextrins and gold nanoparticles. Carbohydr Polym 2017; 177:22-31. [DOI: 10.1016/j.carbpol.2017.08.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/26/2017] [Accepted: 08/20/2017] [Indexed: 12/18/2022]
|
7
|
Schaich MA, Smith MR, Cloud AS, Holloran SM, Freudenthal BD. Structures of a DNA Polymerase Inserting Therapeutic Nucleotide Analogues. Chem Res Toxicol 2017; 30:1993-2001. [PMID: 28862449 PMCID: PMC6494084 DOI: 10.1021/acs.chemrestox.7b00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Members of the nucleoside analogue class of cancer therapeutics compete with canonical nucleotides to disrupt numerous cellular processes, including nucleotide homeostasis, DNA and RNA synthesis, and nucleotide metabolism. Nucleoside analogues are triphosphorylated and subsequently inserted into genomic DNA, contributing to the efficacy of therapeutic nucleosides in multiple ways. In some cases, the altered base acts as a mutagen, altering the DNA sequence to promote cellular death; in others, insertion of the altered nucleotide triggers DNA repair pathways, which produce lethal levels of cytotoxic intermediates such as single and double stranded DNA breaks. As a prerequisite to many of these biological outcomes, the modified nucleotide must be accommodated in the DNA polymerase active site during nucleotide insertion. Currently, the molecular contacts that mediate DNA polymerase insertion of modified nucleotides remain unknown for multiple therapeutic compounds, despite decades of clinical use. To determine how modified bases are inserted into duplex DNA, we used mammalian DNA polymerase β (pol β) to visualize the structural conformations of four therapeutically relevant modified nucleotides, 6-thio-2'-deoxyguanosine-5'-triphosphate (6-TdGTP), 5-fluoro-2'-deoxyuridine-5'-triphosphate (5-FdUTP), 5-formyl-deoxycytosine-5'-triphosphate (5-FodCTP), and 5-formyl-deoxyuridine-5'-triphosphate (5-FodUTP). Together, the structures reveal a pattern in which the modified nucleotides utilize Watson-Crick base pairing interactions similar to that of unmodified nucleotides. The nucleotide modifications were consistently positioned in the major groove of duplex DNA, accommodated by an open cavity in pol β. These results provide novel information for the rational design of new therapeutic nucleoside analogues and a greater understanding of how modified nucleotides are tolerated by polymerases.
Collapse
Affiliation(s)
| | | | | | | | - Bret D. Freudenthal
- Corresponding Author 4015 Wahl Hall West, Laboratory of Genome Maintenance and Structural Biology, Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center Kansas City, Kansas 66160. Phone: 913-588-5560,
| |
Collapse
|
8
|
Mundlapati VR, Gautam S, Sahoo DK, Ghosh A, Biswal HS. Thioamide, a Hydrogen Bond Acceptor in Proteins and Nucleic Acids. J Phys Chem Lett 2017; 8:4573-4579. [PMID: 28876948 DOI: 10.1021/acs.jpclett.7b01810] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thioamides are used as potential surrogates of amides to study the structure and dynamics of proteins and nucleic acids. However, incorporation of thioamides in biomolecules leads to changes in their structures and conformations mostly attributed to the strength of the amide-N-H···S═C hydrogen bond. In most cases, it is considered weak owing to the small electronegativity of sulfur, and in some cases, it is as strong as conventional H-bonds. Herein, adopting PDB structure analysis, NMR spectroscopy, and quantum chemistry calculations, we have shown that thioamides in a geometrical and structural constraint-free environment are capable of forming strong H-bonds like their amide counterparts. These studies also enabled us to determine the amide-N-H···S═C H-bond enthalpy (ΔH) very precisely. The estimated ΔH for the amide-N-H···S═C H-bond is ∼-30 kJ/mol, which suggests that the amide-N-H···S═C H-bond is a strong H-bond and merits its inclusion in computational force fields for biomolecular structure simulations to explore the role of amide-N-H···S═C H-bonds in nucleobase pairing and protein folding.
Collapse
Affiliation(s)
- V Rao Mundlapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Sanjeev Gautam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arindam Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) , PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar, India
- Homi Bhabha National Institute , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Moore EA, Xu YZ. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch. PLoS One 2017; 12:e0184801. [PMID: 28910418 PMCID: PMC5599020 DOI: 10.1371/journal.pone.0184801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/31/2017] [Indexed: 11/21/2022] Open
Abstract
The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening.
Collapse
Affiliation(s)
- Elaine Ann Moore
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, Buckinghamshire, United Kingdom
- * E-mail:
| | - Yao-Zhong Xu
- School of Life, Health and Chemical Sciences, STEM Faculty, The Open University, Milton Keynes, Buckinghamshire, United Kingdom
| |
Collapse
|
10
|
Kirsanova OV, Sergeev AV, Yasko IS, Gromova ES. The impact of 6-thioguanine incorporation into DNA on the function of DNA methyltransferase Dnmt3a. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:392-405. [PMID: 28498075 DOI: 10.1080/15257770.2017.1287921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The incorporation of chemotherapeutic agent 6-thioguanine (SG) into DNA is a prerequisite for its cytotoxic action. This modification of DNA impedes the activity of enzymes involved in DNA repair and replication. Here, using hemimethylated DNA substrates we demonstrated that DNA methylation by Dnmt3a-CD is reduced if DNA is damaged by the incorporation of SG into one or two CpG sites separated by nine base pairs. An increase in the number of SG substitutions did not enhance the effect. Dnmt3a-CD binding to either of SG-containing DNA substrates was not distorted. Our results suggest that SG incorporation into DNA may influence epigenetic regulation via DNA methylation.
Collapse
Affiliation(s)
- Olga V Kirsanova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Alexander V Sergeev
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Ivan S Yasko
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Elizaveta S Gromova
- a Department of Chemistry , M. V. Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
11
|
Synthesis and Characterization of Some New Coumarins with in Vitro Antitumor and Antioxidant Activity and High Protective Effects against DNA Damage. Molecules 2016; 21:249. [PMID: 26907244 PMCID: PMC6274385 DOI: 10.3390/molecules21020249] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 01/01/2023] Open
Abstract
Coumarins are naturally occurring oxygen heterocyclic compounds having multifarious medicinal properties, hence used as lead compounds for designing new potent analogs. The chromene butenoic acid 3 and the benzochromene butenoic acid 4 which are derived from the reaction of glyoxalic acid with 3-acetylcoumarin and 3-acetylbenzocoumarin, respectively, were reacted with different nitrogen and carbon nucleophiles to give new heterocyclic compounds. The structures of the prepared compounds were elucidated by IR, ¹H-NMR, and mass spectroscopy. Some of the newly prepared compounds were tested in vitro against a panel of four human tumor cell lines namely; hepatocellular carcinoma (liver) HepG2, colon cancer HCT-116, human prostate cancer PC3, and mammary gland breast MCF-7. Also they were tested as antioxidants. Almost all of the tested compounds showed satisfactory activity.
Collapse
|
12
|
Patidar PL, Motea EA, Fattah FJ, Zhou Y, Morales JC, Xie Y, Garner HR, Boothman DA. The Kub5-Hera/RPRD1B interactome: a novel role in preserving genetic stability by regulating DNA mismatch repair. Nucleic Acids Res 2016; 44:1718-31. [PMID: 26819409 PMCID: PMC4770225 DOI: 10.1093/nar/gkv1492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022] Open
Abstract
Ku70-binding protein 5 (Kub5)-Hera (K-H)/RPRD1B maintains genetic integrity by concomitantly minimizing persistent R-loops and promoting repair of DNA double strand breaks (DSBs). We used tandem affinity purification-mass spectrometry, co-immunoprecipitation and gel-filtration chromatography to define higher-order protein complexes containing K-H scaffolding protein to gain insight into its cellular functions. We confirmed known protein partners (Ku70, RNA Pol II, p15RS) and discovered several novel associated proteins that function in RNA metabolism (Topoisomerase 1 and RNA helicases), DNA repair/replication processes (PARP1, MSH2, Ku, DNA-PKcs, MCM proteins, PCNA and DNA Pol δ) and in protein metabolic processes, including translation. Notably, this approach directed us to investigate an unpredicted involvement of K-H in DNA mismatch repair (MMR) where K-H depletion led to concomitant MMR deficiency and compromised global microsatellite stability. Mechanistically, MMR deficiency in K-H-depleted cells was a consequence of reduced stability of the core MMR proteins (MLH1 and PMS2) caused by elevated basal caspase-dependent proteolysis. Pan-caspase inhibitor treatment restored MMR protein loss. These findings represent a novel mechanism to acquire MMR deficiency/microsatellite alterations. A significant proportion of colon, endometrial and ovarian cancers exhibit k-h expression/copy number loss and may have severe mutator phenotypes with enhanced malignancies that are currently overlooked based on sporadic MSI+ screening.
Collapse
Affiliation(s)
- Praveen L Patidar
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Motea
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farjana J Fattah
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yunyun Zhou
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Julio C Morales
- Department of Neurosurgery, University of Oklahoma Heath Science Center, Oklahoma City, OK, USA
| | - Yang Xie
- Quantitative Biomedical Center, Department of Clinical Science, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, USA
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine and the MITTE Office, Virginia Tech, Blacksburg, VA, USA
| | - David A Boothman
- Departments of Pharmacology and Radiation Oncology, Program in Cell Stress and Cancer Nanomedicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Nowakowska M, Kowalska J, Martin F, d'Orchymont A, Zuberek J, Lukaszewicz M, Darzynkiewicz E, Jemielity J. Cap analogs containing 6-thioguanosine--reagents for the synthesis of mRNAs selectively photo-crosslinkable with cap-binding biomolecules. Org Biomol Chem 2015; 12:4841-7. [PMID: 24763507 DOI: 10.1039/c4ob00059e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Numerous biomolecules recognize the 7-methylguanosine cap structure present at the 5' ends of eukaryotic mRNAs. Photo-crosslinking is a valuable technique to study these interactions. We report three anti-reverse cap analogs containing a photo-activable nucleoside, 6-thioguanosine ((6S)G), that enable the synthesis of capped RNAs with (6S)G positioned exclusively as the first transcribed nucleotide. The effect of the 6-thioguanosine moiety on binding to the translation factor eIF4E and the efficiency of mRNA translation was determined. The utility of mRNAs with a (6S)G-modified cap in crosslinking experiments is shown by mapping the histone H4 cap-binding pocket.
Collapse
Affiliation(s)
- Monika Nowakowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Eksin E, Congur G, Mese F, Erdem A. Electrochemical monitoring of surface confined interaction between 6-Thioguanine and DNA by using single-use graphite electrode. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Friedman AB, Sparrow MP, Gibson PR. The role of thiopurine metabolites in inflammatory bowel disease and rheumatological disorders. Int J Rheum Dis 2014; 17:132-41. [PMID: 24618304 DOI: 10.1111/1756-185x.12204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thiopurines have been a cornerstone of medical management of patients with inflammatory bowel disease(IBD) and many rheumatological disorders. The thiopurines are metabolized to their end products, 6-methymercaptopurine (6MMP) and the 6-thioguanine nucleotides (6TGN), with 6TGN being responsible for thiopurine efficacy by causing apoptosis and preventing activation and proliferation of T-lymphocytes. In IBD, conventional weight-based dosing with thiopurines leads to an inadequate response in many patients. Utilizing measurement of these metabolites and then employing dose optimization strategies has led to markedly improved outcomes in IBD. Switching between thiopurines as well as the addition of low-dose allopurinol can overcome adverse events and elevate 6TGN levels into the therapeutic window. There is a paucity of data on thiopurine metabolites in rheumatological diseases and further research is required.
Collapse
|
16
|
Faustino I, Curutchet C, Luque FJ, Orozco M. The DNA-forming properties of 6-selenoguanine. Phys Chem Chem Phys 2013; 16:1101-10. [PMID: 24287926 DOI: 10.1039/c3cp53885k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present here an exhaustive characterization of the structure and properties of 6-selenoguanine, an isoster of guanine, and the impact of its introduction in DNA. This study reports the results of state-of-the-art quantum mechanical calculations and atomistic molecular dynamics simulations carried out to shed light on the impact of the replacement of guanine (G) by 6-selenoguanine (SeG) in different forms of DNA. The results point out that the G → SeG substitution leads to stable DNA duplex, antiparallel triplex and G-quadruplex structures, though local distortions are also found. These structural changes affect the thermodynamic stability of the mutation leading to a clear destabilization for all studied systems. Interestingly, the lowest effect has been found when the mutation was placed in the triplex-forming oligonucleotide strand in a reverse Hoogsteen orientation, which favours the antiparallel triplex formation regarding the G-tetraplex formation. Detailed QM studies strongly suggest that SeG impacts the HOMO-LUMO gap and accordingly the transfer properties of DNA, opening the way to modulate the conductivity properties of non-natural DNAs.
Collapse
Affiliation(s)
- Ignacio Faustino
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac, 10, Barcelona 08028, Spain
| | | | | | | |
Collapse
|
17
|
Kaur G, Hearn MTW, Bell TDM, Saito K. Release Kinetics of 6-Mercaptopurine and 6-Thioguanine from Bioinspired Core-Crosslinked Thymine Functionalised Polymeric Micelles. Aust J Chem 2013. [DOI: 10.1071/ch13125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A bioinspired core-bound polymeric micellar system based on hydrogen bonding and photo-crosslinking of thymine has been prepared from the amphiphilic block copolymers, poly(vinylbenzylthymine)-block-poly(vinylbenzyltriethylammonium chloride). The chemical loading and controlled release potential of these micelles was investigated using two drugs, 6-mercaptopurine and 6-thioguanine. The release kinetics of drug-loaded polymeric micelles was determined by pressure ultrafiltration and the effects of hydrogen bonding, core-crosslinking, and core size on the loading capacity and release kinetics were analysed. The results demonstrate that drug release rates are affected by hydrogen bonding in the micelle core. Furthermore, these studies indicate that drug release rates can be controlled by changing the size of the core and by photo-crosslinking thymine groups in the core.
Collapse
|
18
|
Wang J, Gu J, Leszczynski J. The electronic spectra and the H-bonding pattern of the sulfur and selenium substituted guanines. J Comput Chem 2012; 33:1587-93. [DOI: 10.1002/jcc.22991] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/07/2012] [Accepted: 03/18/2012] [Indexed: 11/07/2022]
|
19
|
Pack SP, Morimoto H, Makino K, Tajima K, Kanaori K. Solution structure and stability of the DNA undecamer duplexes containing oxanine mismatch. Nucleic Acids Res 2011; 40:1841-55. [PMID: 22039100 PMCID: PMC3287195 DOI: 10.1093/nar/gkr872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Solution structures of DNA duplexes containing oxanine (Oxa, O) opposite a cytosine (O:C duplex) and opposite a thymine (O:T duplex) have been solved by the combined use of 1H NMR and restrained molecular dynamics calculation. One mismatch pair was introduced into the center of the 11-mer duplex of [d(GTGACO6CACTG)/d(CAGTGX17GTCAC), X = C or T]. 1H NMR chemical shifts and nuclear Overhauser enhancement (NOE) intensities indicate that both the duplexes adopt an overall right-handed B-type conformation. Exchangeable resonances of C17 4-amino proton of the O:C duplex and of T17 imino proton of O:T duplex showed unusual chemical shifts, and disappeared with temperature increasing up to 30°C, although the melting temperatures were >50°C. The O:C mismatch takes a wobble geometry with positive shear parameter where the Oxa ring shifted toward the major groove and the paired C17 toward the minor groove, while, in the O:T mismatch pair with the negative shear, the Oxa ring slightly shifted toward the minor groove and the paired T17 toward the major groove. The Oxa mismatch pairs can be wobbled largely because of no hydrogen bond to the O1 position of the Oxa base, and may occupy positions in the strands that optimize the stacking with adjacent bases.
Collapse
Affiliation(s)
- Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Jochiwon, Chungnam 339-700, Korea.
| | | | | | | | | |
Collapse
|
20
|
Sleightholm L, Zambre A, Chanda N, Afrasiabi Z, Katti K, Kannan R. New Nanomedicine Approaches Using Gold-thioguanine Nanoconjugates as Metallo-ligands. Inorganica Chim Acta 2011; 372:333-339. [PMID: 21709763 DOI: 10.1016/j.ica.2011.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold-thioguanine nanoconjugates (AuNP-TG) of size 3-4 nm were synthesized and the ratio between gold and 6-Thioguanine (TG) was estimated as ~1:1.5 using a cyanide digestion method and confirmed by flame atomic absorption spectroscopic analysis. AuNP-TG constructs showed high in vitro stability under different pH conditions and biologically relevant solutions for a period of 24 hours. Reaction of AuNP-TG with europium or platinum salts resulted in the formation of organized self-assembled metallo-networks.
Collapse
Affiliation(s)
- Lee Sleightholm
- Department of Radiology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|
21
|
Guanine analogues enhance antisense oligonucleotide-induced exon skipping in dystrophin gene in vitro and in vivo. Mol Ther 2010; 18:812-8. [PMID: 20087314 DOI: 10.1038/mt.2009.320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Exon skipping has demonstrated great potential for treating Duchenne muscular dystrophy (DMD) and other diseases. We have developed a drug-screening system using C2C12 myoblasts expressing a reporter green fluorescent phosphate (GFP), with its reading frame disrupted by the insertion of a targeted dystrophin exon. A library of 2,000 compounds (Spectrum collection; Microsource Discovery System) was screened to identify drugs capable of skipping targeted dystrophin exons or enhancing the exon-skipping effect by specific antisense oligomers. The 6-thioguanine (6TG) was effective for inducing skipping of both human dystrophin exon 50 (hDysE50) and mouse dystrophin exon 23 (mDysE23) in the cell culture systems and increased exon skipping efficiency (more than threefolds) when used in combination with phosphorodiamidate morpholino oligomers (PMO) in both myoblasts and myotubes. Guanine and its analogues were unable to induce detectable skipping of exon 23 when used alone but enhanced PMO-induced exon skipping significantly (approximately two times) in the muscles of dystrophic mdx mouse in vivo. Our results demonstrate that small-molecule compounds could enhance specific exon skipping synergistically with antisense oligomers for experimental therapy to human diseases.
Collapse
|
22
|
Radiolabeling of thioguanine with 125I for diagnosis and therapy: in vitro and in vivo evaluation. J Radioanal Nucl Chem 2009. [DOI: 10.1007/s10967-009-0349-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Zhang H, Bren U, Kozekov ID, Rizzo CJ, Stec DF, Guengerich FP. Steric and electrostatic effects at the C2 atom substituent influence replication and miscoding of the DNA deamination product deoxyxanthosine and analogs by DNA polymerases. J Mol Biol 2009; 392:251-69. [PMID: 19607842 DOI: 10.1016/j.jmb.2009.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 12/22/2022]
Abstract
Deoxyinosine (dI) and deoxyxanthosine (dX) are both formed in DNA at appreciable levels in vivo by deamination of deoxyadenosine (dA) and deoxyguanosine (dG), respectively, and can miscode. Structure-activity relationships for dA pairing have been examined extensively using analogs but relatively few studies have probed the roles of the individual hydrogen-bonding atoms of dG in DNA replication. The replicative bacteriophage T7 DNA polymerase/exonuclease and the translesion DNA polymerase Sulfolobus solfataricus pol IV were used as models to discern the mechanisms of miscoding by DNA polymerases. Removal of the 2-amino group from the template dG (i.e., dI) had little impact on the catalytic efficiency of either polymerase, as judged by either steady-state or pre-steady-state kinetic analysis, although the misincorporation frequency was increased by an order of magnitude. dX was highly miscoding with both polymerases, and incorporation of several bases was observed. The addition of an electronegative fluorine atom at the 2-position of dI lowered the oligonucleotide T(m) and strongly inhibited incorporation of dCTP. The addition of bromine or oxygen (dX) at C2 lowered the T(m) further, strongly inhibited both polymerases, and increased the frequency of misincorporation. Linear activity models show the effects of oxygen (dX) and the halogens at C2 on both DNA polymerases as mainly due to a combination of both steric and electrostatic factors, producing a clash with the paired cytosine O2 atom, as opposed to either bulk or perturbation of purine ring electron density alone.
Collapse
Affiliation(s)
- Huidong Zhang
- Department of Biochemistry Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Villani G. Properties of the Thiobase Pairs Hydrogen Bridges: A Theoretical Study. J Phys Chem B 2009; 113:2128-34. [PMID: 19166279 DOI: 10.1021/jp807670f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Giovanni Villani
- Istituto per i Processi Chimico-Fisici, IPCF-CNR, Via G. Moruzzi, 1, I-56124 Pisa, Italy
| |
Collapse
|
26
|
Ardiani A, Goyke A, Black ME. Mutations at serine 37 in mouse guanylate kinase confer resistance to 6-thioguanine. Protein Eng Des Sel 2009; 22:225-32. [PMID: 19136674 DOI: 10.1093/protein/gzn078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Guanylate kinase (GMK) is an essential nucleoside monophosphate kinase that catalyzes the phosphorylation of guanine-monophosphate (GMP) and dGMP to yield GDP and dGDP, respectively, important precursors for nucleotide synthesis. GMK is also responsible for the activation of 6-thioguanine (6-TG), a drug widely used as chemotherapeutic agent to treat leukemia. Several mechanisms of resistance to 6-TG have been reported but a subset of drug resistant cells cannot be explained by these mechanisms. We propose that mutations in GMK could result in drug resistance. Because cells require the presence of a functional GMK for viability, mutations that arise that lead to 6-TG resistance must retain activity toward GMP. We report three amino acid substitutions at serine 37 (S37) in mouse GMK that display activity toward GMP by conferring genetic complementation to a conditional GMK-deficient Escherichia coli and in enzyme assays. When 6-TG is included in complementation studies, cells expressing wild-type GMK are sensitive whereas all S37 mutants examined are able to effectively discriminate against 6-TG and display a drug resistance phenotype. Activity of the three S37 mutant enzymes toward clinically relevant concentrations of 6-TGMP is undetectable. Mutations in GMK, therefore, represent a previously undescribed mechanism for 6-TG resistance.
Collapse
Affiliation(s)
- Andressa Ardiani
- School of Molecular Biosciences, Washington State University, PO Box 646534, Pullman,WA 99164-6534, USA
| | | | | |
Collapse
|
27
|
Lahoud G, Timoshchuk V, Lebedev A, Arar K, Hou YM, Gamper H. Properties of pseudo-complementary DNA substituted with weakly pairing analogs of guanine or cytosine. Nucleic Acids Res 2008; 36:6999-7008. [PMID: 18987000 PMCID: PMC2602760 DOI: 10.1093/nar/gkn797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A straightforward enzymatic protocol for converting regular DNA into pseudo-complementary DNA could improve the performance of oligonucleotide microarrays by generating readily hybridizable structure-free targets. Here we screened several highly destabilizing analogs of G and C for one that could be used with 2-aminoadenine (nA) and 2-thiothymine (sT) to generate structure-free DNA that is fully accessible to complementary probes. The analogs, which included bioactive bases such as 6-thioguanine (sG), 5-nitrocytosine (NitroC), 2-pyrimidinone (P; the free base of zebularine) and 6-methylfuranopyrimidinone (MefP), were prepared as dNTPs and evaluated as substrates for T7 and Phi29 DNA polymerases that lacked editor function. Pairing properties of the analogs were characterized by solution hybridization assays using modified oligonucleotides or primer extension products. P and MeP did not support robust primer extension whereas sG and NitroC did. In hybridization assays, however, sG lacked discrimination and NitroC paired too strongly to C. The dNTPs of two other base analogs, 7-nitro-7-deazahypoxanthine (NitrocH) and 2-thiocytosine (sC), exhibited the greatest promise. Either analog could be used with nA and sT to generate DNA that was nearly structure-free. Hybridization of probes to these modified DNAs will require the development of base analogs that pair strongly to NitrocH or sC.
Collapse
Affiliation(s)
- Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
28
|
Atreya I, Neurath MF. Azathioprine in inflammatory bowel disease: improved molecular insights and resulting clinical implications. Expert Rev Gastroenterol Hepatol 2008; 2:23-34. [PMID: 19072367 DOI: 10.1586/17474124.2.1.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Azathioprine and 6-mercaptopurine represent important first-line immunosuppressive drugs in the treatment of inflammatory bowel disease. Owing to 45 years of clinical experience with thiopurines in inflammatory bowel disease, there currently exist strong data from numerous clinical trials and meta-analyses, which clearly document the therapeutic efficacy of azathioprine and 6-mercaptopurine in the treatment of inflammatory bowel disease. However, the exact molecular mechanism of action of these drugs was insufficiently understood for a long time. During the last few years, important new insights into the intracellular effects of azathioprine have been gained and thiopurines have been identified as strong inducers of T-cell apoptosis. This article aims to summarize traditional and current concepts of azathioprine-mediated effects and endeavors to discuss the resulting clinical implications.
Collapse
Affiliation(s)
- Imke Atreya
- Institute of Molecular Medicine and I. Medical Clinic, University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | | |
Collapse
|
29
|
Gu C, Wang Y. In vitro replication and thermodynamic studies of methylation and oxidation modifications of 6-thioguanine. Nucleic Acids Res 2007; 35:3693-704. [PMID: 17517786 PMCID: PMC1920245 DOI: 10.1093/nar/gkm247] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cytotoxic effects of thiopurine drugs are mostly exerted through the formation of thioguanine nucleotide and its subsequent incorporation into DNA. The 6-thioguanine (6-TG) in DNA can be converted to S6-methylthio-2-aminopurine (2-AP-6-SCH3) and 2-aminopurine-6-sulfonic acid (2-AP-6-SO3H) upon reaction with S-adenosyl-L-methionine and irradiation with UVA light, respectively. Here we prepared oligodeoxynucleotides (ODNs) harboring a 6-TG, 2-AP-6-SCH3 or 2-AP-6-SO3H at a defined site and examined, by using LC-MS/MS, the in vitro replication of these substrates with yeast polymerase eta and Klenow fragment (KF-). Our results revealed that 2-AP-6-SCH3 could be bypassed by KF-, with significant misincorporation of thymine opposite the lesion. The 2-AP-6-SO3H, however, blocked markedly the nucleotide insertion by KF-. Yeast pol eta could bypass all three modified nucleosides; although dCMP was inserted preferentially, we found substantial misincorporation of dTMP and dAMP opposite 2-AP-6-SCH3 and 2-AP-6-SO3H, respectively. Moreover, both KF- and yeast pol eta induced a considerable amount of -2 frameshift products from the replication of 2-AP-6-SCH3- and 2-AP-6-SO3H-bearing substrates. Our results also underscored the importance of measuring the relative ionization efficiencies of replication products in the accurate quantification of these products by LC-MS/MS. Moreover, thermodynamic studies revealed that 2-AP-6-SCH3 and 2-AP-6-SO3H could cause more destabilization to duplex DNA than 6-TG. Taken together, the results from this study shed important new light on the biological implications of the two metabolites of 6-TG.
Collapse
Affiliation(s)
- Chunang Gu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA and Department of Chemistry-027, University of California, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403, USA and Department of Chemistry-027, University of California, Riverside, CA 92521-0403, USA
- *To whom correspondence should be addressed. 909-787-2700909-787-4713
| |
Collapse
|
30
|
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, School of Medicine, 11794-8651, USA
| | | |
Collapse
|
31
|
Yamane K, Kinsella TJ. Casein kinase 2 regulates both apoptosis and the cell cycle following DNA damage induced by 6-thioguanine. Clin Cancer Res 2005; 11:2355-63. [PMID: 15788687 DOI: 10.1158/1078-0432.ccr-04-1734] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purine antimetabolite, 6-thioguanine (6-TG), is an effective drug in the management of acute leukemias. In this study, we analyze the mechanisms of apoptosis associated with 6-TG treatment and casein kinase 2 (CK2 or CKII) in human tumor cells. EXPERIMENTAL DESIGN Small interfering RNA and chemical CK2 inhibitors were used to reduce CK2 activity. Control and CK2 activity-reduced cells were cultured with 6-TG and assessed by flow cytometry to measure apoptosis and cell cycle profiles. Additionally, confocal microscopy was used to assess localization of CK2 catalytic units following 6-TG treatment. RESULTS Transfection of small interfering RNA against the CK2 alpha and/or alpha' catalytic subunits results in marked apoptosis of HeLa cells following treatment with 6-TG. Chemical inhibitors of CK2 also induce apoptosis following 6-TG treatment. Apoptosis induced by 6-TG is similarly observed in both mismatch repair-proficient and -deficient HCT116 and HeLa cells. Concomitant treatment with a pan-caspase inhibitor or transfection of apoptosis repressor with caspase recruitment domain markedly suppresses the apoptotic response to DNA damage by 6-TG in the CK2-reduced cells, indicating caspase regulation by CK2. CK2 alpha relocalizes to the endoplasmic reticulum after 6-TG treatment. Additionally, transfection of Cdc2 with a mutation at Ser(39) to Ala, which is the CK2 phosphorylation site, partially inhibits cell cycle progression in G(1) to G(2) phase following 6-TG treatment. CONCLUSION CK2 is essential for apoptosis inhibition following DNA damage induced by 6-TG, controlling caspase activity.
Collapse
Affiliation(s)
- Kazuhiko Yamane
- Department of Radiation Oncology, Case Western Reserve University and University Hospitals of Cleveland, Case Comprehensive Cancer Center, 11100 Euclid Avenue, Cleveland, OH 44106-6068, USA
| | | |
Collapse
|
32
|
Abstract
The incorporation of 6-thioguanine (S6G) into DNA is a prerequisite for its cytotoxic action, but duplex structure is not significantly perturbed by the presence of the lesion [J. Bohon and C. R. de los Santos (2003) Nucleic Acids Res., 31, 1331–1338]. It is therefore possible that the mechanism of cytotoxicity relies on a loss of stability rather than a pathway involving direct structural recognition. The research described here focuses on the changes in thermodynamic properties of duplex DNA owing to the introduction of S6G as well as the kinetic properties of base pairs involving S6G. Replacement of a guanine in a G•C pair by S6G results in ∼1 kcal/mol less favorable Gibbs free energy of duplex formation at 37°C. S6G•T and G•T mismatch-containing duplexes have almost identical Gibbs free energy at 37°C, with values ∼3 kcal/mol less favorable than that of the control. Base pair stability is affected by S6G. The lifetime of the normal G•C base pair is ∼125 ms, whereas that of the G•T mismatch is below the detection limit. The lifetimes of S6G•C and S6G•T pairs are ∼7 and 2 ms, respectively, demonstrating that, although S6G significantly decreases the stability of the pairing with cytosine, it slightly increases that of a mismatch.
Collapse
|
33
|
Spacková N, Cubero E, Sponer J, Orozco M. Theoretical Study of the Guanine → 6-Thioguanine Substitution in Duplexes, Triplexes, and Tetraplexes. J Am Chem Soc 2004; 126:14642-50. [PMID: 15521784 DOI: 10.1021/ja0468628] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics and thermodynamic integration calculations have been carried out on a set of G-rich single-strand, duplex, triplex, and quadruplex DNAs to study the structural and stability changes connected with the guanine --> 6-thioguanine (G --> S) mutation. The presence of 6-thioguanine leads to a shift of the geometry from the B/A intermediate to the pure B-form in duplex DNA. The G --> S mutation does not largely affect the structure of the antiparallel triplex when it is located at the reverse-Hoogsteen position, but leads to a non-negligible local distortion in the structure when it is located at the Watson-Crick position. The G --> S mutation leads to destabilization of all studied structures: the lowest effect has been observed for the G --> S mutation in the reverse-Hoogsteen strand of the triplex, a medium effect has been observed in the Watson-Crick strand of the triplex and duplex, and the highest influence of the G -->S mutation has been found for the quadruplex structures.
Collapse
Affiliation(s)
- Nad'a Spacková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|