1
|
Yang WW, Zhao ML, Liu ML, Liang WB, Zhong X, Zhuo Y. Circular DNAzyme-Switched CRISPR/Cas12a Assay for Electrochemiluminescent Response of Demethylase Activity. ACS Sens 2024; 9:344-350. [PMID: 38198738 DOI: 10.1021/acssensors.3c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
DNA nanostructure provides powerful tools for DNA demethylase activity detection, but its stability has been significantly challenged. By virtue of circular DNA with resistance to exonuclease degradation, herein, the circular DNAzyme duplex with artificial methylated modification was constructed to identify the target and output the DNA activators to drive the CRISPR/Cas12a, constructing an "on-off-on" electrochemiluminescence (ECL) biosensor for monitoring the activity of the O6-methylguanine-DNA methyltransferase (MGMT). Specifically, the circular DNAzyme duplex consisted of the chimeric RNA-DNA substrate ring with double activator sequences and two single-stranded DNAzymes, whose catalytic domains were premodified with the methyl groups. When the MGMT was present, the methylated DNAzymes were repaired and restored the catalytic activity to cleave the chimeric RNA-DNA substrates, followed by the output of DNA activators to initiate the CRISPR/Cas12a. Subsequently, the ECL signals of silver nanoparticle-modified SnO2 nanospheres (Ag@SnO2) were recovered by releasing the ferrocene-labeled quenching probes (Fc-DNA) from the electrode surface because of the trans-cleavage activity of CRISPR/Cas12a, thus achieving the specific and sensitive ECL detection of MGMT from 2.5 × 10-4 to 2.5 × 102 ng/mL with a low limit (9.69 × 10-5 ng/mL). This strategy affords novel ideas and insights into research on how to project stable nucleic acid probes to detect DNA demethylases beyond traditional methods.
Collapse
Affiliation(s)
- Wei-Wei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Wen-Bin Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xia Zhong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
2
|
Liu J, Cui L, Shi X, Yan J, Wang Y, Ni Y, He J, Wang X. Generation of DNAzyme in Bacterial Cells by a Bacterial Retron System. ACS Synth Biol 2024; 13:300-309. [PMID: 38171507 DOI: 10.1021/acssynbio.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNAzymes are catalytically active single-stranded DNAs in which DNAzyme 10-23 (Dz 10-23) consists of a catalytic core and a substrate-binding arm that reduces gene expression through sequence-specific mRNA cleavage. However, the in vivo application of Dz 10-23 depends on exogenous delivery, which leads to its inability to be synthesized and stabilized in vivo, thus limiting its application. As a unique reverse transcription system, the bacterial retron system can synthesize single-stranded DNA in vivo using ncRNA msr/msd as a template. The objective of this work is to reduce target gene expression using Dz 10-23 generated in vivo by the retron system. In this regard, we successfully generated Dz 10-23 by cloning the Dz 10-23 coding sequence into the retron msd gene and tested its ability to reduce specific gene expression by examining the mRNA levels of cfp encoding cyan fluorescence protein and other functional genes such as mreB and ftsZ. We found that Dz had different repressive effects when targeting different mRNA regions, and in general, the repressive effect was stronger when targeting downstream of mRNAs. Our results also suggested that the reduction effect was due to cleavage of the substrate mRNA by Dz 10-23 rather than the antisense effect of the substrate-binding arm. Therefore, this study not only provided a retron-based method for the intracellular generation of Dz 10-23 but also demonstrated that Dz 10-23 could reduce gene expression by cleaving target mRNAs in cells. We believe that this new strategy would have great potential in the regulation of gene expression.
Collapse
Affiliation(s)
- Jie Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lina Cui
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jiahao Yan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yifei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuyang Ni
- College of Life Sciences, Shangrao Normal University, Shangrao 334001, PR China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
3
|
RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria. Curr Genet 2021; 68:27-38. [PMID: 34505182 DOI: 10.1007/s00294-021-01212-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The development of nucleic-acid-based antimicrobials such as RNA-cleaving DNAzyme (RCD), a short catalytically active nucleic acid, is a promising alternative to the current antibiotics. The current rapid spread of antimicrobial resistance (AMR) in bacteria renders some antibiotics useless against bacterial infection, thus creating the need for alternative antimicrobials such as DNAzymes. This review summarizes recent advances in the use of RCD as a diagnostic and therapeutic agent against AMR. Firstly, the recent diagnostic application of RCD for the detection of bacterial cells and the associated resistant gene(s) is discussed. The next section summarises the therapeutic application of RCD in AMR bacterial infections which includes direct targeting of the resistant genes and indirect targeting of AMR-associated genes. Finally, this review extends the discussion to challenges of utilizing RCD in real-life applications, and the potential of combining both diagnostic and therapeutic applications of RCD into a single agent as a theranostic agent.
Collapse
|
4
|
Characterization of a DNA-hydrolyzing DNAzyme for generation of PCR strands of unequal length. Biochimie 2020; 179:181-189. [PMID: 33022314 DOI: 10.1016/j.biochi.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/13/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022]
Abstract
I-R3 DNAzyme is a small, highly active catalytic DNA for DNA hydrolysis. In here, we designed two cis-structure DNAzymes (I-R3N and I-R3S) based on the different locates of the joint linker between I-R3 and its substrate. Data demonstrated that both DNAzymes were highly dependent on Zn2+, and worked at a narrow range around pH 7.0. They exhibited strong anti-interference with Mg2+ and Ca2+, but inhibited by Na+ and K+. Moreover, single and multiple-site mutations were generated within the catalytic core to carry out a comprehensive mutational study of I-R3 motif, in which most nucleotides were highly conserved and the nucleotides A5, T11 and T8 were identified as the mutational hotspots. Furthermore, an efficient variant A5G was obtained and its reaction condition was optimized. Finally, we constructed A5G to the 3' end of a single-stranded DNA (ssDNA) and applied it for asymmetrical PCR amplification to produce a single and double-stranded DNA mixture, in which A5G within ssDNA can self-cleave to generate a shorter desired ssDNA by denaturing gel separation. This would provide a new non-chemical modification approach for preparation of the expected ssDNA for in vitro selection of DNAzymes.
Collapse
|
5
|
Yu W, Wang S, Cao D, Rui H, Liu C, Sheng Y, Sun Y, Zhang J, Xu J, Jiang D. Insight into an Oxidative DNA-Cleaving DNAzyme: Multiple Cofactors, the Catalytic Core Map and a Highly Efficient Variant. iScience 2020; 23:101555. [PMID: 33083724 PMCID: PMC7522124 DOI: 10.1016/j.isci.2020.101555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
An oxidative DNA-cleaving DNAzyme (PL) employs a double-cofactor model “X/Cu2+” for catalysis. Herein, we verified that reduced nicotinamide adenine dinucleotide (NADH), flavin mononucleotide, cysteine, dithiothreitol, catechol, resorcinol, hydroquinone, phloroglucinol, o-phenylenediamine, 3,3′,5,5'-tetramethylbenzidine, and hydroxylamine acted as cofactor X. According to their structural similarities or fluorescence property, we further confirmed that reduced nicotinamide adenine dinucleotide phosphate (NADPH), 2-mercaptoethanol, dopamine, chlorogenic acid, resveratrol, and 5-carboxyfluorescein also functioned as cofactor X. Superoxide anions might be the commonality behind these cofactors. We subsequently determined the conservative change of individual nucleotides in the catalytic core under four different cofactor X. The nucleotides A4 and C5 are highly conserved, whereas the conservative levels of other nucleotides are dependent on the types of cofactor X. Moreover, we observed that the minor change in the PL's secondary structure affects electrophoretic mobility. Finally, we characterized a highly efficient variant T3G and converted its double-cofactor NADH/Cu2+ to sole-cofactor NADH. An oxidative cleavage DNAzyme works with various cofactor X Catalytic nucleotide conservation fluctuates with different cofactor X The PL DNAzyme's minor secondary structure change affects electrophoretic mobility Double-cofactor model of the variant T3G can be converted to sole-cofactor model
Collapse
Affiliation(s)
- Wenqian Yu
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Shijin Wang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Dongling Cao
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Hongyue Rui
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Chengcheng Liu
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Yongjie Sheng
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Yanhong Sun
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Jin Zhang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Jiacui Xu
- College of Animal Sciences, Jilin University, 5333# Xi'an Road, Changchun 130062, China
- Corresponding author
| | - Dazhi Jiang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
- Corresponding author
| |
Collapse
|
6
|
Nucleic acid-cleaving catalytic DNA for sensing and therapeutics. Talanta 2020; 211:120709. [PMID: 32070594 DOI: 10.1016/j.talanta.2019.120709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
DNAzymes with nucleic acid-cleaving catalytic activity are increasing in versatility through concerted efforts to discover new sequences with unique functions, and they are generating excitement in the sensing community as cheap, stable, amplifiable detection elements. This review provides a comprehensive list and detailed descriptions of the DNAzymes identified to date, classified by their associated small molecule or ion needed for catalysis; of note, this classification clarifies conserved regions of various DNAzymes that are not obvious in the literature. Furthermore, we detail the breadth of functionality of these DNA sequences as well as the range of reaction conditions under which they are useful. In addition, the utility of the DNAzymes in a variety of sensing and therapeutic applications is presented, detailing both their advantages and disadvantages.
Collapse
|
7
|
Hartmann AK, Cairns-Gibson DF, Santiana JJ, Tolentino MQ, Barber HM, Rouge JL. Enzymatically Ligated DNA-Surfactants: Unmasking Hydrophobically Modified DNA for Intracellular Gene Regulation. Chembiochem 2018; 19:1734-1739. [PMID: 29862626 DOI: 10.1002/cbic.201800302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Indexed: 01/07/2023]
Abstract
Herein, we describe the characterization of a novel self-assembling and intracellular disassembling nanomaterial for nucleic acid delivery and targeted gene knockdown. By using a recently developed nucleic acid nanocapsule (NAN) formed from surfactants and conjugated DNAzyme (DNz) ligands, it is shown that DNz-NAN can enable cellular uptake of the DNAzyme and result in 60 % knockdown of a target gene without the use of transfection agents. The DNAzyme also exhibits activity without chemical modification, which we attribute to the underlying nanocapsule design and release of hydrophobically modified nucleic acids as a result of enzymatically triggered disassembly of the NAN. Fluorescence-based experiments indicate that the surfactant-conjugated DNAzymes are better able to access a fluorescent mRNA target within a mock lipid bilayer system than the free DNAzyme, highlighting the advantage of the hydrophobic surfactant modification to the nucleic acid ligands. In vitro characterization of DNz-NAN's substrate-cleavage kinetics, stability in biological serum, and persistence of knockdown against a proinflammatory transcription factor, GATA-3, are presented.
Collapse
Affiliation(s)
- Alyssa K Hartmann
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | | | - Joshua J Santiana
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Mark Q Tolentino
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Halle M Barber
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
8
|
|
9
|
Fokina AA, Chelobanov BP, Fujii M, Stetsenko DA. Delivery of therapeutic RNA-cleaving oligodeoxyribonucleotides (deoxyribozymes): from cell culture studies to clinical trials. Expert Opin Drug Deliv 2016; 14:1077-1089. [PMID: 27892730 DOI: 10.1080/17425247.2017.1266326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Development of efficient in vivo delivery systems remains a major challenge en route to clinical application of antisense technology, including RNA-cleaving molecules such as deoxyribozymes (DNAzymes). The mechanisms of oligonucleotide uptake and trafficking are clearly dependent on cell type and the type of oligonucleotide analogue. It appears likely that each particular disease target would pose its own specific requirements for a delivery method. Areas covered. In this review we will discuss the available options for DNAzyme delivery in vitro and in vivo, outline various exogenous and endogenous strategies that have been, or are still being, developed and ascertain their applicability with emphasis on those methods that are currently being used in clinical trials. Expert opinion. The available information suggests that a practical system for in vivo delivery has to be biodegradable, as to minimize concerns over long-term toxicity, it should not accumulate in the organism. Extracellular vesicles may offer the most organic way for drug delivery especially as they can be fused with artificial liposomes to produce hybrid nanoparticles. Chemical modification of DNAzymes holds great potential to apply oligonucleotide analogs that would not only be resistant to nuclease digestion, but also able to penetrate cells without external delivery agents.
Collapse
Affiliation(s)
- Alesya A Fokina
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Boris P Chelobanov
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| | - Masayuki Fujii
- b Department of Biological & Environmental Chemistry , Kindai University , Iizuka, Fukuoka , Japan
| | - Dmitry A Stetsenko
- a Institute of Chemical Biology and Fundamental Medicine , Siberian Branch of the Russian Academy of Sciences , Novosibirsk , Russia
| |
Collapse
|
10
|
Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W. A Smart DNAzyme-MnO2Nanosystem for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015; 54:4801-5. [DOI: 10.1002/anie.201411417] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/23/2015] [Indexed: 11/10/2022]
|
11
|
Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W. A Smart DNAzyme-MnO2Nanosystem for Efficient Gene Silencing. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411417] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Khanna M, Saxena L, Rajput R, Kumar B, Prasad R. Gene silencing: a therapeutic approach to combat influenza virus infections. Future Microbiol 2015; 10:131-40. [DOI: 10.2217/fmb.14.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Selective gene silencing technologies such as RNA interference (RNAi) and nucleic acid enzymes have shown therapeutic potential for treating viral infections. Influenza virus is one of the major public health concerns around the world and its management is challenging due to a rapid increase in antiviral resistance. Influenza vaccine also has its limitations due to the emergence of new strains that may escape the immunity developed by the previous year's vaccine. Antiviral drugs are the primary mode of prevention and control against a pandemic and there is an urgency to develop novel antiviral strategies against influenza virus. In this review, we discuss the potential utility of several gene silencing mechanisms and their prophylactic and therapeutic potential against the influenza virus.
Collapse
Affiliation(s)
- Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Latika Saxena
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Roopali Rajput
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Rajendra Prasad
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
13
|
RNA-Cleaving DNA Enzymes and Their Potential Therapeutic Applications as Antibacterial and Antiviral Agents. FROM NUCLEIC ACIDS SEQUENCES TO MOLECULAR MEDICINE 2012. [PMCID: PMC7119987 DOI: 10.1007/978-3-642-27426-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA catalysts are synthetic single-stranded DNA molecules that have been identified by in vitro selection from random sequence DNA pools. The most prominent representatives of DNA catalysts (also known as DNA enzymes, deoxyribozymes, or DNAzymes) catalyze the site-specific cleavage of RNA substrates. Two distinct groups of RNA-cleaving DNA enzymes are the 10-23 and 8-17 enzymes. A typical RNA-cleaving DNA enzyme consists of a catalytic core and two short binding arms which form Watson–Crick base pairs with the RNA targets. RNA cleavage is usually achieved with the assistance of metal ions such as Mg2+, Ca2+, Mn2+, Pb2+, or Zn2+, but several chemically modified DNA enzymes can cleave RNA in the absence of divalent metal ions. A number of studies have shown the use of 10-23 DNA enzymes for modest downregulation of therapeutically relevant RNA targets in cultured cells and in whole mammals. Here we focus on mechanistic aspects of RNA-cleaving DNA enzymes and their potential to silence therapeutically appealing viral and bacterial gene targets. We also discuss delivery options and challenges involved in DNA enzyme-based therapeutic strategies.
Collapse
|
14
|
Ruble BK, Richards JL, Cheung-Lau JC, Dmochowski IJ. Mismatch Discrimination and Efficient Photomodulation with Split 10-23 DNAzymes. Inorganica Chim Acta 2012; 380:386-391. [PMID: 22544974 PMCID: PMC3337724 DOI: 10.1016/j.ica.2011.10.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA enzymes (DNAzymes) that catalyze the degradation of complementary RNA molecules have been investigated for many biochemical and sensing applications. Here, we investigated a 10-23 DNAzyme that has been shown previously to possess cellular activity. We determined that it has very low Mg(2+) ion dependence, with DNAzyme activity observed at [Mg(2+)] = 0.01 mM. This metal ion dependence is much lower than is typical for DNAzymes studied to date, and suggests that DNAzymes may be engineered for many additional biological applications. Recently, we demonstrated that this 10-23 DNAzyme can be divided into two parts, which assemble into an active oligonucleotide complex. We investigated in more detail the functionality of the split 10-23 DNAzyme and found that dividing the 15-nucleotide catalytic loop after the 7(th) or 8(th) base maximized its activity. The split DNAzymes required higher metal ion concentrations ([Mg(2+)] = 5 mM), and as we anticipated due to their lower hybridization activity, the split enzymes had the advantage of being more sensitive to single base mismatches in the DNAzyme-RNA duplex. Finally, we demonstrated facile photomodulation of split DNAzyme activity by incorporating a photocleavable biotin moiety bound to streptavidin.
Collapse
Affiliation(s)
- Brittani K Ruble
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104
| | | | | | | |
Collapse
|
15
|
Li J, Wang N, Luo Q, Wan L. The 10-23 DNA enzyme generated by a novel expression vector mediate inhibition of taco expression in macrophage. Oligonucleotides 2010; 20:61-8. [PMID: 20059315 DOI: 10.1089/oli.2009.0217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 10-23 DNA enzyme (10-23 DNAzyme), a single-stranded DNA (ssDNA) molecule, can efficiently and specifically cleave almost any target RNA molecules. Therefore, it is regarded as one of the promising tools in gene therapy. However, there are still some obstacles, such as low efficiency of cellular uptake and instability in vivo, in its application. Taking advantage of the mechanism of Moloney mouse leukemia virus (MMLV) reverse transcriptase (RT), we investigate the construction of a novel ssDNA expression vector in this study. In order to improve the expression efficiency, the mmlv-rt gene and ODN-PMT (an oligodeoxynucleotide including other essential sequences for generating ssDNA) were cloned into a single plasmid under the control of 2 separated promoters. The ability of the vector to generate specific 10-23 DNAzyme in mammalian cell was tested by constructing a tryptophan-aspartate-containing coat protein (taco) gene-specific 10-23 DNAzyme expression plasmid. The potential of the expressed 10-23 DNAzyme to suppress TACO expression was also investigated. Our results indicated that this vector generates desired 10-23 DNAzyme in mammalian cells. The expressed 10-23 DNAzyme targeting taco gene can reduce TACO expression both at mRNA level (by 78.26%) and at protein level (by 75.30%).
Collapse
Affiliation(s)
- Junming Li
- Department of Clinical Laboratory, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.
| | | | | | | |
Collapse
|
16
|
Sheng Y, Zeng Z, Peng W, Jiang D, Li S, Sun Y, Zhang J. Design and switch of catalytic activity with the DNAzyme-RNAzyme combination. FEBS Lett 2007; 581:1763-8. [PMID: 17434496 DOI: 10.1016/j.febslet.2007.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 03/09/2007] [Accepted: 03/16/2007] [Indexed: 11/17/2022]
Abstract
Design and switch of catalytic activity in enzymology remains a subject of intense investigation. Here, we employ a DNAzyme-RNAzyme combination strategy for construction of a 10-23 deoxyribozyme-hammerhead ribozyme combination that targets different sites of the beta-lactamase mRNA. The 10-23 deoxyribozyme-hammerhead ribozyme combination gene was cloned into phagemid vector pBlue-scriptIIKS (+). In vitro the single-strand recombinant phagemid vector containing the combination sequence exhibited 10-23 deoxyribozyme activity, and the linear transcript displayed hammerhead ribozyme activity. In bacteria, the 10-23 deoxyribozyme-hammerhead ribozyme combination inhibited the beta-lactamase expression and repressed the growth of drug-resistant bacteria. Thus, we created a DNAzyme-RNAzyme combination strategy that provides a useful approach to design and switch of catalytic activities for nucleic acid enzymes.
Collapse
Affiliation(s)
- Yongjie Sheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Di Giusto DA, Knox SM, Lai Y, Tyrelle GD, Aung MT, King GC. Multitasking by multivalent circular DNA aptamers. Chembiochem 2006; 7:535-44. [PMID: 16482500 DOI: 10.1002/cbic.200500316] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleic acid aptamers are finding increasing applications in biology, especially as therapeutic candidates and diagnostic components. An important characteristic in meeting the needs of these applications is improved stability in physiological fluids, which is most often accomplished with chemical modification or unnatural nucleotides. In an alternative approach we have specified the design of a multivalent circular DNA aptamer topology that encompasses a number of properties relevant to nucleic acid therapeutic candidates, especially the ability to multitask by combining different activities together within a modular structure. Improved stability in blood products, greater conformational stability, antidoting by complementary circular antiaptamers, heterovalency, transcription factor decoy activity and minimal unintended effects upon the cellular innate immune response are desirable properties that are described here. Multitasking by circular DNA aptamers could similarly find applications in diagnostics and biomaterials, where the combination of interchangeable modules might generate new functions, such as anticoagulation coupled with reversible cell capture as, described here. These results provide a platform for further exploration of multivalent circular aptamer properties, especially in novel combinations of nucleic acid therapeutic modes.
Collapse
Affiliation(s)
- Daniel A Di Giusto
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Silverman SK. In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 2005; 33:6151-63. [PMID: 16286368 PMCID: PMC1283523 DOI: 10.1093/nar/gki930] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the last decade, many catalytically active DNA molecules (deoxyribozymes; DNA enzymes) have been identified by in vitro selection from random-sequence DNA pools. This article focuses on deoxyribozymes that cleave RNA substrates. The first DNA enzyme was reported in 1994 and cleaves an RNA linkage. Since that time, many other RNA-cleaving deoxyribozymes have been identified. Most but not all of these deoxyribozymes require a divalent metal ion cofactor such as Mg2+ to catalyze attack by a specific RNA 2′-hydroxyl group on the adjacent phosphodiester linkage, forming a 2′,3′-cyclic phosphate and a 5′-hydroxyl group. Several deoxyribozymes that cleave RNA have utility for in vitro RNA biochemistry. Some DNA enzymes have been applied in vivo to degrade mRNAs, and others have been engineered into sensors. The practical impact of RNA-cleaving deoxyribozymes should continue to increase as additional applications are developed.
Collapse
Affiliation(s)
- Scott K Silverman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
19
|
de Bock CE, Lin Z, Itoh T, Morris D, Murrell G, Wang Y. Inhibition of urokinase receptor gene expression and cell invasion by anti-uPAR DNAzymes in osteosarcoma cells. FEBS J 2005; 272:3572-82. [PMID: 16008557 DOI: 10.1111/j.1742-4658.2005.04778.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The urokinase-type plasminogen activator (uPA) receptor (uPAR) has been implicated in signal transduction and biological processes including cancer metastasis, angiogenesis, cell migration, and wound healing. It is a specific cell surface receptor for its ligand uPA, which catalyzes the formation of plasmin from plasminogen, thereby activating the proteolytic cascade that contributes to the breakdown of extracellular matrix, a key step in cancer metastasis. We have synthesized three different DNA enzymes (Dz372, Dz483 and Dz720) targeting uPAR mRNA at three separate purine (A or G)-pyrimidine (U or C) junctions. Two of these DNAzymes, Dz483 and Dz720, cleaved uPAR transcript in vitro with high efficacy and specificity at a molar ratio (uPAR to Dz) as low as 1 : 0.2. When analyzed over 2 h with a 200-fold molar excess of DNAzymes to uPAR transcript, Dz720 and Dz483 were able to decrease uPAR transcript in vitro by approximately 93% and approximately 84%, respectively. They also showed an ability to cleave uPAR mRNA in the human osteosarcoma cell line Saos-2 after transfection. The DNAzyme Dz720 decreased uPAR mRNA within 4 h of transfection, and inhibited uPAR protein concentrations by 55% in Saos-2 cells. The decrease in uPAR mRNA and protein concentrations caused by Dz720 significantly suppressed Saos-2 cell invasion as assessed by an in vitro Matrigel assay. The use of DNAzyme methodology adds a new potential clinical agent for decreasing uPAR mRNA expression and inhibiting cancer invasion and metastasis.
Collapse
MESH Headings
- Cell Line, Tumor
- DNA, Catalytic/genetics
- DNA, Catalytic/metabolism
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Kinetics
- Mutation/genetics
- Neoplasm Invasiveness
- Osteosarcoma/enzymology
- Osteosarcoma/genetics
- Osteosarcoma/pathology
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Urokinase Plasminogen Activator
Collapse
Affiliation(s)
- Charles E de Bock
- Orthopaedic Research Institute, Department of Medicine, St George Hospital, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|