1
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
3
|
Gibbs DR, Dhakal S. Single-Molecule Imaging Reveals Conformational Manipulation of Holliday Junction DNA by the Junction Processing Protein RuvA. Biochemistry 2018; 57:3616-3624. [PMID: 29767969 DOI: 10.1021/acs.biochem.8b00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interactions between DNA and motor proteins regulate nearly all biological functions of DNA such as gene expression, DNA replication and repair, and transcription. During the late stages of homologous recombination (HR), the Escherichia coli recombination machinery, RuvABC, resolves the four-way DNA motifs called Holliday junctions (HJs) that are formed during exchange of nucleotide sequences between two homologous duplex DNA. Although the formation of the RuvA-HJ complex is known to be the first critical step in the RuvABC pathway, the mechanism for the binding interaction between RuvA and HJ has remained elusive. Here, using single-molecule fluorescence resonance energy transfer (smFRET) and ensemble analyses, we show that RuvA stably binds to the HJ, halting its conformational dynamics. Our FRET experiments in different ionic environments created by Mg2+ and Na+ ions suggest that RuvA binds to the HJ via electrostatic interaction. Further, while recent studies have indicated that the HR process can be modulated for therapeutic applications by selective targeting of the HJ by chemotherapeutic drugs, we investigated the effect of drug-modified HJ on binding. Using cisplatin as a proof-of-concept drug, we show that RuvA binds to the cisplatin-modified HJ as efficiently as to the unmodified HJ, demonstrating that RuvA accommodates for the cisplatin-introduced charges and/or topological changes on the HJ.
Collapse
Affiliation(s)
- Dalton R Gibbs
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| | - Soma Dhakal
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284 , United States
| |
Collapse
|
4
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol 2016; 77:1103-24. [PMID: 26886018 DOI: 10.1007/s00280-016-2976-z] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/20/2016] [Indexed: 12/22/2022]
Abstract
Platinum-based drugs cisplatin, carboplatin and oxaliplatin are widely used in the therapy of human neoplasms. Their clinical success is, however, limited due to severe side effects and intrinsic or acquired resistance to the treatment. Much effort has been put into the development of new platinum anticancer complexes, but none of them has reached worldwide clinical application so far. Nedaplatin, lobaplatin and heptaplatin received only regional approval. Some new platinum complexes and platinum drug formulations are undergoing clinical trials. Here, we review the main classes of new platinum drug candidates, such as sterically hindered complexes, monofunctional platinum drugs, complexes with biologically active ligands, trans-configured and polynuclear platinum complexes, platinum(IV) prodrugs and platinum-based drug delivery systems. For each class of compounds, a detailed overview of the mechanism of action is given, the cytotoxicity is compared to that of the clinically used platinum drugs, and the clinical perspectives are discussed. A critical analysis of lessons to be learned is presented. Finally, a general outlook regarding future directions in the field of new platinum drugs is given.
Collapse
|
6
|
Kasparkova J, Thibault T, Kostrhunova H, Stepankova J, Vojtiskova M, Muchova T, Midoux P, Malinge JM, Brabec V. Different affinity of nuclear factor-kappa B proteins to DNA modified by antitumor cisplatin and its clinically ineffective trans isomer. FEBS J 2014; 281:1393-1408. [PMID: 24418212 DOI: 10.1111/febs.12711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/06/2013] [Accepted: 12/13/2013] [Indexed: 01/06/2023]
Abstract
Nuclear factor-kappa B (NF-кB) comprises a family of protein transcription factors that have a regulatory function in numerous cellular processes and are implicated in the cancer cell response to antineoplastic drugs, including cisplatin. We characterized the effects of DNA adducts of cisplatin and ineffective transplatin on the affinity of NF-кB proteins to their consensus DNA sequence (кB site). Although the кB site-NF-κB protein interaction was significantly perturbed by DNA adducts of cisplatin, transplatin adducts were markedly less effective both in cell-free media and in cellulo using a decoy strategy derivatized-approach. Moreover, NF-κB inhibitor JSH-23 [4-methyl-N¹-(3-phenylpropyl)benzene-1,2-diamine] augmented cisplatin cytotoxicity in ovarian cancer cells and the data showed strong synergy with JSH-23 for cisplatin. The distinctive structural features of DNA adducts of the two platinum complexes suggest a unique role for conformational distortions induced in DNA by the adducts of cisplatin with respect to inhibition of the binding of NF-кB to the platinated кB sites. Because thousands of κB sites are present in the DNA, the mechanisms underlying the antitumor efficiency of cisplatin in some tumor cells may involve downstream processes after inhibition of the binding of NF-κB to κB site(s) by DNA adducts of cisplatin, including enhanced programmed cell death in response to drug treatment.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang G, He X, Chen L, Zhu Y, Zhang X, Wang L. Conformational switch for cisplatin with hemin/G-quadruplex DNAzyme supersandwich structure. Biosens Bioelectron 2013; 50:210-6. [DOI: 10.1016/j.bios.2013.06.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 06/21/2013] [Indexed: 01/22/2023]
|
8
|
Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/287353] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the introduction of cisplatin to oncology in 1978, Pt(II) and Pd(II) compounds have been intensively studied with a view to develop the improved anticancer agents. Polynuclear polyamine complexes, in particular, have attracted special attention, since they were found to yield DNA adducts not available to conventional drugs (through long-distance intra- and interstrand cross-links) and to often circumvent acquired cisplatin resistance. Moreover, the cytotoxic potency of these polyamine-bridged chelates is strictly regulated by their structural characteristics, which renders this series of compounds worth investigating and their synthesis being carefully tailored in order to develop third-generation drugs coupling an increased spectrum of activity to a lower toxicity. The present paper addresses the latest developments in the design of novel antitumor agents based on platinum and palladium, particularly polynuclear chelates with variable length aliphatic polyamines as bridging ligands, highlighting the close relationship between their structural preferences and cytotoxic ability. In particular, studies by vibrational spectroscopy techniques are emphasised, allowing to elucidate the structure-activity relationships (SARs) ruling anticancer activity.
Collapse
|
9
|
Abstract
Polynuclear platinum agents are a structurally unique class of anti-cancer drugs, distinct from the cisplatin family. To describe the chemistry and biology of this class, it was necessary to challenge the accepted paradigms for the structure-activity relationships; design new chemotypes and delineate the structures and consequences of their DNA binding modes. This article summarizes the structural changes induced in DNA by both covalent (bond-forming) and non-covalent (ligand recognition) adducts. Solution (Nuclear Magnetic Resonance), solid state (crystallography) and gas-phase (Electrospray Ionization Mass Spectrometry) techniques have all been used to describe the new DNA structures along with molecular biological techniques. The combined approaches allow molecular description of hitherto unobserved adducts such as long-range major-groove interstrand crosslinks; directional isomers on DNA and a third class of ligand-DNA binding, the phosphate clamp. The phosphate recognition is distinct from ''classic'' minor-groove recognition or intercalation.
Collapse
Affiliation(s)
- John B. Mangrum
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, USA
| | - Nicholas P. Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, USA
| |
Collapse
|
10
|
Horáková P, Těsnohlídková L, Havran L, Vidláková P, Pivoňková H, Fojta M. Determination of the Level of DNA Modification with Cisplatin by Catalytic Hydrogen Evolution at Mercury-Based Electrodes. Anal Chem 2010; 82:2969-76. [DOI: 10.1021/ac902987x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petra Horáková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic, and Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Lucie Těsnohlídková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic, and Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Luděk Havran
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic, and Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Pavlína Vidláková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic, and Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Hana Pivoňková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic, and Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic, and Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
11
|
HEFFETER P, JUNGWIRTH U, JAKUPEC M, HARTINGER C, GALANSKI M, ELBLING L, MICKSCHE M, KEPPLER B, BERGER W. Resistance against novel anticancer metal compounds: Differences and similarities. Drug Resist Updat 2008; 11:1-16. [DOI: 10.1016/j.drup.2008.02.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/26/2022]
|
12
|
De Pascali SA, Migoni D, Papadia P, Romano A, Marsigliante S, Pellissier A, Chardon-Noblat S, Ciccarese A, Fanizzi FP. New mononuclear and homodinuclear Pt(ii) complexes with heterocyclic nitrogen chelates: Synthesis, characterization, intercalating ability and in vitro cytotoxic activity evaluation. Dalton Trans 2008:5911-21. [DOI: 10.1039/b807404f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Mitchell C, Kabolizadeh P, Ryan J, Roberts JD, Yacoub A, Curiel DT, Fisher PB, Hagan MP, Farrell NP, Grant S, Dent P. Low-Dose BBR3610 Toxicity in Colon Cancer Cells Is p53-Independent and Enhanced by Inhibition of Epidermal Growth Factor Receptor (ERBB1)-Phosphatidyl Inositol 3 Kinase Signaling. Mol Pharmacol 2007; 72:704-14. [PMID: 17578896 DOI: 10.1124/mol.107.038406] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the mechanisms by which the multinuclear platinum chemotherapeutic BBR3610 kills human colon cancer cells. BBR3610 more efficiently killed HCT116, DLD1, SW480, and HT29 cells than BBR3464, cisplatin, or oxaliplatin. The amount of platinum uptake per cell and its incorporation into DNA were identical for BBR3464 and BBR3610. BBR3610 lethality (IC(75)) was unaltered comparing HCT116 wild-type and p53-/- cells, was reduced in p21-/- cells, and was enhanced in K-RAS D13 null cells. Small molecule or molecular inhibition of epidermal growth factor receptor (ERBB1) or phosphatidyl inositol 3 kinase (PI3K) enhanced BBR3610 toxicity in HCT116, DLD1, and SW480 cells. Small molecule or molecular inhibition of caspase 8 function abolished the toxicity of BBR3610 and of BBR3610 + ERBB1 inhibitor treatments, whereas inhibition of caspase 9 suppressed the ability of ERBB1 inhibitors to enhance BBR3610 lethality. Treatment with BBR3610 reduced AKT activity; the expression of dominant-negative AKT enhanced and expression of constitutively active AKT suppressed, respectively, the toxicity of BBR3610 and of BBR3610 + ERBB1 inhibitor treatments. Treatment with BBR3610 reduced expression of c-FLIP-s and MCL-1, levels that were maintained in cells expressing constitutively active AKT. Overexpression of c-FLIP-s or loss of BID function suppressed BBR3610 toxicity, whereas overexpression of XIAP or Bcl-xL suppressed the potentiation of cell killing by ERBB1 inhibitors. Collectively, our data argue that BBR3610 promotes cell killing via a caspase 8-dependent mechanism, which can be enhanced by ERBB1/PI3K inhibitors that promote additional BBR3610-dependent cell killing via activation of BAX and caspase 9.
Collapse
Affiliation(s)
- Clint Mitchell
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- Yongwon Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
15
|
Pivonková H, Pecinka P, Cesková P, Fojta M. DNA modification with cisplatin affects sequence-specific DNA binding of p53 and p73 proteins in a target site-dependent manner. FEBS J 2006; 273:4693-706. [PMID: 16981908 DOI: 10.1111/j.1742-4658.2006.05472.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteins p53 and p73 act as transcription factors in cell cycle control, regulation of cell development and/or in apoptotic pathways. Both proteins bind to response elements (p53 DNA-binding sites), typically consisting of two copies of a motif RRRCWWGYYY. It has been demonstrated previously that DNA modification with the antitumor drug cisplatin inhibits p53 binding to a synthetic p53 DNA-binding site. Here we demonstrate that the effects of global DNA modification with cisplatin on binding of the p53 or p73 proteins to various p53 DNA-binding sites differed significantly, depending on the nucleotide sequence of the given target site. The relative sensitivities of protein-DNA binding to cisplatin DNA treatment correlated with the occurrence of sequence motifs forming stable bifunctional adducts with the drug (namely, GG and AG doublets) within the target sites. Binding of both proteins to mutated p53 DNA-binding sites from which these motifs had been eliminated was only negligibly affected by cisplatin treatment, suggesting that formation of the cisplatin adducts within the target sites was primarily responsible for inhibition of the p53 or p73 sequence-specific DNA binding. Distinct effects of cisplatin DNA modification on the recognition of different response elements by the p53 family proteins may have impacts on regulation pathways in cisplatin-treated cells.
Collapse
Affiliation(s)
- Hana Pivonková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | |
Collapse
|
16
|
Stehlíková K, Kaspárková J, Nováková O, Martínez A, Moreno V, Brabec V. Recognition of DNA modified by trans-[PtClNH(4-hydroxymethylpyridine)] by tumor suppressor protein p53 and character of DNA adducts of this cytotoxic complex. FEBS J 2006; 273:301-14. [PMID: 16403018 DOI: 10.1111/j.1742-4658.2005.05061.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
trans-[PtCl(2)NH(3)(4-Hydroxymethylpyridine)] (trans-PtHMP) is an analogue of clinically ineffective transplatin, which is cytotoxic in the human leukemia cancer cell line. As DNA is a major pharmacological target of antitumor platinum compounds, modifications of DNA by trans-PtHMP and recognition of these modifications by active tumor suppressor protein p53 were studied in cell-free media using the methods of molecular biology and biophysics. Our results demonstrate that the replacement of the NH(3) group in transplatin by the 4-hydroxymethylpyridine ligand affects the character of DNA adducts of parent transplatin. The binding of trans-PtHMP is slower, although equally sequence-specific. This platinum complex also forms on double-stranded DNA stable intrastrand and interstrand cross-links, which distort DNA conformation in a unique way. The most pronounced conformational alterations are associated with a local DNA unwinding, which was considerably higher than those produced by other bifunctional platinum compounds. DNA adducts of trans-PtHMP also reduce the affinity of the p53 protein to its consensus DNA sequence. Thus, downstream effects modulated by recognition and binding of p53 protein to DNA distorted by trans-PtHMP and transplatin are not likely to be the same. It has been suggested that these different effects may contribute to different antitumor effects of these two transplatinum compounds.
Collapse
Affiliation(s)
- Kristýna Stehlíková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
17
|
Pivonková H, Brázdová M, Kaspárková J, Brabec V, Fojta M. Recognition of cisplatin-damaged DNA by p53 protein: Critical role of the p53 C-terminal domain. Biochem Biophys Res Commun 2006; 339:477-84. [PMID: 16300733 DOI: 10.1016/j.bbrc.2005.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 11/03/2005] [Indexed: 11/21/2022]
Abstract
It was shown previously that the p53 protein can recognize DNA modified with antitumor agent cisplatin (cisPt-DNA). Here, we studied p53 binding to the cisPt-DNA using p53 deletion mutants and via modulation of the p53-DNA binding by changes of the protein redox state. Isolated p53 C-terminal domain (CTD) bound to the cisPt-DNA with a significantly higher affinity than to the unmodified DNA. On the other hand, p53 constructs involving the core domain but lacking the C-terminal DNA binding site (CTDBS) exhibited only small binding preference for the cisPt-DNA. Oxidation of cysteine residues within the CD of posttranslationally unmodified full length p53 did not affect its ability to recognize cisPt-DNA. Blocking of the p53 CTDBS by a monoclonal antibody Bp53-10.1 resulted in abolishment of the isolated CTD binding to the cisPt-DNA. Our results demonstrate a crucial role of the basic region of the p53 CTD (aa 363-382) in the cisPt-DNA recognition.
Collapse
Affiliation(s)
- Hana Pivonková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
Brabec V, Kasparkova J. Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 2005; 8:131-46. [PMID: 15894512 DOI: 10.1016/j.drup.2005.04.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/26/2022]
Abstract
The importance of platinum drugs in cancer chemotherapy is underscored by the clinical success of cisplatin [cis-diamminedichloroplatinum(II)] and its analogues and by clinical trials of other, less toxic platinum complexes that are active against resistant tumors. The antitumor effect of platinum complexes is believed to result from their ability to form various types of adducts with DNA. Nevertheless, drug resistance can occur by several ways: increased drug efflux, drug inactivation, alterations in drug target, processing of drug-induced damage, and evasion of apoptosis. This review focuses on mechanisms of resistance and sensitivity of tumors to conventional cisplatin associated with DNA modifications. We also discuss molecular mechanisms underlying resistance and sensitivity of tumors to the new platinum compounds synthesized with the goal to overcome resistance of tumors to established platinum drugs. Importantly, a number of new platinum compounds were designed to test the hypothesis that there is a correlation between the extent of resistance of tumors to these agents and their ability to induce a certain kind of damage or conformational change in DNA. Hence, information on DNA-binding modes, as well as recognition and repair of DNA damage is discussed, since this information may be exploited for improved structure-activity relationships.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | |
Collapse
|
19
|
Gniazdowski M, Denny WA, Nelson SM, Czyz M. Effects of anticancer drugs on transcription factor–DNA interactions. Expert Opin Ther Targets 2005; 9:471-89. [PMID: 15948668 DOI: 10.1517/14728222.9.3.471] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
DNA-interacting anticancer drugs are able to affect the propensity of DNA to interact with proteins through either reversible binding or covalent bond formation. The effect of the drugs on transcription factor interactions with DNA is reviewed. These effects can be classified as (i) competition between a drug and regulatory protein for target sequences; (ii) weakening of this interaction; (iii) enhancement of this interaction by chemical modification of the DNA and the creation of non-natural binding sites; and (iv) a 'suicide' mechanism, which is observed when a transcription factor induces changes in DNA structure, allowing a drug to bind to a target sequence. Several new strategies -- the antigene approach with oligonucleotides, peptide nucleic acids or locked nucleic acids, and sequence-specific polyamides -- are also reviewed.
Collapse
Affiliation(s)
- Marek Gniazdowski
- Department of Medicinal Chemistry, Institute of Physiology and Biochemistry, Medical University of Lódz, Mazowiecka 6/8, 92-215 Lódz, Poland.
| | | | | | | |
Collapse
|