1
|
Kumar A, Yu CWH, Rodríguez-Molina JB, Li XH, Freund SMV, Passmore LA. Dynamics in Fip1 regulate eukaryotic mRNA 3' end processing. Genes Dev 2021; 35:1510-1526. [PMID: 34593603 PMCID: PMC8559680 DOI: 10.1101/gad.348671.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
In this study, Kumar et al. characterized the structure–function relationship of the essential poly(A) factor Fip1. Using in vitro reconstitution and structural studies, the authors report that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation. Cleavage and polyadenylation factor (CPF/CPSF) is a multiprotein complex essential for mRNA 3′ end processing in eukaryotes. It contains an endonuclease that cleaves pre-mRNAs, and a polymerase that adds a poly(A) tail onto the cleaved 3′ end. Several CPF subunits, including Fip1, contain intrinsically disordered regions (IDRs). IDRs within multiprotein complexes can be flexible, or can become ordered upon interaction with binding partners. Here, we show that yeast Fip1 anchors the poly(A) polymerase Pap1 onto CPF via an interaction with zinc finger 4 of another CPF subunit, Yth1. We also reconstitute a fully recombinant 850-kDa CPF. By incorporating selectively labeled Fip1 into recombinant CPF, we could study the dynamics of Fip1 within the megadalton complex using nuclear magnetic resonance (NMR) spectroscopy. This reveals that a Fip1 IDR that connects the Yth1- and Pap1-binding sites remains highly dynamic within CPF. Together, our data suggest that Fip1 dynamics within the 3′ end processing machinery are required to coordinate cleavage and polyadenylation.
Collapse
Affiliation(s)
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | | - Xiao-Han Li
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
2
|
Hill CH, Boreikaitė V, Kumar A, Casañal A, Kubík P, Degliesposti G, Maslen S, Mariani A, von Loeffelholz O, Girbig M, Skehel M, Passmore LA. Activation of the Endonuclease that Defines mRNA 3' Ends Requires Incorporation into an 8-Subunit Core Cleavage and Polyadenylation Factor Complex. Mol Cell 2019; 73:1217-1231.e11. [PMID: 30737185 PMCID: PMC6436931 DOI: 10.1016/j.molcel.2018.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 12/21/2018] [Indexed: 01/19/2023]
Abstract
Cleavage and polyadenylation factor (CPF/CPSF) is a multi-protein complex essential for formation of eukaryotic mRNA 3' ends. CPF cleaves pre-mRNAs at a specific site and adds a poly(A) tail. The cleavage reaction defines the 3' end of the mature mRNA, and thus the activity of the endonuclease is highly regulated. Here, we show that reconstitution of specific pre-mRNA cleavage with recombinant yeast proteins requires incorporation of the Ysh1 endonuclease into an eight-subunit "CPFcore" complex. Cleavage also requires the accessory cleavage factors IA and IB, which bind substrate pre-mRNAs and CPF, likely facilitating assembly of an active complex. Using X-ray crystallography, electron microscopy, and mass spectrometry, we determine the structure of Ysh1 bound to Mpe1 and the arrangement of subunits within CPFcore. Together, our data suggest that the active mRNA 3' end processing machinery is a dynamic assembly that is licensed to cleave only when all protein factors come together at the polyadenylation site.
Collapse
Affiliation(s)
- Chris H Hill
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Ana Casañal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Peter Kubík
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, Université de Strasbourg, Strasbourg, France; Centre National de la Recherche Scientifique UMR 7104, Illkirch, Université de Strasbourg, Strasbourg, France; INSERM U964, Illkirch, Université de Strasbourg, Strasbourg, France
| | - Mathias Girbig
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
3
|
Mischo HE, Chun Y, Harlen KM, Smalec BM, Dhir S, Churchman LS, Buratowski S. Cell-Cycle Modulation of Transcription Termination Factor Sen1. Mol Cell 2018; 70:312-326.e7. [PMID: 29656924 PMCID: PMC5919780 DOI: 10.1016/j.molcel.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/26/2017] [Accepted: 03/08/2018] [Indexed: 01/14/2023]
Abstract
Many non-coding transcripts (ncRNA) generated by RNA polymerase II in S. cerevisiae are terminated by the Nrd1-Nab3-Sen1 complex. However, Sen1 helicase levels are surprisingly low compared with Nrd1 and Nab3, raising questions regarding how ncRNA can be terminated in an efficient and timely manner. We show that Sen1 levels increase during the S and G2 phases of the cell cycle, leading to increased termination activity of NNS. Overexpression of Sen1 or failure to modulate its abundance by ubiquitin-proteasome-mediated degradation greatly decreases cell fitness. Sen1 toxicity is suppressed by mutations in other termination factors, and NET-seq analysis shows that its overexpression leads to a decrease in ncRNA production and altered mRNA termination. We conclude that Sen1 levels are carefully regulated to prevent aberrant termination. We suggest that ncRNA levels and coding gene transcription termination are modulated by Sen1 to fulfill critical cell cycle-specific functions. Transcription termination factor Sen1 levels fluctuate throughout the cell cycle APC targets Sen1 for degradation during G1 Reduced Sen1 levels lower efficiency of Sen1-mediated termination Sen1 overexpression reduces cell viability because of excessive termination
Collapse
Affiliation(s)
- Hannah E Mischo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK; Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK.
| | - Yujin Chun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Harlen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brendan M Smalec
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK
| | | | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Guéguéniat J, Dupin AF, Stojko J, Beaurepaire L, Cianférani S, Mackereth CD, Minvielle-Sébastia L, Fribourg S. Distinct roles of Pcf11 zinc-binding domains in pre-mRNA 3'-end processing. Nucleic Acids Res 2017; 45:10115-10131. [PMID: 28973460 PMCID: PMC5737669 DOI: 10.1093/nar/gkx674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/21/2017] [Indexed: 01/23/2023] Open
Abstract
New transcripts generated by RNA polymerase II (RNAPII) are generally processed in order to form mature mRNAs. Two key processing steps include a precise cleavage within the 3′ end of the pre-mRNA, and the subsequent polymerization of adenosines to produce the poly(A) tail. In yeast, these two functions are performed by a large multi-subunit complex that includes the Cleavage Factor IA (CF IA). The four proteins Pcf11, Clp1, Rna14 and Rna15 constitute the yeast CF IA, and of these, Pcf11 is structurally the least characterized. Here, we provide evidence for the binding of two Zn2+ atoms to Pcf11, bound to separate zinc-binding domains located on each side of the Clp1 recognition region. Additional structural characterization of the second zinc-binding domain shows that it forms an unusual zinc finger fold. We further demonstrate that the two domains are not mandatory for CF IA assembly nor RNA polymerase II transcription termination, but are rather involved to different extents in the pre-mRNA 3′-end processing mechanism. Our data thus contribute to a more complete understanding of the architecture and function of Pcf11 and its role within the yeast CF IA complex.
Collapse
Affiliation(s)
- Julia Guéguéniat
- Université de Bordeaux, INSERM U1212, CNRS UMR5320, Bordeaux, France
| | - Adrien F Dupin
- Université de Bordeaux, INSERM U1212, CNRS UMR5320, Bordeaux, France
| | - Johan Stojko
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | | | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
5
|
Casañal A, Kumar A, Hill CH, Easter AD, Emsley P, Degliesposti G, Gordiyenko Y, Santhanam B, Wolf J, Wiederhold K, Dornan GL, Skehel M, Robinson CV, Passmore LA. Architecture of eukaryotic mRNA 3'-end processing machinery. Science 2017; 358:1056-1059. [PMID: 29074584 PMCID: PMC5788269 DOI: 10.1126/science.aao6535] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022]
Abstract
Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four β propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.
Collapse
Affiliation(s)
- Ana Casañal
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Chris H Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Paul Emsley
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Yuliya Gordiyenko
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - Jana Wolf
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
6
|
O'Doherty PJ, Khan A, Johnson AJ, Rogers PJ, Bailey TD, Wu MJ. Proteomic response to linoleic acid hydroperoxide in Saccharomyces cerevisiae. FEMS Yeast Res 2017; 17:3752509. [PMID: 28449083 DOI: 10.1093/femsyr/fox022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 04/20/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast AP-1 transcription factor (Yap1p) and the enigmatic oxidoreductases Oye2p and Oye3p are involved in counteracting lipid oxidants and their unsaturated breakdown products. In order to uncover the response to linoleic acid hydroperoxide (LoaOOH) and the roles of Oye2p, Oye3p and Yap1p, we carried out proteomic analysis of the homozygous deletion mutants oye3Δ, oye2Δ and yap1Δ alongside the diploid parent strain BY4743. The findings demonstrate that deletion of YAP1 narrowed the response to LoaOOH, as the number of proteins differentially expressed in yap1Δ was 70% of that observed in BY4743. The role of Yap1p in regulating the major yeast peroxiredoxin Tsa1p was demonstrated by the decreased expression of Tsa1p in yap1Δ. The levels of Ahp1p and Hsp31p, previously shown to be regulated by Yap1p, were increased in LoaOOH-treated yap1Δ, indicating their expression is also regulated by another transcription factor(s). Relative to BY4743, protein expression differed in oye3Δ and oye2Δ under LoaOOH, underscored by superoxide dismutase (Sod1p), multiple heat shock proteins (Hsp60p, Ssa1p, and Sse1p), the flavodoxin-like protein Pst2p and the actin stabiliser tropomyosin (Tpm1p). Proteins associated with glycolysis were increased in all strains following treatment with LoaOOH. Together, the dataset reveals, for the first time, the yeast proteomic response to LoaOOH, highlighting the significance of carbohydrate metabolism, as well as distinction between the roles of Oye3p, Oye2p and Yap1p.
Collapse
Affiliation(s)
- Patrick J O'Doherty
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility (APAF), Macquarie University, Sydney NSW 2109 Australia
| | - Adam J Johnson
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Peter J Rogers
- School of Biomolecular and Physical Sciences, Griffith University, Nathan QLD 4111, Australia
| | - Trevor D Bailey
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Ming J Wu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
7
|
Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 2015; 29:889-97. [PMID: 25934501 PMCID: PMC4421977 DOI: 10.1101/gad.261974.115] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition. Here, Shi and Manley review the recent advances in this area and provide a perspective for future studies. The key RNA sequence elements and protein factors necessary for 3′ processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA;
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
8
|
Chakrabarti M, Hunt AG. CPSF30 at the Interface of Alternative Polyadenylation and Cellular Signaling in Plants. Biomolecules 2015; 5:1151-68. [PMID: 26061761 PMCID: PMC4496715 DOI: 10.3390/biom5021151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023] Open
Abstract
Post-transcriptional processing, involving cleavage of precursor messenger RNA (pre mRNA), and further incorporation of poly(A) tail to the 3' end is a key step in the expression of genetic information. Alternative polyadenylation (APA) serves as an important check point for the regulation of gene expression. Recent studies have shown widespread prevalence of APA in diverse systems. A considerable amount of research has been done in characterizing different subunits of so-called Cleavage and Polyadenylation Specificity Factor (CPSF). In plants, CPSF30, an ortholog of the 30 kD subunit of mammalian CPSF is a key polyadenylation factor. CPSF30 in the model plant Arabidopsis thaliana was reported to possess unique biochemical properties. It was also demonstrated that poly(A) site choice in a vast majority of genes in Arabidopsis are CPSF30 dependent, suggesting a pivotal role of this gene in APA and subsequent regulation of gene expression. There are also indications of this gene being involved in oxidative stress and defense responses and in cellular signaling, suggesting a role of CPSF30 in connecting physiological processes and APA. This review will summarize the biochemical features of CPSF30, its role in regulating APA, and possible links with cellular signaling and stress response modules.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
9
|
Liu M, Xu R, Merrill C, Hong L, Von Lanken C, Hunt AG, Li QQ. Integration of developmental and environmental signals via a polyadenylation factor in Arabidopsis. PLoS One 2014; 9:e115779. [PMID: 25546057 PMCID: PMC4278772 DOI: 10.1371/journal.pone.0115779] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to integrate environmental and developmental signals with physiological responses is critical for plant survival. How this integration is done, particularly through posttranscriptional control of gene expression, is poorly understood. Previously, it was found that the 30 kD subunit of Arabidopsis cleavage and polyadenylation specificity factor (AtCPSF30) is a calmodulin-regulated RNA-binding protein. Here we demonstrated that mutant plants (oxt6) deficient in AtCPSF30 possess a novel range of phenotypes--reduced fertility, reduced lateral root formation, and altered sensitivities to oxidative stress and a number of plant hormones (auxin, cytokinin, gibberellic acid, and ACC). While the wild-type AtCPSF30 (C30G) was able to restore normal growth and responses, a mutant AtCPSF30 protein incapable of interacting with calmodulin (C30GM) could only restore wild-type fertility and responses to oxidative stress and ACC. Thus, the interaction with calmodulin is important for part of AtCPSF30 functions in the plant. Global poly(A) site analysis showed that the C30G and C30GM proteins can restore wild-type poly(A) site choice to the oxt6 mutant. Genes associated with hormone metabolism and auxin responses are also affected by the oxt6 mutation. Moreover, 19 genes that are linked with calmodulin-dependent CPSF30 functions, were identified through genome-wide expression analysis. These data, in conjunction with previous results from the analysis of the oxt6 mutant, indicate that the polyadenylation factor AtCPSF30 is a regulatory hub where different signaling cues are transduced, presumably via differential mRNA 3' end formation or alternative polyadenylation, into specified phenotypic outcomes. Our results suggest a novel function of a polyadenylation factor in environmental and developmental signal integration.
Collapse
Affiliation(s)
- Man Liu
- Department of Biology, Miami University, Oxford, OH 45045, United States of America
| | - Ruqiang Xu
- Department of Biology, Miami University, Oxford, OH 45045, United States of America
| | - Carrie Merrill
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, United States of America
| | - Liwei Hong
- Key Laboratory of the Ministry of Education on Costal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Carol Von Lanken
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, United States of America
| | - Qingshun Q. Li
- Department of Biology, Miami University, Oxford, OH 45045, United States of America
- Key Laboratory of the Ministry of Education on Costal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350003, China
| |
Collapse
|
10
|
Hunt AG. The Arabidopsis polyadenylation factor subunit CPSF30 as conceptual link between mRNA polyadenylation and cellular signaling. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:128-132. [PMID: 25104048 DOI: 10.1016/j.pbi.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Alternative polyadenylation plays important roles in growth processes in plants. Although the scope and significance of the phenomenon have been described to considerable extent, the mechanisms that govern differential poly(A) site selection remain active areas of investigation. Of particular interest are the means by which the factors that control differential poly(A) site choice are themselves activated and inhibited. In this review, the case is made that one particular Arabidopsis polyadenylation factor subunit, termed AtCPSF30, stands out as a conceptual link between cellular signaling pathways and differential poly(A) site choice.
Collapse
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA.
| |
Collapse
|
11
|
Bruggeman Q, Garmier M, de Bont L, Soubigou-Taconnat L, Mazubert C, Benhamed M, Raynaud C, Bergounioux C, Delarue M. The Polyadenylation Factor Subunit CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30: A Key Factor of Programmed Cell Death and a Regulator of Immunity in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:732-746. [PMID: 24706550 PMCID: PMC4044851 DOI: 10.1104/pp.114.236083] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/02/2014] [Indexed: 05/20/2023]
Abstract
Programmed cell death (PCD) is essential for several aspects of plant life, including development and stress responses. Indeed, incompatible plant-pathogen interactions are well known to induce the hypersensitive response, a localized cell death. Mutational analyses have identified several key PCD components, and we recently identified the mips1 mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for the key enzyme catalyzing the limiting step of myoinositol synthesis. One of the most striking features of mips1 is the light-dependent formation of lesions on leaves due to salicylic acid (SA)-dependent PCD, revealing roles for myoinositol or inositol derivatives in the regulation of PCD. Here, we identified a regulator of plant PCD by screening for mutants that display transcriptomic profiles opposing that of the mips1 mutant. Our screen identified the oxt6 mutant, which has been described previously as being tolerant to oxidative stress. In the oxt6 mutant, a transfer DNA is inserted in the CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR30 (CPSF30) gene, which encodes a polyadenylation factor subunit homolog. We show that CPSF30 is required for lesion formation in mips1 via SA-dependent signaling, that the prodeath function of CPSF30 is not mediated by changes in the glutathione status, and that CPSF30 activity is required for Pseudomonas syringae resistance. We also show that the oxt6 mutation suppresses cell death in other lesion-mimic mutants, including lesion-simulating disease1, mitogen-activated protein kinase4, constitutive expressor of pathogenesis-related genes5, and catalase2, suggesting that CPSF30 and, thus, the control of messenger RNA 3' end processing, through the regulation of SA production, is a key component of plant immune responses.
Collapse
Affiliation(s)
- Quentin Bruggeman
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Marie Garmier
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Linda de Bont
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Ludivine Soubigou-Taconnat
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Christelle Mazubert
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Moussa Benhamed
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Cécile Raynaud
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Catherine Bergounioux
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| | - Marianne Delarue
- Université Paris-Sud, Institut de Biologie des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 8618, Saclay Plant Sciences, F-91405 Orsay, France (Q.B., M.G., L.d.B., C.M., M.B., C.R., C.B., M.D.);Unité de Recherche en Génomique Végétale-Unité Mixte de Recherche-Institut National de la Recherche Agronomique 1165-Centre National de la Recherche Scientifique 8114, 91 057 Evry cedex, France (L.S.-T.); andDivision of Biological and Environmental Sciences and Engineering and Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (M.B.)
| |
Collapse
|
12
|
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol Cell Biol 2014; 34:1894-910. [PMID: 24591651 DOI: 10.1128/mcb.00084-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Collapse
|
13
|
de Boer CG, van Bakel H, Tsui K, Li J, Morris QD, Nislow C, Greenblatt JF, Hughes TR. A unified model for yeast transcript definition. Genome Res 2013; 24:154-66. [PMID: 24170600 PMCID: PMC3875857 DOI: 10.1101/gr.164327.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Identifying genes in the genomic context is central to a cell's ability to interpret the genome. Yet, in general, the signals used to define eukaryotic genes are poorly described. Here, we derived simple classifiers that identify where transcription will initiate and terminate using nucleic acid sequence features detectable by the yeast cell, which we integrate into a Unified Model (UM) that models transcription as a whole. The cis-elements that denote where transcription initiates function primarily through nucleosome depletion, and, using a synthetic promoter system, we show that most of these elements are sufficient to initiate transcription in vivo. Hrp1 binding sites are the major characteristic of terminators; these binding sites are often clustered in terminator regions and can terminate transcription bidirectionally. The UM predicts global transcript structure by modeling transcription of the genome using a hidden Markov model whose emissions are the outputs of the initiation and termination classifiers. We validated the novel predictions of the UM with available RNA-seq data and tested it further by directly comparing the transcript structure predicted by the model to the transcription generated by the cell for synthetic DNA segments of random design. We show that the UM identifies transcription start sites more accurately than the initiation classifier alone, indicating that the relative arrangement of promoter and terminator elements influences their function. Our model presents a concrete description of how the cell defines transcript units, explains the existence of nongenic transcripts, and provides insight into genome evolution.
Collapse
|
14
|
Thomas PE, Wu X, Liu M, Gaffney B, Ji G, Li QQ, Hunt AG. Genome-wide control of polyadenylation site choice by CPSF30 in Arabidopsis. THE PLANT CELL 2012; 24:4376-88. [PMID: 23136375 PMCID: PMC3531840 DOI: 10.1105/tpc.112.096107] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 05/22/2023]
Abstract
The Arabidopsis thaliana ortholog of the 30-kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (CPSF30) has been implicated in the responses of plants to oxidative stress, suggesting a role for alternative polyadenylation. To better understand this, poly(A) site choice was studied in a mutant (oxt6) deficient in CPSF30 expression using a genome-scale approach. The results indicate that poly(A) site choice in a large majority of Arabidopsis genes is altered in the oxt6 mutant. A number of poly(A) sites were identified that are seen only in the wild type or oxt6 mutant. Interestingly, putative polyadenylation signals associated with sites that are seen only in the oxt6 mutant are decidedly different from the canonical plant polyadenylation signal, lacking the characteristic A-rich near-upstream element (where AAUAAA can be found); this suggests that CPSF30 functions in the handling of the near-upstream element. The sets of genes that possess sites seen only in the wild type or mutant were enriched for those involved in stress and defense responses, a result consistent with the properties of the oxt6 mutant. Taken together, these studies provide new insights into the mechanisms and consequences of CPSF30-mediated alternative polyadenylation.
Collapse
Affiliation(s)
- Patrick E. Thomas
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Xiaohui Wu
- Department of Botany, Miami University, Oxford, Ohio 45056
- Department of Automation, Xiamen University, Xiamen 361005, China
| | - Man Liu
- Department of Botany, Miami University, Oxford, Ohio 45056
| | - Bobby Gaffney
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen 361005, China
| | - Qingshun Q. Li
- Department of Botany, Miami University, Oxford, Ohio 45056
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350019, China
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312
- Address correspondence to
| |
Collapse
|
15
|
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:174-85. [PMID: 23085255 PMCID: PMC3793857 DOI: 10.1016/j.bbagrm.2012.10.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/29/2022]
Abstract
Termination of transcription by RNA polymerase II requires two distinct processes: The formation of a defined 3′ end of the transcribed RNA, as well as the disengagement of RNA polymerase from its DNA template. Both processes are intimately connected and equally pivotal in the process of functional messenger RNA production. However, research in recent years has elaborated how both processes can additionally be employed to control gene expression in qualitative and quantitative ways. This review embraces these new findings and attempts to paint a broader picture of how this final step in the transcription cycle is of critical importance to many aspects of gene regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Hannah E Mischo
- Cancer Research UK London Research Institute, Blanche Lane South Mimms, Herts, UK.
| | | |
Collapse
|
16
|
Deng H, Liu H, Li X, Xiao J, Wang S. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease. PLANT PHYSIOLOGY 2012; 158:876-89. [PMID: 22158700 PMCID: PMC3271775 DOI: 10.1104/pp.111.191379] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial blight is a devastating disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv oryzae (Xoo). Zinc finger proteins harboring the motif with three conserved cysteine residues and one histidine residue (CCCH) belong to a large family. Although at least 67 CCCH-type zinc finger protein genes have been identified in the rice genome, their functions are poorly understood. Here, we report that one of the rice CCCH-type zinc finger proteins, C3H12, containing five typical CX(8)-CX(5)-CX(3)-H zinc finger motifs, is involved in the rice-Xoo interaction. Activation of C3H12 partially enhanced resistance to Xoo, accompanied by the accumulation of jasmonic acid (JA) and induced expression of JA signaling genes in rice. In contrast, knockout or suppression of C3H12 resulted in partially increased susceptibility to Xoo, accompanied by decreased levels of JA and expression of JA signaling genes in rice. C3H12 colocalized with a minor disease resistance quantitative trait locus to Xoo, and the enhanced resistance of randomly chosen plants in the quantitative trait locus mapping population correlated with an increased expression level of C3H12. The C3H12 protein localized in the nucleus and possessed nucleic acid-binding activity in vitro. These results suggest that C3H12, as a nucleic acid-binding protein, positively and quantitatively regulates rice resistance to Xoo and that its function is likely associated with the JA-dependent pathway.
Collapse
|
17
|
Woloshen V, Huang S, Li X. RNA-Binding Proteins in Plant Immunity. J Pathog 2011; 2011:278697. [PMID: 22567326 PMCID: PMC3335643 DOI: 10.4061/2011/278697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 11/24/2022] Open
Abstract
Plant defence responses against pathogen infection are crucial to plant survival. The high degree of regulation of plant immunity occurs both transcriptionally and posttranscriptionally. Once transcribed, target gene RNA must be processed prior to translation. This includes polyadenylation, 5′capping, editing, splicing, and mRNA export. RNA-binding proteins (RBPs) have been implicated at each level of RNA processing. Previous research has primarily focused on structural RNA-binding proteins of yeast and mammals; however, more recent work has characterized a number of plant RBPs and revealed their roles in plant immune responses. This paper provides an update on the known functions of RBPs in plant immune response regulation. Future in-depth analysis of RBPs and other related players will unveil the sophisticated regulatory mechanisms of RNA processing during plant immune responses.
Collapse
Affiliation(s)
- Virginia Woloshen
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | |
Collapse
|
18
|
Dominski Z. The hunt for the 3' endonuclease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:325-40. [PMID: 21935893 DOI: 10.1002/wrna.33] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pre-mRNAs are typically processed at the 3(') end by cleavage/polyadenylation. This is a two-step processing reaction initiated by endonucleolytic cleavage of pre-mRNAs downstream of the AAUAAA sequence or its variant, followed by extension of the newly generated 3(') end with a poly(A) tail. In metazoans, replication-dependent histone transcripts are cleaved by a different 3(') end processing mechanism that depends on the U7 small nuclear ribonucleoprotein and the polyadenylation step is omitted. Each of the two mechanisms occurs in a macromolecular assembly that primarily functions to juxtapose the scissile bond with the 3(') endonuclease. Remarkably, despite characterizing a number of processing factors, the identity of this most critical component remained elusive until recently. For cleavage coupled to polyadenylation, much needed help was offered by bioinformatics, which pointed to CPSF-73, a known processing factor required for both cleavage and polyadenylation, as the possible 3(') endonuclease. In silico structural analysis indicated that this protein is a member of the large metallo-β-lactamase family of hydrolytic enzymes and belongs to the β-CASP subfamily that includes several RNA and DNA-specific nucleases. Subsequent experimental studies supported the notion that CPSF-73 does function as the endonuclease in the formation of polyadenylated mRNAs, but some controversy still remains as a different cleavage and polyadenylation specificity factor (CPSF) subunit, CPSF-30, displays an endonuclease activity in vitro while recombinant CPSF-73 is inactive. Unexpectedly, CPSF-73 as the 3(') endonuclease in cleavage coupled to polyadenylation found a strong ally in U7-dependent processing of histone pre-mRNAs, which was shown to utilize the same protein as the cleaving enzyme. It thus seems likely that these two processing reactions evolved from a common mechanism, with CPSF-73 as the endonuclease.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
19
|
Rao S, Dinkins RD, Hunt AG. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits. BMC Cell Biol 2009; 10:51. [PMID: 19573236 PMCID: PMC2712457 DOI: 10.1186/1471-2121-10-51] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 07/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to further explore the functions of AtCPSF30, the subcellular distribution of the protein was examined by over-expressing fusion proteins containing fluorescent reporters linked to different CPSF subunits. RESULTS It was found that AtCPSF30 by itself localizes, not to the nucleus, but to the cytoplasm. AtCPSF30 could be found in the nucleus when co-expressed with AtCPSF160 or AtCPSF73(I), one of the two Arabidopsis orthologs of CPSF73. This re-directing of AtCPSF30 indicates that AtCPSF30 is retained in the nucleus via interactions with either or both of these other CPSF subunits. Co-expression of AtCSPF30 with AtCPSF100 altered the location, not of AtCPSF30, but rather of AtCPSF100, with these proteins residing in the cytoplasm. Deletion of plant-specific N- or C-terminal domains of AtCPSF30 abolished various of the interactions between AtCPSF30 and other CPSF subunits, suggesting that the plant CPSF complex assembles via novel protein-protein interactions. CONCLUSION These results suggest that the nuclear CPSF complex in plants is a dynamic one, and that the interactions between AtCPSF30 and other CPSF subunits are different from those existing in other eukaryotes.
Collapse
Affiliation(s)
- Suryadevara Rao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA
| | - Randy D Dinkins
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA
- USDA-ARS, FAPRU, Lexington, KY 40546-0091 USA
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312 USA
| |
Collapse
|
20
|
Roth KM, Byam J, Fang F, Butler JS. Regulation of NAB2 mRNA 3'-end formation requires the core exosome and the Trf4p component of the TRAMP complex. RNA (NEW YORK, N.Y.) 2009; 15:1045-58. [PMID: 19369424 PMCID: PMC2685527 DOI: 10.1261/rna.709609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The nuclear exosome functions in a variety of pathways catalyzing formation of mature RNA 3'-ends or the destruction of aberrant RNA transcripts. The RNA 3'-end formation activity of the exosome appeared restricted to small noncoding RNAs. However, the nuclear exosome controls the level of the mRNA encoding the poly(A)-binding protein Nab2p in a manner requiring an A(26) sequence in the mRNA 3' untranslated regions (UTR), and the activities of Nab2p and the exosome-associated exoribonuclease Rrp6p. Here we show that the A(26) sequence inhibits normal 3'-end processing of NAB2 mRNA in vivo and in vitro, and makes formation of the mature 3'-end dependent on trimming of the transcript by the core exosome and the Trf4p component of the TRAMP complex from a downstream site. The detection of mature, polyadenylated transcripts ending at, or within, the A(26) sequence indicates that exosome trimming sometimes gives way to polyadenylation of the mRNA. Alternatively, Rrp6p and the TRAMP-associated Mtr4p degrade these transcripts thereby limiting the amount of Nab2p in the cell. These findings suggest that NAB2 mRNA 3'-end formation requires the exosome and TRAMP complex, and that competition between polyadenylation and Rrp6p-dependent degradation controls the level of this mRNA.
Collapse
Affiliation(s)
- Kelly M Roth
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
21
|
Bercovich N, Levin MJ, Vazquez MP. The FIP-1 like polyadenylation factor in trypanosomes and the structural basis for its interaction with CPSF30. Biochem Biophys Res Commun 2009; 380:850-5. [PMID: 19338765 DOI: 10.1016/j.bbrc.2009.01.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
Abstract
In trypanosomes transcription is polycistronic and individual mRNAs are generated by a trans-splicing/polyadenylation coupled reaction. We identified a divergent trypanosome FIP1-like, a factor required for mRNA 3' end formation from yeasts to human. Here we showed that it is a nuclear protein with a speckled distribution essential for trypanosome viability. A strong interaction was found between TcFIP1-like and TcCPSF30, a component of the polyadenylation complex. We determined the specific amino acids in each protein involved in the interaction. Significant differences were found between the trypanosome interaction surface and its human counterpart. Although CPSF30/FIP1 interaction is known in other organisms, this is the first report mapping the interaction surface at the amino acid level.
Collapse
Affiliation(s)
- Natalia Bercovich
- INGEBI-CONICET, Vta. de Obligado 2490, 2P, CP 1428, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
22
|
Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL. A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 2008; 3:e2410. [PMID: 18545667 PMCID: PMC2408970 DOI: 10.1371/journal.pone.0002410] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/02/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress.
Collapse
Affiliation(s)
- Jingxian Zhang
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Balasubramanyam Addepalli
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kil-Young Yun
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (DF), (AH)
| | - Ruqiang Xu
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Suryadevara Rao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qingshun Q. Li
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Deane L. Falcone
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts, United States of America
- * E-mail: (DF), (AH)
| |
Collapse
|
23
|
Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL. A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 2008; 3:e2410. [PMID: 18545667 DOI: 10.1001/jama.1941.02820310001001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/02/2008] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress.
Collapse
Affiliation(s)
- Jingxian Zhang
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
25
|
Redox and heavy metal effects on the biochemical activities of an Arabidopsis polyadenylation factor subunit. Arch Biochem Biophys 2008; 473:88-95. [PMID: 18331819 DOI: 10.1016/j.abb.2008.02.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/08/2008] [Accepted: 02/16/2008] [Indexed: 11/20/2022]
Abstract
The Arabidopsis CPSF30 ortholog (AtCPSF30) is an RNA-binding endonuclease that is part of the plant polyadenylation complex. Previous work (B. Addepalli, A.G. Hunt, Nucleic Acids Res. 35 (2007) 4453-4463) demonstrated that different zinc finger motifs in the protein were responsible for RNA-binding and nuclease activity, respectively. In this study, a more detailed functional map of AtCPSF30 is presented, a map that includes descriptions of novel biochemical activities. Elevated temperatures, the specific zinc chelator 1,10-phenanthroline, and the sulfhydryl reagent dithiothreitol all had differential inhibitory effects on the RNA-binding and nuclease activities. The endonuclease activity of AtCPSF30 was inhibited by relatively high (>100muM) concentrations of zinc, and this inhibition required a plant-specific N-terminal domain apart from the zinc finger core of the protein. ATP stimulated the nuclease activity in the presence of zinc, and this stimulation required a plant-specific C-terminal domain, again apart from the zinc finger core. These studies reveal a subtle and unexpected complexity to AtCPSF30, and raise the possibility that multiple avenues of regulation may impinge on this protein through different functional domains.
Collapse
|
26
|
|
27
|
Addepalli B, Hunt AG. A novel endonuclease activity associated with the Arabidopsis ortholog of the 30-kDa subunit of cleavage and polyadenylation specificity factor. Nucleic Acids Res 2007; 35:4453-63. [PMID: 17576667 PMCID: PMC1935010 DOI: 10.1093/nar/gkm457] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The polyadenylation of messenger RNAs is mediated by a multi-subunit complex that is conserved in eukaryotes. Among the most interesting of these proteins is the 30-kDa-subunit of the Cleavage and Polyadenylation Specificity Factor, or CPSF30. In this study, the Arabidopsis CPSF30 ortholog, AtCPSF30, is characterized. This protein possesses an unexpected endonucleolytic activity that is apparent as an ability to nick and degrade linear as well as circular single-stranded RNA. Endonucleolytic action by AtCPSF30 leaves RNA 3′ ends with hydroxyl groups, as they can be labeled by RNA ligase with [32P]-cytidine-3′,5′-bisphosphate. Mutations in the first of the three CCCH zinc finger motifs of the protein abolish RNA binding by AtCPSF30 but have no discernible effects on nuclease activity. In contrast, mutations in the third zinc finger motif eliminate the nuclease activity of the protein, and have a modest effect on RNA binding. The N-terminal domain of another Arabidopsis polyadenylation factor subunit, AtFip1(V), dramatically inhibits the nuclease activity of AtCPSF30 but has a slight negative effect on the RNA-binding activity of the protein. These results indicate that AtCPSF30 is a probable processing endonuclease, and that its action is coordinated through its interaction with Fip1.
Collapse
Affiliation(s)
| | - Arthur G. Hunt
- *To whom correspondence should be addressed. +1 859 257 5020 ext. 80776+1 859 257 7125
| |
Collapse
|
28
|
Nag A, Narsinh K, Martinson HG. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 2007; 14:662-9. [PMID: 17572685 DOI: 10.1038/nsmb1253] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/24/2007] [Indexed: 11/09/2022]
Abstract
Eukaryotic poly(A) signals direct mRNA 3'-end processing and also pausing and termination of transcription. We show that pausing and termination require the processing factor CPSF, which binds the AAUAAA hexamer of the mammalian poly(A) signal. Pausing does not require the RNA polymerase II C-terminal domain (CTD) or the cleavage stimulation factor, CstF, that binds the CTD. Pull-down experiments show that CPSF binds, principally through its 30-kDa subunit, to the body of the polymerase. CPSF can also bind CstF, but this seems to be mutually exclusive with polymerase binding. We suggest that CPSF, while binding the body of the polymerase, scans for hexamers in the extruding RNA. Any encounter with a hexamer triggers pausing. If the hexamer is part of a functional poly(A) signal, CstF is recruited and binds CPSF, causing it to release the polymerase body and move (with CstF) to the CTD.
Collapse
Affiliation(s)
- Anita Nag
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
29
|
Paterou A, Walrad P, Craddy P, Fenn K, Matthews K. Identification and stage-specific association with the translational apparatus of TbZFP3, a CCCH protein that promotes trypanosome life-cycle development. J Biol Chem 2006; 281:39002-13. [PMID: 17043361 PMCID: PMC2688685 DOI: 10.1074/jbc.m604280200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-transcriptional control of gene expression is becoming increasingly important in the understanding of regulated events in eukaryotic cells. The parasitic kinetoplastids have a unique reliance on such processes, because their genome is organized into polycistronic transcription units in which adjacent genes are not coordinately regulated. Indeed, the number of RNA-binding proteins predicted to be encoded in the genome of kinetoplastids is unusually large, invoking the presence of unique RNA regulators dedicated to gene expression in these evolutionarily ancient organisms. Here, we report that a small CCCH zinc finger protein, TbZFP3, enhances development between life-cycle stages in Trypanosoma brucei. Moreover, we demonstrate that this protein interacts both with the translational machinery and with other small CCCH proteins previously implicated in trypanosome developmental control. Antibodies to this protein also co-immunoprecipitate EP procyclin mRNA and encode the major surface antigen of insect forms of T. brucei. Strikingly, although TbZFP3 is constitutively expressed, it exhibits developmentally regulated association with polyribosomes, and mutational analysis demonstrates that this association is essential for the expression of phenotype. TbZFP3 is therefore a novel regulator of developmental events in kinetoplastids that acts at the level of the post-transcriptional control of gene expression.
Collapse
Affiliation(s)
| | | | - Paul Craddy
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| | - Katelyn Fenn
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| | - Keith Matthews
- Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, King’s Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, Scotland, United Kingdom
| |
Collapse
|
30
|
Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG. Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. PLANT PHYSIOLOGY 2006; 140:1507-1521. [PMID: 16500995 DOI: 10.1104/pp.105.070672.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) gene that encodes the probable ortholog of the 30-kD subunit of the mammalian cleavage and polyadenylation specificity factor (CPSF) is a complex one, encoding small (approximately 28 kD) and large (approximately 68 kD) polypeptides. The small polypeptide (AtCPSF30) corresponds to CPSF30 and is the focus of this study. Recombinant AtCPSF30 was purified from Escherichia coli and found to possess RNA-binding activity. Mutational analysis indicated that an evolutionarily conserved central core of AtCPSF30 is involved in RNA binding, but that RNA binding also requires a short sequence adjacent to the N terminus of the central core. AtCPSF30 was found to bind calmodulin, and calmodulin inhibited the RNA-binding activity of the protein in a calcium-dependent manner. Mutational analysis showed that a small part of the protein, again adjacent to the N terminus of the conserved core, is responsible for calmodulin binding; point mutations in this region abolished both binding to and inhibition of RNA binding by calmodulin. Interestingly, AtCPSF30 was capable of self-interactions. This property also mapped to the central conserved core of the protein. However, calmodulin had no discernible effect on the self-association. These results show that the central portion of AtCPSF30 is involved in a number of important functions, and they raise interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through calmodulin.
Collapse
Affiliation(s)
- Kimberly J Delaney
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG. Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. PLANT PHYSIOLOGY 2006; 140:1507-21. [PMID: 16500995 PMCID: PMC1459842 DOI: 10.1104/pp.105.070672] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) gene that encodes the probable ortholog of the 30-kD subunit of the mammalian cleavage and polyadenylation specificity factor (CPSF) is a complex one, encoding small (approximately 28 kD) and large (approximately 68 kD) polypeptides. The small polypeptide (AtCPSF30) corresponds to CPSF30 and is the focus of this study. Recombinant AtCPSF30 was purified from Escherichia coli and found to possess RNA-binding activity. Mutational analysis indicated that an evolutionarily conserved central core of AtCPSF30 is involved in RNA binding, but that RNA binding also requires a short sequence adjacent to the N terminus of the central core. AtCPSF30 was found to bind calmodulin, and calmodulin inhibited the RNA-binding activity of the protein in a calcium-dependent manner. Mutational analysis showed that a small part of the protein, again adjacent to the N terminus of the conserved core, is responsible for calmodulin binding; point mutations in this region abolished both binding to and inhibition of RNA binding by calmodulin. Interestingly, AtCPSF30 was capable of self-interactions. This property also mapped to the central conserved core of the protein. However, calmodulin had no discernible effect on the self-association. These results show that the central portion of AtCPSF30 is involved in a number of important functions, and they raise interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through calmodulin.
Collapse
Affiliation(s)
- Kimberly J Delaney
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhelkovsky A, Tacahashi Y, Nasser T, He X, Sterzer U, Jensen TH, Domdey H, Moore C. The role of the Brr5/Ysh1 C-terminal domain and its homolog Syc1 in mRNA 3'-end processing in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2006; 12:435-45. [PMID: 16431986 PMCID: PMC1383582 DOI: 10.1261/rna.2267606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cleavage/polyadenylation factor (CPF) of Saccharomyces cerevisiae is thought to provide the catalytic activities of the mRNA 3'-end processing machinery, which include endonucleolytic cleavage at the poly(A) site, followed by synthesis of an adenosine polymer onto the new 3'-end by the CPF subunit Pap1. Because of similarity to other nucleases in the metallo-beta-lactamase family, the Brr5/Ysh1 subunit has been proposed to be the endonuclease. The C-terminal domain of Brr5 lies outside of beta-lactamase homology, and its function has not been elucidated. We show here that this region of Brr5 is necessary for cell viability and mRNA 3'-end processing. It is highly homologous to another CPF subunit, Syc1. Syc1 is not essential, but its removal improves the growth of other processing mutants at restrictive temperatures and restores in vitro processing activity to cleavage/ polyadenylation-defective brr5-1 extract. Our findings suggest that Syc1, by mimicking the essential Brr5 C-terminus, serves as a negative regulator of mRNA 3'-end formation.
Collapse
Affiliation(s)
- Alexander Zhelkovsky
- Department of Molecular Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mangus DA, Smith MM, McSweeney JM, Jacobson A. Identification of factors regulating poly(A) tail synthesis and maturation. Mol Cell Biol 2004; 24:4196-206. [PMID: 15121841 PMCID: PMC400472 DOI: 10.1128/mcb.24.10.4196-4206.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional maturation of the 3' end of eukaryotic pre-mRNAs occurs as a three-step pathway involving site-specific cleavage, polymerization of a poly(A) tail, and trimming of the newly synthesized tail to its mature length. While most of the factors essential for catalyzing these reactions have been identified, those that regulate them remain to be characterized. Previously, we demonstrated that the yeast protein Pbp1p associates with poly(A)-binding protein (Pab1p) and controls the extent of mRNA polyadenylation. To further elucidate the function of Pbp1p, we conducted a two-hybrid screen to identify factors with which it interacts. Five genes encoding putative Pbp1p-interacting proteins were identified, including (i) FIR1/PIP1 and UFD1/PIP3, genes encoding factors previously implicated in mRNA 3'-end processing; (ii) PBP1 itself, confirming directed two-hybrid results and suggesting that Pbp1p can multimerize; (iii) DIG1, encoding a mitogen-activated protein kinase-associated protein; and (iv) PBP4 (YDL053C), a previously uncharacterized gene. In vitro polyadenylation reactions utilizing extracts derived from fir1 Delta and pbp1 Delta cells and from cells lacking the Fir1p interactor, Ref2p, demonstrated that Pbp1p, Fir1p, and Ref2p are all required for the formation of a normal-length poly(A) tail on precleaved CYC1 pre-mRNA. Kinetic analyses of the respective polyadenylation reactions indicated that Pbp1p is a negative regulator of poly(A) nuclease (PAN) activity and that Fir1p and Ref2p are, respectively, a positive regulator and a negative regulator of poly(A) synthesis. We suggest a model in which these three factors and Ufd1p are part of a regulatory complex that exploits Pab1p to link cleavage and polyadenylation factors of CFIA and CFIB (cleavage factors IA and IB) to the polyadenylation factors of CPF (cleavage and polyadenylation factor).
Collapse
Affiliation(s)
- David A Mangus
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
34
|
Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 2003; 4:223. [PMID: 12844354 PMCID: PMC193625 DOI: 10.1186/gb-2003-4-7-223] [Citation(s) in RCA: 431] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Most eukaryotic mRNAs are subject to considerable post-transcriptional modification, including capping, splicing, and polyadenylation. The process of polyadenylation adds a 3' poly(A) tail and provides the mRNA with a binding site for a major class of regulatory factors, the poly(A)-binding proteins (PABPs). These highly conserved polypeptides are found only in eukaryotes; single-celled eukaryotes each have a single PABP, whereas humans have five and Arabidopis has eight. They typically bind poly(A) using one or more RNA-recognition motifs, globular domains common to numerous other eukaryotic RNA-binding proteins. Although they lack catalytic activity, PABPs have several roles in mediating gene expression. Nuclear PABPs are necessary for the synthesis of the poly(A) tail, regulating its ultimate length and stimulating maturation of the mRNA. Association with PABP is also a requirement for some mRNAs to be exported from the nucleus. In the cytoplasm, PABPs facilitate the formation of the 'closed loop' structure of the messenger ribonucleoprotein particle that is crucial for additional PABP activities that promote translation initiation and termination, recycling of ribosomes, and stability of the mRNA. Collectively, these sequential nuclear and cytoplasmic contributions comprise a cycle in which PABPs and the poly(A) tail first create and then eliminate a network of cis- acting interactions that control mRNA function.
Collapse
Affiliation(s)
- David A Mangus
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| | - Matthew C Evans
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| | - Allan Jacobson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| |
Collapse
|