1
|
Paschon DE, Lussier S, Wangzor T, Xia DF, Li PW, Hinkley SJ, Scarlott NA, Lam SC, Waite AJ, Truong LN, Gandhi N, Kadam BN, Patil DP, Shivak DA, Lee GK, Holmes MC, Zhang L, Miller JC, Rebar EJ. Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat Commun 2019; 10:1133. [PMID: 30850604 PMCID: PMC6408524 DOI: 10.1038/s41467-019-08867-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Genome editing for therapeutic applications often requires cleavage within a narrow sequence window. Here, to enable such high-precision targeting with zinc-finger nucleases (ZFNs), we have developed an expanded set of architectures that collectively increase the configurational options available for design by a factor of 64. These new architectures feature the functional attachment of the FokI cleavage domain to the amino terminus of one or both zinc-finger proteins (ZFPs) in the ZFN dimer, as well as the option to skip bases between the target triplets of otherwise adjacent fingers in each zinc-finger array. Using our new architectures, we demonstrate targeting of an arbitrarily chosen 28 bp genomic locus at a density that approaches 1.0 (i.e., efficient ZFNs available for targeting almost every base step). We show that these new architectures may be used for targeting three loci of therapeutic significance with a high degree of precision, efficiency, and specificity.
Collapse
Affiliation(s)
- David E Paschon
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Stephanie Lussier
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Tenzin Wangzor
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Danny F Xia
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Patrick W Li
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Sarah J Hinkley
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Nicholas A Scarlott
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Stephen C Lam
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Adam J Waite
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Lynn N Truong
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Nimisha Gandhi
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Bhakti N Kadam
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Deepak P Patil
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - David A Shivak
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Gary K Lee
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Michael C Holmes
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Lei Zhang
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Jeffrey C Miller
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA
| | - Edward J Rebar
- Sangamo Therapeutics, Inc., 501 Canal Boulevard, Suite A100, Richmond, California, 94804, USA.
| |
Collapse
|
2
|
Abstract
Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.
Collapse
Affiliation(s)
| | | | - Ralf Jauch
- Genome Regulation Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kai Yuan Avenue, Science Park, Guangzhou, China
| |
Collapse
|
3
|
Kaur M, Rupasinghe CN, Klosi E, Spaller MR, Chow CS. Selection of heptapeptides that bind helix 69 of bacterial 23S ribosomal RNA. Bioorg Med Chem 2013; 21:1240-7. [PMID: 23375098 DOI: 10.1016/j.bmc.2012.12.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 11/16/2022]
Abstract
Helix 69 of Escherichia coli 23S rRNA has important roles in specific steps of translation, such as subunit association, translocation, and ribosome recycling. An M13 phage library was used to identify peptide ligands with affinity for helix 69. One selected sequence, NQVANHQ, was shown through a bead assay to interact with helix 69. Electrospray ionization mass spectroscopy revealed an apparent dissociation constant for the amidated peptide and helix 69 in the low micromolar range. This value is comparable to that of aminoglycoside antibiotics binding to the A site of 16S rRNA or helix 69. Helix 69 variants (human) and unrelated RNAs (helix 31 or A site of 16S rRNA) showed two- to fourfold lower affinity for NQVANHQ-NH(2). These results suggest that the peptide has desirable features for development as a lead compound for novel antimicrobials.
Collapse
Affiliation(s)
- Moninderpal Kaur
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
4
|
Probing the informational and regulatory plasticity of a transcription factor DNA-binding domain. PLoS Genet 2012; 8:e1002614. [PMID: 22496663 PMCID: PMC3315485 DOI: 10.1371/journal.pgen.1002614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 02/07/2012] [Indexed: 11/19/2022] Open
Abstract
Transcription factors have two functional constraints on their evolution: (1) their binding sites must have enough information to be distinguishable from all other sequences in the genome, and (2) they must bind these sites with an affinity that appropriately modulates the rate of transcription. Since both are determined by the biophysical properties of the DNA–binding domain, selection on one will ultimately affect the other. We were interested in understanding how plastic the informational and regulatory properties of a transcription factor are and how transcription factors evolve to balance these constraints. To study this, we developed an in vivo selection system in Escherichia coli to identify variants of the helix-turn-helix transcription factor MarA that bind different sets of binding sites with varying degrees of degeneracy. Unlike previous in vitro methods used to identify novel DNA binders and to probe the plasticity of the binding domain, our selections were done within the context of the initiation complex, selecting for both specific binding within the genome and for a physiologically significant strength of interaction to maintain function of the factor. Using MITOMI, quantitative PCR, and a binding site fitness assay, we characterized the binding, function, and fitness of some of these variants. We observed that a large range of binding preferences, information contents, and activities could be accessed with a few mutations, suggesting that transcriptional regulatory networks are highly adaptable and expandable. The main role of transcription factors is to modulate the expression levels of functionally related genes in response to environmental and cellular cues. For this process to be precise, the transcription factor needs to locate and bind specific DNA sequences in the genome and needs to bind these sites with a strength that appropriately adjusts the amount of gene expressed. Both specific protein–DNA interactions and transcription factor activity are intimately coupled, because they are both dependent upon the biochemical properties of the DNA–binding domain. Here we experimentally probe how variable these properties are using a novel in vivo selection assay. We observed that the specific binding preferences for the transcription factor MarA and its transcriptional activity can be altered over a large range with a few mutations and that selection on one function will impact the other. This work helps us to better understand the mechanism of transcriptional regulation and its evolution, and may prove useful for the engineering of transcription factors and regulatory networks.
Collapse
|
5
|
Moreland RT, Ryan JF, Pan C, Baxevanis AD. The Homeodomain Resource: a comprehensive collection of sequence, structure, interaction, genomic and functional information on the homeodomain protein family. Database (Oxford) 2009; 2009:bap004. [PMID: 20157477 PMCID: PMC2790301 DOI: 10.1093/database/bap004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 03/14/2009] [Indexed: 01/15/2023]
Abstract
The Homeodomain Resource is a curated collection of sequence, structure, interaction, genomic and functional information on the homeodomain family. The current version builds upon previous versions by the addition of new, complete sets of homeodomain sequences from fully sequenced genomes, the expansion of existing curated homeodomain information and the improvement of data accessibility through better search tools and more complete data integration. This release contains 1534 full-length homeodomain-containing sequences, 93 experimentally derived homeodomain structures, 101 homeodomain protein-protein interactions, 107 homeodomain DNA-binding sites and 206 homeodomain proteins implicated in human genetic disorders.Database URL: The Homeodomain Resource is freely available and can be accessed at http://research.nhgri.nih.gov/homeodomain/
Collapse
Affiliation(s)
| | | | | | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Beck DAC, Daggett V. A one-dimensional reaction coordinate for identification of transition states from explicit solvent P(fold)-like calculations. Biophys J 2007; 93:3382-91. [PMID: 17978165 PMCID: PMC2072083 DOI: 10.1529/biophysj.106.100149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 07/16/2007] [Indexed: 11/18/2022] Open
Abstract
A properly identified transition state ensemble (TSE) in a molecular dynamics (MD) simulation can reveal a tremendous amount about how a protein folds and offer a point of comparison to experimentally derived Phi(F) values, which reflect the degree of structure in these transient states. In one such method of TSE identification, dubbed P(fold), MD simulations of individual protein structures taken from an unfolding trajectory are used to directly assess an input structure's probability of folding before unfolding, and P(fold) is, by definition, 0.5 for the TSE. Other, less computationally intensive methods, such as multidimensional scaling (MDS) of the pairwise root mean-squared deviation (RMSD) matrix of the conformations sampled in a thermal unfolding trajectory, have also been used to identify the TSE. Identification of the TSE is made from the original MD simulation without the need to run further simulations. Here we present a P(fold)-like study and describe methods for identification of the TSE through the derivation of a high fidelity, bounded, one-dimensional reaction coordinate for protein folding. These methods are applied to the engrailed homeodomain. The TSE identified by this approach is essentially identical to the TSE identified previously by MDS of the pairwise RMSD matrix. However, the cost of performing P(fold), or even our reduced P(fold)-like calculations, is at least 36,000 times greater than the MDS method.
Collapse
Affiliation(s)
- David A C Beck
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5061, USA
| | | |
Collapse
|
7
|
Meng X, Thibodeau-Beganny S, Jiang T, Joung JK, Wolfe SA. Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Res 2007; 35:e81. [PMID: 17537811 PMCID: PMC1920264 DOI: 10.1093/nar/gkm385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The C2H2 zinc finger is the most commonly utilized framework for engineering DNA-binding domains with novel specificities. Many different selection strategies have been developed to identify individual fingers that possess a particular DNA-binding specificity from a randomized library. In these experiments, each finger is selected in the context of a constant finger framework that ensures the identification of clones with a desired specificity by properly positioning the randomized finger on the DNA template. Following a successful selection, multiple zinc-finger clones are typically recovered that share similarities in the sequences of their DNA-recognition helices. In principle, each of the clones isolated from a selection is a candidate for assembly into a larger multi-finger protein, but to date a high-throughput method for identifying the most specific candidates for incorporation into a final multi-finger protein has not been available. Here we describe the development of a specificity profiling system that facilitates rapid and inexpensive characterization of engineered zinc-finger modules. Moreover, we demonstrate that specificity data collected using this system can be employed to rationally design zinc fingers with improved DNA-binding specificities.
Collapse
Affiliation(s)
- Xiangdong Meng
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Stacey Thibodeau-Beganny
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Tao Jiang
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - J. Keith Joung
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Scot A. Wolfe
- Program in Gene Function and Expression, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation St, Worcester, MA 01605 USA, Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, 149 13th Street, 7th floor, Charlestown, MA 02129 USA and Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
- *To whom correspondence should be addressed. 508 856 3953508 856 5460
| |
Collapse
|
8
|
Morgan HP, Estibeiro P, Wear MA, Max KE, Heinemann U, Cubeddu L, Gallagher MP, Sadler PJ, Walkinshaw MD. Sequence specificity of single-stranded DNA-binding proteins: a novel DNA microarray approach. Nucleic Acids Res 2007; 35:e75. [PMID: 17488853 PMCID: PMC1904285 DOI: 10.1093/nar/gkm040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a novel DNA microarray-based approach for identification of the sequence-specificity of single-stranded nucleic-acid-binding proteins (SNABPs). For verification, we have shown that the major cold shock protein (CspB) from Bacillus subtilis binds with high affinity to pyrimidine-rich sequences, with a binding preference for the consensus sequence, 5′-GTCTTTG/T-3′. The sequence was modelled onto the known structure of CspB and a cytosine-binding pocket was identified, which explains the strong preference for a cytosine base at position 3. This microarray method offers a rapid high-throughput approach for determining the specificity and strength of ss DNA–protein interactions. Further screening of this newly emerging family of transcription factors will help provide an insight into their cellular function.
Collapse
Affiliation(s)
- Hugh P. Morgan
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Peter Estibeiro
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Martin A. Wear
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Klaas E.A. Max
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Udo Heinemann
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Liza Cubeddu
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Maurice P. Gallagher
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Peter J. Sadler
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Malcolm D. Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK, Nyrion Ltd, ETTC Biospace, Kings Buildings, Edinburgh EH9 3JF, UK, Max-Delbrück-Centrum für Molekulare Medizin 13125 Berlin, Germany, School of Molecular and Microbial Bioscience, University of Sydney, Sydney, NSW, 2006, Australia and School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
- *To whom correspondence should be addressed. Tel:+44 (0) 131 650 7056; Fax: +44 (0) 131 650 7055;
| |
Collapse
|
9
|
Simon MD, Feldman ME, Rauh D, Maris AE, Wemmer DE, Shokat KM. Structure and properties of a re-engineered homeodomain protein-DNA interface. ACS Chem Biol 2006; 1:755-60. [PMID: 17240973 DOI: 10.1021/cb6003756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homeodomain (HD)-DNA interface has been conserved over 500 million years of evolution. Despite this conservation, we have successfully re-engineered the engrailed HD to specifically recognize an unnatural nucleotide using a phage display selection. Here we report the synthesis of novel nucleosides and the selection of mutant HDs that bind these nucleotides using phage display. The high-resolution crystal structure of one mutant in complex with modified and unmodified DNA demonstrates that, even with the substantial perturbation to the interface, this selected mutant retains a canonical HD structure. Dissection of the contributions due to each of the selected mutations reveals that the majority of the modification-specific binding is accomplished by a single mutation (I47G) but that the remaining mutations retune the stability of the HD. These results afford a detailed look at a re-engineered protein-DNA interaction and provide insight into the opportunities for re-engineering highly conserved interfaces.
Collapse
|
10
|
Sato K, Simon MD, Levin AM, Shokat KM, Weiss GA. Dissecting the Engrailed homeodomain-DNA interaction by phage-displayed shotgun scanning. ACTA ACUST UNITED AC 2005; 11:1017-23. [PMID: 15271360 DOI: 10.1016/j.chembiol.2004.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 05/07/2004] [Accepted: 05/12/2004] [Indexed: 11/28/2022]
Abstract
Phage-displayed alanine shotgun scanning was used to dissect contributions by engrailed homedomain (En-HD) residues 17 through 46, which indirectly influence recognition of DNA. The relative contributions of such indirect contacts, quantified by shotgun scanning, highlight previously unexplored En-HD residues. Two motifs dominate En-HD function in this region. First, two surface-exposed aromatic residues (F20 and Y25) bracket the hydrophobic core. Second, two sets of turn-forming residues are highlighted, including carboxamide-requiring residues E22/N23 and a leucine/isoleucine splint. The En-HD hydrophobic core exhibits a surprising degree of malleability, as demonstrated by homolog shotgun scanning. Most selectants from in vitro shotgun scanning mirror the consensus human homeodomain sequence. Thus, natural evolution and in vitro selection use similar selection criteria: affinity, specificity, and stability. However, homolog shotgun scanning identified mutations capable of improving the affinity and specificity of En-HD.
Collapse
Affiliation(s)
- Ken Sato
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
11
|
Chi YI. Homeodomain revisited: a lesson from disease-causing mutations. Hum Genet 2005; 116:433-44. [PMID: 15726414 PMCID: PMC1579204 DOI: 10.1007/s00439-004-1252-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
The homeodomain is a highly conserved DNA-binding motif that is found in numerous transcription factors throughout a large variety of species from yeast to humans. These gene-specific transcription factors play critical roles in development and adult homeostasis, and therefore, any germline mutations associated with these proteins can lead to a number of congenital abnormalities. Although much has been revealed concerning the molecular architecture and the mechanism of homeodomain-DNA interactions, the study of disease-causing mutations can further provide us with instructive information as to the role of particular residues in a conserved mode of action. In this paper, I have compiled the homeodomain missense mutations found in various human diseases and re-examined the functional role of the mutational "hot spot" residues in light of the structures obtained from crystallography. These findings should be useful in understanding the essential components of the homeodomain and in attempts to design agonist or antagonists to modulate their activity and to reverse the effects caused by the mutations.
Collapse
Affiliation(s)
- Young-In Chi
- Department of Molecular and Cellular Biochemistry, Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|