1
|
Zink IA, Wimmer E, Schleper C. Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules 2020; 10:E1523. [PMID: 33172134 PMCID: PMC7694759 DOI: 10.3390/biom10111523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.
Collapse
|
2
|
Zhan H, Xiao L, Li A, Yao L, Cai Z, Liu Y. Engineering Cellular Signal Sensors based on CRISPR-sgRNA Reconstruction Approaches. Int J Biol Sci 2020; 16:1441-1449. [PMID: 32210731 PMCID: PMC7085220 DOI: 10.7150/ijbs.42299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/24/2020] [Indexed: 11/05/2022] Open
Abstract
The discovery of the CRISPR systems has enriched the application of gene therapy and biotechnology. As a type of robust and simple toolbox, the CRISPR system has greatly promoted the development of cellular signal sensors at the genomic level. Although CRISPR systems have demonstrated that they can be used in eukaryotic and even mammalian cells after extraction from prokaryotic cells, controlling their gene-editing activity remains a challenge. Here we summarize the advantages and disadvantages of building a CRIRPR-based signal sensor through sgRNA reconstruction, as well as possible ways to reprogram the signal network of cells. We also propose how to further improve the design of the current signal sensors based on sgRNA-riboswitch. We believe that the development of these technologies and the construction of platforms can further promote the development of environment detection, disease diagnosis, and gene therapy by means of synthetic biology.
Collapse
Affiliation(s)
- Hengji Zhan
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Lulu Xiao
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Aolin Li
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing 100034, China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518035, China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen 518035, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen University School of Medicine, Shenzhen, 518035, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518035, China
| |
Collapse
|
3
|
Translatable gene therapy for lung cancer using Crispr CAS9-an exploratory review. Cancer Gene Ther 2019; 27:116-124. [PMID: 31222183 DOI: 10.1038/s41417-019-0116-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/29/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022]
Abstract
Gene therapy using CRISPR Cas9 technique is rapidly gaining popularity among the scientific community primarily because of its versatility, cost-effectiveness, and high efficacy. While the laboratory-based experiments and findings making use of CRISPR as a gene editing tool are available in ample amounts, the question arises that how much of these findings are actually translatable into measures helping in combating particular disease conditions. In this review, we highlight the important studies and findings done till now in the perspective of lung cancer with an in-depth analysis of various clinical trials associated with the use of CRISPR Cas9 technology in the field of cancer research.
Collapse
|
4
|
Simón JE, Rodríguez ÁS, Santiago Vispo N. CRISPR-Cas9: A Precise Approach to Genome Engineering. Ther Innov Regul Sci 2018; 52:701-707. [DOI: 10.1177/2168479018762798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b. Biochim Biophys Acta Gen Subj 2017; 1861:2993-3000. [PMID: 28238733 DOI: 10.1016/j.bbagen.2017.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. METHODS Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. RESULTS The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. CONCLUSIONS Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
6
|
Damke PP, Dhanaraju R, Marsin S, Radicella JP, Rao DN. Mutations in the nucleotide binding and hydrolysis domains of Helicobacter pylori MutS2 lead to altered biochemical activities and inactivation of its in vivo function. BMC Microbiol 2016; 16:14. [PMID: 26843368 PMCID: PMC4739419 DOI: 10.1186/s12866-016-0629-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Background Helicobacter pylori MutS2 (HpMutS2), an inhibitor of recombination during transformation is a non-specific nuclease with two catalytic sites, both of which are essential for its anti-recombinase activity. Although HpMutS2 belongs to a highly conserved family of ABC transporter ATPases, the role of its ATP binding and hydrolysis activities remains elusive. Results To explore the putative role of ATP binding and hydrolysis activities of HpMutS2 we specifically generated point mutations in the nucleotide-binding Walker-A (HpMutS2-G338R) and hydrolysis Walker-B (HpMutS2-E413A) domains of the protein. Compared to wild-type protein, HpMutS2-G338R exhibited ~2.5-fold lower affinity for both ATP and ADP while ATP hydrolysis was reduced by ~3-fold. Nucleotide binding efficiencies of HpMutS2-E413A were not significantly altered; however the ATP hydrolysis was reduced by ~10-fold. Although mutations in the Walker-A and Walker-B motifs of HpMutS2 only partially reduced its ability to bind and hydrolyze ATP, we demonstrate that these mutants not only exhibited alterations in the conformation, DNA binding and nuclease activities of the protein but failed to complement the hyper-recombinant phenotype displayed by mutS2-disrupted strain of H. pylori. In addition, we show that the nucleotide cofactor modulates the conformation, DNA binding and nuclease activities of HpMutS2. Conclusions These data describe a strong crosstalk between the ATPase, DNA binding, and nuclease activities of HpMutS2. Furthermore these data show that both, ATP binding and hydrolysis activities of HpMutS2 are essential for the in vivo anti-recombinase function of the protein. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0629-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Prashant P Damke
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Rajkumar Dhanaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Stéphanie Marsin
- CEA, Institute of Cellular and Molecular Radiobiology, Fontenay aux Roses, France.,INSERM UMR967, Fontenay aux Roses, France.,Universités Paris Diderot et Paris Sud, Fontenay aux Roses, France
| | - J Pablo Radicella
- CEA, Institute of Cellular and Molecular Radiobiology, Fontenay aux Roses, France. .,INSERM UMR967, Fontenay aux Roses, France. .,Universités Paris Diderot et Paris Sud, Fontenay aux Roses, France.
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
7
|
Knappy C, Barillà D, Chong J, Hodgson D, Morgan H, Suleman M, Tan C, Yao P, Keely B. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1420-1432. [PMID: 26634977 DOI: 10.1002/jms.3709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/20/2015] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Higher homologues of widely reported C(86) isoprenoid diglycerol tetraether lipid cores, containing 0-6 cyclopentyl rings, have been identified in (hyper)thermophilic archaea, representing up to 21% of total tetraether lipids in the cells. Liquid chromatography-tandem mass spectrometry confirms that the additional carbon atoms in the C(87-88) homologues are located in the etherified chains. Structures identified include dialkyl and monoalkyl ('H-shaped') tetraethers containing C(40-42) or C(81-82) hydrocarbons, respectively, many representing novel compounds. Gas chromatography-mass spectrometric analysis of hydrocarbons released from the lipid cores by ether cleavage suggests that the C(40) chains are biphytanes and the C(41) chains 13-methylbiphytanes. Multiple isomers, having different chain combinations, were recognised among the dialkyl lipids. Methylated tetraethers are produced by Methanothermobacter thermautotrophicus in varying proportions depending on growth conditions, suggesting that methylation may be an adaptive mechanism to regulate cellular function. The detection of methylated lipids in Pyrobaculum sp. AQ1.S2 and Sulfolobus acidocaldarius represents the first reported occurrences in Crenarchaeota. Soils and aquatic sediments from geographically distinct mesotemperate environments that were screened for homologues contained monomethylated tetraethers, with di- and trimethylated structures being detected occasionally. The structural diversity and range of occurrences of the C(87-89) tetraethers highlight their potential as complementary biomarkers for archaea in natural environments.
Collapse
Affiliation(s)
- Chris Knappy
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Daniela Barillà
- Department of Biology, University of York, York, YO10 5DD, UK
| | - James Chong
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Dominic Hodgson
- British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK
| | - Hugh Morgan
- Thermophile Research Unit, University of Waikato, Hamilton, New Zealand
| | - Muhammad Suleman
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Department of Agricultural Chemistry, Agricultural University, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan
| | - Christine Tan
- Thermophile Research Unit, University of Waikato, Hamilton, New Zealand
| | - Peng Yao
- Department of Chemistry, University of York, York, YO10 5DD, UK
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Brendan Keely
- Department of Chemistry, University of York, York, YO10 5DD, UK
| |
Collapse
|
8
|
An updated evolutionary classification of CRISPR-Cas systems. NATURE REVIEWS. MICROBIOLOGY 2015. [PMID: 26411297 DOI: 10.1038/nrmicro3569.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.
Collapse
|
9
|
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13:722-36. [PMID: 26411297 DOI: 10.1038/nrmicro3569] [Citation(s) in RCA: 1609] [Impact Index Per Article: 178.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Omer S Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany
| | - Fabrizio Costa
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany
| | - Shiraz A Shah
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Sita J Saunders
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Stan J J Brouns
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703HB Wageningen, Netherlands
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Philippe Horvath
- DuPont Nutrition and Health, BP10, Dangé-Saint-Romain 86220, France
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Francisco J M Mojica
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante. 03080-Alicante, Spain
| | - Rebecca M Terns
- Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia, Davison Life Sciences Complex, Green Street, Athens, Georgia 30602, USA
| | - Michael P Terns
- Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia, Davison Life Sciences Complex, Green Street, Athens, Georgia 30602, USA
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5, Canada
| | - Roger A Garrett
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703HB Wageningen, Netherlands
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany.,BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
10
|
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.
Collapse
|
11
|
Abstract
The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.
Collapse
Affiliation(s)
- Jennifer A Doudna
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA. Department of Chemistry, University of California, Berkeley, CA 94720, USA. Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany. Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden. Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
12
|
Punetha A, Sivathanu R, Anand B. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system. Nucleic Acids Res 2013; 42:3846-56. [PMID: 24371266 PMCID: PMC3973291 DOI: 10.1093/nar/gkt1335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) in association with CRISPR-associated (Cas) proteins constitutes a formidable defense system against mobile genetic elements in prokaryotes. In type I-C, the ribonucleoprotein surveillance complex comprises only three Cas proteins, namely, Cas5d, Csd1 and Csd2. Unlike type I-E that uses Cse3/CasE for metal-independent CRISPR RNA maturation, type I-C that lacks this deputes Cas5d to process the pre-crRNA. Here, we report the promiscuous DNase activity of Cas5d in presence of divalent metals. Remarkably, the active site that renders RNA hydrolysis may be tuned by metal to act on DNA substrates too. Further, the realization that Csd1 is a fusion of its functional homolog Cse1/CasA and Cse2/CasB forecasts that the stoichiometry of the constituents of the surveillance complex in type I-C may differ from type I-E. Although Csd2 seems to be inert, Csd1 too exhibits RNase and metal-dependent DNase activity. Thus, in addition to their proposed functions, the DNase activity of Cas5d and Csd1 may also enable them to be co-opted in adaptation and interference stages of CRISPR immunity wherein interaction with DNA substrates is involved.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | | |
Collapse
|
13
|
Ivančić-Baće I, Al Howard J, Bolt EL. Tuning in to interference: R-loops and cascade complexes in CRISPR immunity. J Mol Biol 2012; 422:607-616. [PMID: 22743103 DOI: 10.1016/j.jmb.2012.06.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 12/26/2022]
Abstract
Stable RNA-DNA hybrids formed by invasion of an RNA strand into duplex DNA, termed R-loops, are notorious for provoking genome instability especially when they arise during transcription. However, in some instances (DNA replication and class switch recombination), R-loops are useful so long as their existence is carefully managed to avoid them persisting. A recent flow of research papers establishes a newly discovered use for R-loops as key intermediates in a prokaryotic immune system called CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats). Structures and mechanism of ribonucleoprotein complexes ("Cascades") that form CRISPR R-loops highlight precision targeting of duplex DNA that has sequence characteristics marking it as foe, enabling nucleolytic destruction of DNA and recycling the Cascade. We review these significant recent breakthroughs in understanding targeting/interference stages of CRISPR immunity and discuss questions arising, including a possible link between targeting and adaptive immunity in prokaryotes.
Collapse
Affiliation(s)
- Ivana Ivančić-Baće
- Department of Molecular Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Jamieson Al Howard
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Edward L Bolt
- School of Biomedical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
14
|
Kwon AR, Kim JH, Park SJ, Lee KY, Min YH, Im H, Lee I, Lee KY, Lee BJ. Structural and biochemical characterization of HP0315 from Helicobacter pylori as a VapD protein with an endoribonuclease activity. Nucleic Acids Res 2012; 40:4216-28. [PMID: 22241770 PMCID: PMC3351183 DOI: 10.1093/nar/gkr1305] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
VapD-like virulence-associated proteins have been found in many organisms, but little is known about this protein family including the 3D structure of these proteins. Recently, a relationship between the Cas2 family of ribonucleases associated with the CRISPR system of microbial immunity and VapD was suggested. Here, we show for the first time the structure of a member of the VapD family and present a relationship of VapD with Cas2 family and toxin-antitoxin (TA) systems. The crystal structure of HP0315 from Helicobacter pylori was solved at a resolution of 2.8 Å. The structure of HP0315, which has a modified ferredoxin-like fold, is very similar to that of the Cas2 family. Like Cas2 proteins, HP0315 shows endoribonuclease activity. HP0315-cleaved mRNA, mainly before A and G nucleotides preferentially, which means that HP0315 has purine-specific endoribonuclease activity. Mutagenesis studies of HP0315 revealed that D7, L13, S43 and D76 residues are important for RNase activity, in contrast, to the Cas2 family. HP0315 is arranged as an operon with HP0316, which was found to be an antitoxin-related protein. However, HP0315 is not a component of the TA system. Thus, HP0315 may be an evolutionary intermediate which does not belong to either the Cas2 family or TA system.
Collapse
Affiliation(s)
- Ae-Ran Kwon
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Ji-Hun Kim
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Sung Jean Park
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Ki-Young Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Yu-Hong Min
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Hookang Im
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Ingyun Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Kyu-Yeon Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| | - Bong-Jin Lee
- Department of Herbal Skin Care, College of Herbal Bio-Industry, Daegu Haany University, Gyeongsan 712-715, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742 and College of Pharmacy, Gachon University of Medicine and Science, Incheon, 406-799, Korea
| |
Collapse
|
15
|
AAA ATPase p529 of Acidianus two-tailed virus ATV and host receptor recognition. Virology 2011; 421:61-6. [PMID: 21982819 DOI: 10.1016/j.virol.2011.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/24/2022]
Abstract
The two structural domains of p529, a predicted AAA ATPase of Acidianus two-tailed virus (ATV), were expressed and purified. The N-terminal domain was demonstrated by loss-of-function mutations to carry ATPase activity with a temperature optimum of 60°C. This domain also showed DNA binding activity that was stronger for the whole protein and was weakened in the presence of ATP. The C-terminal domain exhibits Mg(2+)-dependent endonuclease activity that was eliminated by site-directed mutagenesis at a conserved catalytic PD…D/ExK motif. p529 pull-down experiments with cell extracts of Sulfolobus solfataricus demonstrated a specific interaction with Sso1273, corresponding to OppA(Ss), an N-linked glycoprotein that specifically binds oligopeptides. The sso1273 gene lies in an operon encoding an oligopeptide/dipeptide ABC transporter system. It is proposed that p529 is involved in ATV-host cell receptor recognition and possibly the endonuclease activity is required for cleavage of the circular viral DNA prior to cell entry.
Collapse
|
16
|
Abstract
The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) modules are adaptive immunity systems that are present in many archaea and bacteria. These defence systems are encoded by operons that have an extraordinarily diverse architecture and a high rate of evolution for both the cas genes and the unique spacer content. Here, we provide an updated analysis of the evolutionary relationships between CRISPR-Cas systems and Cas proteins. Three major types of CRISPR-Cas system are delineated, with a further division into several subtypes and a few chimeric variants. Given the complexity of the genomic architectures and the extremely dynamic evolution of the CRISPR-Cas systems, a unified classification of these systems should be based on multiple criteria. Accordingly, we propose a 'polythetic' classification that integrates the phylogenies of the most common cas genes, the sequence and organization of the CRISPR repeats and the architecture of the CRISPR-cas loci.
Collapse
|
17
|
Schomacher L, Schürer KA, Ciirdaeva E, McDermott P, Chong JPJ, Kramer W, Fritz HJ. Archaeal DNA uracil repair via direct strand incision: A minimal system reconstituted from purified components. DNA Repair (Amst) 2010; 9:438-47. [PMID: 20129830 DOI: 10.1016/j.dnarep.2010.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/21/2009] [Accepted: 01/05/2010] [Indexed: 11/19/2022]
Abstract
Hydrolytic deamination of DNA cytosine residues results in U/G mispairs, pre-mutagenic lesions threatening long-term genetic stability. Hence, DNA uracil repair is ubiquitous throughout all extant life forms and base excision repair, triggered by a uracil DNA glycosylase (UDG), is the mechanistic paradigm adopted, as it seems, by all bacteria and eukaryotes and a large fraction of archaea. However, members of the UDG superfamily of enzymes are absent from the extremely thermophilic archaeon Methanothermobacter thermautotrophicus DeltaH. This organism, as a hitherto unique case, initiates repair by direct strand incision next to the DNA-U residue, a reaction catalyzed by the DNA uridine endonuclease Mth212, an ExoIII homologue. To elucidate the detailed mechanism, in particular to identify the molecular partners contributing to this repair process, we reconstituted DNA uracil repair in vitro from only four purified enzymes of M. thermautotrophicus DeltaH. After incision at the 5'-side of a 2'-d-uridine residue by Mth212 DNA polymerase B (mthPolB) is able to take over the 3'-OH terminus and carry out repair synthesis generating a 5'-flap structure that is resolved by mthFEN, a 5'-flap endonuclease. Finally, DNA ligase seals the resulting nick. This defines mechanism and minimal enzymatic requirements of DNA-U repair in this organism.
Collapse
Affiliation(s)
- Lars Schomacher
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
The linkage between reverse gyrase and hyperthermophiles: A review of their invariable association. J Microbiol 2009; 47:229-34. [DOI: 10.1007/s12275-009-0019-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 04/20/2009] [Indexed: 11/26/2022]
|
19
|
Ng CL, Waterman DG, Koonin EV, Walters AD, Chong JPJ, Isupov MN, Lebedev AA, Bunka DHJ, Stockley PG, Ortiz-Lombardía M, Antson AA. Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein. BMC STRUCTURAL BIOLOGY 2009; 9:32. [PMID: 19454024 PMCID: PMC2695463 DOI: 10.1186/1472-6807-9-32] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/19/2009] [Indexed: 01/06/2023]
Abstract
Background Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown. Results We determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner. Conclusion It is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.
Collapse
Affiliation(s)
- C Leong Ng
- York Structural Biology Laboratory, Chemistry Department, University of York, York, YO10 5YW, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schomacher L, Chong JPJ, McDermott P, Kramer W, Fritz HJ. DNA uracil repair initiated by the archaeal ExoIII homologue Mth212 via direct strand incision. Nucleic Acids Res 2009; 37:2283-93. [PMID: 19240141 PMCID: PMC2673441 DOI: 10.1093/nar/gkp102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/29/2009] [Accepted: 02/04/2009] [Indexed: 12/02/2022] Open
Abstract
No genes for any of the known uracil DNA glycosylases of the UDG superfamily are present in the genome of Methanothermobacter thermautotrophicus DeltaH, making it difficult to imagine how DNA-U repair might be initiated in this organism. Recently, Mth212, the ExoIII homologue of M. thermautotrophicus DeltaH has been characterized as a DNA uridine endonuclease, which suggested the possibility of a novel endonucleolytic entry mechanism for DNA uracil repair. With no system of genetic experimentation available, the problem was approached biochemically. Assays of DNA uracil repair in vitro, promoted by crude cellular extracts, provide unequivocal confirmation that this mechanism does indeed operate in M. thermautotrophicus DeltaH.
Collapse
Affiliation(s)
- Lars Schomacher
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany and Department of Biology (Area 5), P.O. Box 373, University of York, York YO10 5YW, UK
| | - James P. J. Chong
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany and Department of Biology (Area 5), P.O. Box 373, University of York, York YO10 5YW, UK
| | - Paul McDermott
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany and Department of Biology (Area 5), P.O. Box 373, University of York, York YO10 5YW, UK
| | - Wilfried Kramer
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany and Department of Biology (Area 5), P.O. Box 373, University of York, York YO10 5YW, UK
| | - Hans-Joachim Fritz
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany and Department of Biology (Area 5), P.O. Box 373, University of York, York YO10 5YW, UK
| |
Collapse
|
21
|
Georg J, Schomacher L, Chong JPJ, Majerník AI, Raabe M, Urlaub H, Müller S, Ciirdaeva E, Kramer W, Fritz HJ. The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease. Nucleic Acids Res 2006; 34:5325-36. [PMID: 17012282 PMCID: PMC1636421 DOI: 10.1093/nar/gkl604] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genome of Methanothermobacter thermautotrophicus, as a hitherto unique case, is apparently devoid of genes coding for general uracil DNA glycosylases, the universal mediators of base excision repair following hydrolytic deamination of DNA cytosine residues. We have now identified protein Mth212, a member of the ExoIII family of nucleases, as a possible initiator of DNA uracil repair in this organism. This enzyme, in addition to bearing all the enzymological hallmarks of an ExoIII homologue, is a DNA uridine endonuclease (U-endo) that nicks double-stranded DNA at the 5'-side of a 2'-d-uridine residue, irrespective of the nature of the opposing nucleotide. This type of activity has not been described before; it is absent from the ExoIII homologues of Escherichia coli, Homo sapiens and Methanosarcina mazei, all of which are equipped with uracil DNA repair glycosylases. The U-endo activity of Mth212 is served by the same catalytic center as its AP-endo activity.
Collapse
Affiliation(s)
- Jens Georg
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Lars Schomacher
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - James P. J. Chong
- Department of Biology (Area 5), University of YorkPO Box 373, York, YO10 5YW, UK
| | - Alan I. Majerník
- Department of Biology (Area 5), University of YorkPO Box 373, York, YO10 5YW, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max-Planck Institute for Biophysical ChemistryAm Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max-Planck Institute for Biophysical ChemistryAm Fassberg 11, 37077 Göttingen, Germany
| | - Sabine Müller
- Ruhr-Universität Bochum, Fakultät ChemieAG Bioorganische Chemie, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Elena Ciirdaeva
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Wilfried Kramer
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Hans-Joachim Fritz
- Abteilung Molekulare Genetik und Präparative Molekularbiologie, Institut für Mikrobiologie und GenetikGeorg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- To whom correspondence should be addressed. Tel: +49 551 39 3804; Fax: +49 551 39 3805;
| |
Collapse
|
22
|
Pasamontes A, Garcia-Vallve S. Use of a multi-way method to analyze the amino acid composition of a conserved group of orthologous proteins in prokaryotes. BMC Bioinformatics 2006; 7:257. [PMID: 16709240 PMCID: PMC1489954 DOI: 10.1186/1471-2105-7-257] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 05/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amino acids in proteins are not used equally. Some of the differences in the amino acid composition of proteins are between species (mainly due to nucleotide composition and lifestyle) and some are between proteins from the same species (related to protein function, expression or subcellular localization, for example). As several factors contribute to the different amino acid usage in proteins, it is difficult both to analyze these differences and to separate the contributions made by each factor. RESULTS Using a multi-way method called Tucker3, we have analyzed the amino composition of a set of 64 orthologous groups of proteins present in 62 archaea and bacteria. This dataset corresponds to essential proteins such as ribosomal proteins, tRNA synthetases and translational initiation or elongation factors, which are common to all the species analyzed. The Tucker3 model can be used to study the amino acid variability within and between species by taking into consideration the tridimensionality of the data set. We found that the main factor behind the amino acid composition of proteins is independent of the organism or protein function analyzed. This factor must be related to the biochemical characteristics of each amino acid. The difference between the non-ribosomal proteins and the ribosomal proteins (which are rich in arginine and lysine) is the main factor behind the differences in amino acid composition within species, while G+C content and optimal growth temperature are the main factors behind the differences in amino acid usage between species. CONCLUSION We show that a multi-way method is useful for comparing the amino acid composition of several groups of orthologous proteins from the same group of species. This kind of dataset is extremely useful for detecting differences between and within species.
Collapse
Affiliation(s)
- Alberto Pasamontes
- Chemometrics, Qualimetrics and Nanosensors Group, Analytical and Organic Chemistry Department, Rovira i Virgili University (URV). Campus Sescelades, c/Marcelli Domingo s/n., 43007 Tarragona, Spain
| | - Santiago Garcia-Vallve
- Evolutionary Genomics Group, Biochemistry and Biotechnology Department, Rovira i Virgili University (URV). Campus Sescelades, c/Marcelli Domingo s/n., 43007 Tarragona, Spain
| |
Collapse
|
23
|
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 2006; 1:7. [PMID: 16545108 PMCID: PMC1462988 DOI: 10.1186/1745-6150-1-7] [Citation(s) in RCA: 805] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/16/2006] [Indexed: 11/10/2022] Open
Abstract
Background All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis. Results The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly. Conclusion We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids. This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen. Open peer review Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Nick V Grishin
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9050, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
24
|
Ettema TJG, de Vos WM, van der Oost J. Discovering novel biology by in silico archaeology. Nat Rev Microbiol 2005; 3:859-69. [PMID: 16175172 DOI: 10.1038/nrmicro1268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are prokaryotes that evolved in parallel with bacteria. Since the discovery of the distinct status of the Archaea, extensive physiological and biochemical research has been conducted to elucidate the molecular basis of their remarkable lifestyle and their unique biology. Here, we discuss how in-depth comparative genomics has been used to improve the annotation of archaeal genomes. Combined with experimental verification, bioinformatic analysis contributes to the ongoing discovery of novel metabolic conversions and control mechanisms, and as such to a better understanding of the intriguing biology of the Archaea.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, 6703 CT Wageningen, The Netherlands
| | | | | |
Collapse
|
25
|
Guy CP, Bolt EL. Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 2005; 33:3678-90. [PMID: 15994460 PMCID: PMC1168952 DOI: 10.1093/nar/gki685] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in mammalian and Drosophila Hel308 and PolQ paralogues cause genome instability but their helicase functions are mysterious. By in vivo and in vitro analysis, we show that Hel308 from archaea (Hel308a) may act at stalled replication forks. Introducing hel308a into Escherichia coli dnaE strains that conditionally accumulate stalled forks caused synthetic lethality, an effect indistinguishable from E.coli RecQ. Further analysis in vivo indicated that the effect of hel308a is exerted independently of homologous recombination. The minimal biochemical properties of Hel308a protein were the same as human Hel308. We describe how helicase actions of Hel308a at fork structures lead specifically to displacement of lagging strands. The invading strand of D-loops is also targeted. Using archaeal Hel308, we propose models of action for the helicase domain of PolQ, promoting loading of the translesion polymerase domain. We speculate that removal of lagging strands at stalled forks by Hel308 promotes the formation of initiation zones, priming restart of lagging strand synthesis.
Collapse
Affiliation(s)
| | - Edward L. Bolt
- To whom correspondence should be addressed. Tel: +44 0115 9709404; Fax: +44 0115 9709906;
| |
Collapse
|