1
|
Kotar A, Ma S, Keane SC. pH dependence of C•A, G•A and A•A mismatches in the stem of precursor microRNA-31. Biophys Chem 2022; 283:106763. [DOI: 10.1016/j.bpc.2022.106763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
2
|
Wang Q, Guo Y, Wang W, Liu B, Yang G, Xu Z, Li J, Liu Z. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA. Exp Cell Res 2020; 399:112453. [PMID: 33358859 DOI: 10.1016/j.yexcr.2020.112453] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/12/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
RNA-binding proteins (RBPs) closely regulate the whole lifecycle of most RNA molecules, from the very early stage of transcription to RNA decay. Dysregulation of RBPs significantly affects the fate of cancer-related transcripts. Therefore, it is imperative to fully understand the complicated RBP-RNA regulatory networks in malignant diseases and to explore novel therapeutic targets. The RBP DAZAP1 (deleted in azoospermia-associated protein 1), originally identified as an important protein in spermatogenesis, had rarely been studied in the context of carcinogenesis. The role of DAZAP1 in hepatocellular carcinoma (HCC) was unveiled in this study. The relative expression of DAZAP1 was significantly upregulated in HCC and was positively associated with several key malignant characteristics and poor postoperative survival in patients. DAZAP1 knockdown by small interfering RNA markedly inhibited HCC cell proliferation, migration and invasion. Furthermore, DAZAP1 significantly reduced cellular sensitivity to sorafenib (SF), which had been proven to be an inducer of ferroptosis by targeting the system Xc- (composed of a light chain, xCT/SLC7A11, and a heavy chain, 4F2 heavy chain). At the mechanistic level, DAZAP1 was identified as a potent inhibitor of ferroptosis and an efficient binding partner of SLC7A11 mRNA. Further study revealed that DAZAP1 interacted with the 3'UTR (untranslated region) of SLC7A11 mRNA and positively regulated its stability. In our work, we clarified novel functions of DAZAP1 and preliminarily revealed its underlying mechanism in ferroptosis, which may be conducive to the exploration of biomarkers and therapeutic targets in HCC patients.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250014, China
| | - Yaxun Guo
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250014, China
| | - Wentao Wang
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250014, China
| | - Bingqi Liu
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Guangsheng Yang
- Department of Hepatobiliary Surgery, Zibo Central Hospital, Zibo, Shandong, 255000, China
| | - Zongzhen Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China.
| | - Jie Li
- Department of Hepatobiliary Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250014, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China.
| | - Zhiqian Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250014, China.
| |
Collapse
|
3
|
Sasaki K, Ono M, Takabe K, Suzuki A, Kurihara Y. Specific intron-dependent loading of DAZAP1 onto the cox6c transcript suppresses pre-mRNA splicing efficacy and induces cell growth retardation. Gene 2018; 657:1-8. [DOI: 10.1016/j.gene.2018.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/15/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
|
4
|
Terayama H, Hirai S, Naito M, Qu N, Katagiri C, Nagahori K, Hayashi S, Sasaki H, Moriya S, Hiramoto M, Miyazawa K, Hatayama N, Li ZL, Sakabe K, Matsushita M, Itoh M. Specific autoantigens identified by sera obtained from mice that are immunized with testicular germ cells alone. Sci Rep 2016; 6:35599. [PMID: 27752123 PMCID: PMC5067510 DOI: 10.1038/srep35599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
There are various autoimmunogenic antigens (AIs) in testicular germ cells (TGCs) recognized as foreign by the body's immune system. However, there is little information of TGC-specific AIs being available. The aim of this study is to identify TGC-specific AIs. We have previously established that immunization using viable syngeneic TGC can also induce murine experimental autoimmune orchitis (EAO) without using any adjuvant. This study is to identify TGC-specific AIs by TGC liquid chromatography-tandem mass spectrometry analysis, followed by two-dimensional gel electrophoresis that reacted with serum IgG from EAO mice. In this study, we identified 11 TGC-specific AIs that reacted with serum from EAO mice. Real-time RT-PCR analysis showed that the mRNA expressions of seven TGC-specific AIs were significantly higher in only mature testis compared to other organs. Moreover, the recombinant proteins of identified 10 (except unnamed protein) TGC-specific AIs were created by using human embryonic kidney 293 (HEK293) cells and these antigencities were reconfirmed by Western blot using EAO serum reaction. These results indicated Atp6v1a, Hsc70t, Fbp1 and Dazap1 were candidates for TGC-specific AIs. Identification of these AIs will facilitate new approaches for understanding infertility and cancer pathogenesis and may provide a basis for the development of novel therapies.
Collapse
Affiliation(s)
- Hayato Terayama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan.,Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shuichi Hirai
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Ning Qu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenta Nagahori
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Shogo Hayashi
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Hiraku Sasaki
- Department of Health Science, School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Naoyuki Hatayama
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.,Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Zhong-Lian Li
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
5
|
The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration. Nat Commun 2015; 5:3078. [PMID: 24452013 PMCID: PMC4146490 DOI: 10.1038/ncomms4078] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 12/06/2013] [Indexed: 01/15/2023] Open
Abstract
Alternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk (extracellular signal-regulated protein kinase) pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq, we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk-regulated cell proliferation.
Collapse
|
6
|
Miyazaki S, Sato Y, Asano T, Nagamura Y, Nonomura KI. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR. PLANT MOLECULAR BIOLOGY 2015; 89:293-307. [PMID: 26319516 DOI: 10.1007/s11103-015-0369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 08/22/2015] [Indexed: 06/04/2023]
Abstract
Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.
Collapse
Affiliation(s)
- Saori Miyazaki
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
- Office for the Promotion of Global Education Programs, Shizuoka University, Jyouhoku, Nakaku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Yutaka Sato
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi, Kanazawa, 920-0934, Japan.
- Wakasa Seikatsu Co. Ltd, 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto, 600-8008, Japan.
| | - Yoshiaki Nagamura
- Genome Resource Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki, 305-8602, Japan.
| | - Ken-Ichi Nonomura
- Experimental Farm, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
7
|
Doh JH, Jung Y, Reinke V, Lee MH. C. elegans RNA-binding protein GLD-1 recognizes its multiple targets using sequence, context, and structural information to repress translation. WORM 2014; 2:e26548. [PMID: 24744981 DOI: 10.4161/worm.26548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans GLD-1, a maxi-KH motif containing RNA-binding protein, has various functions mainly during female germ cell development, suggesting that it likely controls the expression of a selective group of maternal mRNAs. To gain an insight into how GLD-1 specifically recognizes these mRNA targets, we identified 38 biochemically proven GLD-1 binding regions from multiple mRNA targets that are among over 100 putative targets co-immunoprecipitated with GLD-1. The sequence information of these regions revealed three over-represented and phylogenetically conserved sequence motifs. We found that two of the motifs, one of which is novel, are important for GLD-1 binding in several GLD-1 binding regions but not in other regions. Further analyses indicate that the importance of one of the sequence motifs is dependent on two aspects: (1) surrounding sequence information, likely acting as an accessory feature for GLD-1 to efficiently select the sequence motif and (2) RNA secondary structural environment where the sequence motif resides, which likely provides "binding-site accessibility" for GLD-1 to effectively recognize its targets. Our data suggest some mRNAs recruit GLD-1 by a distinct mechanism, which involves more than one sequence motif that needs to be embedded in the correct context and structural environment.
Collapse
Affiliation(s)
- Jung H Doh
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Yuchae Jung
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| | - Valerie Reinke
- Department of Genetics; Yale University School of Medicine; New Haven, CT USA
| | - Min-Ho Lee
- Department of Biological Sciences; University at Albany; SUNY; Albany, NY USA
| |
Collapse
|
8
|
Chen HY, Yu YH, Yen PH. DAZAP1 regulates the splicing of Crem, Crisp2 and Pot1a transcripts. Nucleic Acids Res 2013; 41:9858-69. [PMID: 23965306 PMCID: PMC3834821 DOI: 10.1093/nar/gkt746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous heterogeneous nuclear ribonucleoprotein (hnRNP) that is expressed abundantly in the testis. DAZAP1 deficiency in mice results in growth retardation and spermatogenic arrest. Previous reports on DAZAP1’s binding to several naturally occurring splicing mutations support a role for DAZAP1 in RNA splicing. To elucidate the biological function(s) of DAZAP1 and to search for its natural RNA substrates, we used microarrays to compare the expression profiles and exon usages of wild-type and Dazap1 mutant testes and identified three genes (Crem, Crisp2 and Pot1a) with aberrant RNA splicing in the mutant testes. We further demonstrated that DAZAP1, but not DAZAP1 mutant proteins, promoted the inclusion of Crem exon 4, Crisp2 exon 9 and Pot1a exon 4 in splicing reporter transcripts in cultured cells. Additional studies on the binding of DAZAP1 to the exons and their flanking intronic sequences and the effects of minigene deletions on exon inclusion identified regulatory regions in Crem intron 3, Crisp2 intron 9 and Pot1a intron 4 where DAZAP1 bound and regulated splicing. Aberrant splicing of the Pot1a gene, which encodes an essential protein that protects telomere integrity, may partially account for the growth retardation phenotype of DAZAP1-deficient mice.
Collapse
Affiliation(s)
- Hsiang-Ying Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan and Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
9
|
Wen J, Chen Z, Cai X. A biophysical model for identifying splicing regulatory elements and their interactions. PLoS One 2013; 8:e54885. [PMID: 23382993 PMCID: PMC3559881 DOI: 10.1371/journal.pone.0054885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a crucial step in the expression of most eukaryotic genes. Splicing factors (SFs) play an important role in AS regulation by binding to the cis-regulatory elements on the pre-mRNA. Although many splicing factors (SFs) and their binding sites have been identified, their combinatorial regulatory effects remain to be elucidated. In this paper, we derive a biophysical model for AS regulation that integrates combinatorial signals of cis-acting splicing regulatory elements (SREs) and their interactions. We also develop a systematic framework for model inference. Applying the biophysical model to a human RNA-Seq data set, we demonstrate that our model can explain 49.1%–66.5% variance of the data, which is comparable to the best result achieved by biophysical models for transcription. In total, we identified 119 SRE pairs between different regions of cassette exons that may regulate exon or intron definition in splicing, and 77 SRE pairs from the same region that may arise from a long motif or two different SREs bound by different SFs. Particularly, putative binding sites of polypyrimidine tract-binding protein (PTB), heterogeneous nuclear ribonucleoprotein (hnRNP) F/H and E/K are identified as interacting SRE pairs, and have been shown to be consistent with the interaction models proposed in previous experimental results. These results show that our biophysical model and inference method provide a means of quantitative modeling of splicing regulation and is a useful tool for identifying SREs and their interactions. The software package for model inference is available under an open source license.
Collapse
Affiliation(s)
- Ji Wen
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami, Miami, Florida, United States of America
| | - Xiaodong Cai
- Department of Electrical and Computer Engineering, University of Miami, Coral Gables, Florida, United States of America
- * E-mail:
| |
Collapse
|
10
|
Idler RK, Hennig GW, Yan W. Bioinformatic identification of novel elements potentially involved in messenger RNA fate control during spermatogenesis. Biol Reprod 2012; 87:138. [PMID: 23053435 PMCID: PMC4435427 DOI: 10.1095/biolreprod.112.102434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/25/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022] Open
Abstract
In eukaryotic cells, 3' untranslated regions (3' UTRs) of mRNA transcripts contain conserved sequence elements (motifs), which, once bound by RNA-binding proteins, can affect mRNA stability and translational efficacy. Despite abundant sequences contained within the 3' UTRs, only a limited number of motifs are known to interact with RNA-binding proteins and have a role in mRNA fate control. Spermatogenesis represents an excellent in vivo model for studying posttranscriptional regulation of gene expression because numerous mRNAs are transcribed in late pachytene spermatocytes and/or round spermatids, but their translation will not occur until many hours or even days later, when they have developed into elongated spermatids, in which transcription has long been shut off because of the increasingly condensed chromatin. Translationally suppressed mRNAs are sequestered and confined to ribonuclear protein particles, and their loading onto the ribosomes marks their translation. By bioinformatic sequence analyses of the 3' UTRs of translationally suppressed mRNAs during spermatogenesis, we identified numerous novel sequence elements overrepresented in the transcripts subject to posttranscriptional regulation than in the unregulated transcripts. These include AU(U/A)(U/A)UGAGU and (A/U)AUUA(U/C/G) for genes translationally upregulated in early spermiogenesis, and (G/A)GUACG(U/C/A)(A/U)(A/U) and UGUAGC for genes translationally upregulated in late spermiogenesis. The bioinformatic approach reported in this study can be adapted for rapid discovery of novel regulatory elements involved in mRNA fate control in a wide range of tissues or organs.
Collapse
Affiliation(s)
| | | | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
11
|
Sasaki K, Suzuki A, Kagatsume S, Ono M, Matsuzawa K, Taguchi Y, Kurihara Y. Acetylation of Prrp K150 regulates the subcellular localization. Gene 2011; 491:13-9. [PMID: 22001406 DOI: 10.1016/j.gene.2011.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/22/2011] [Accepted: 09/26/2011] [Indexed: 12/21/2022]
Abstract
Posttranslational modifications of proteins have profound effects on many aspects of their function and have received much attention due to the importance of these processes in epigenetic regulation. In this study, we report that deleted azoospermia associated protein 1 (DAZAP1)/proline-rich RNA binding protein (Prrp), a multifunctional RNA binding protein which is essential for spermatogenesis and normal cell growth, is acetylated at Lysine 150 within its RNA binding domain. The acetylation is predominantly observed in nuclear Prrp, and the nonacetylated form is in cytoplasm. Considering that Prrp is a shuttling protein, we suggest that the acetylation cycle at Prrp K150 regulates nucleocytoplasmic transport in cells.
Collapse
Affiliation(s)
- Kenta Sasaki
- Graduate School of Environment and Information Science, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Smith RW, Anderson RC, Smith JW, Brook M, Richardson WA, Gray NK. DAZAP1, an RNA-binding protein required for development and spermatogenesis, can regulate mRNA translation. RNA (NEW YORK, N.Y.) 2011; 17:1282-95. [PMID: 21576381 PMCID: PMC3138565 DOI: 10.1261/rna.2717711] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
DAZ-associated protein 1 (DAZAP1) is an RNA-binding protein required for normal growth, development, and fertility in mice. However, its molecular functions have not been elucidated. Here we find that Xenopus laevis and human DAZAP1, which are each expressed as short and long forms, act as mRNA-specific activators of translation in a manner that is sensitive to the number of binding sites present within the 3' UTR. Domain mapping suggests that this conserved function is mainly associated with C-terminal regions of DAZAP1. Interestingly, we find that the expression of xDAZAP1 and its polysome association are developmentally controlled, the latter suggesting that the translational activator function of DAZAP1 is regulated. However, ERK phosphorylation of DAZAP1, which can alter protein interactions with its C terminus, does not play a role in regulating its ability to participate in translational complexes. Since relatively few mRNA-specific activators have been identified, we explored the mechanism by which DAZAP1 activates translation. By utilizing reporter mRNAs with internal ribosome entry sites, we establish that DAZAP1 stimulates translation initiation. Importantly, this activity is not dependent on the recognition of the 5' cap by initiation factors, showing that it functions downstream from this frequently regulated event, but is modulated by changes in the adenylation status of mRNAs. This suggests a function in the formation of "end-to-end" complexes, which are important for efficient initiation, which we show to be independent of a direct interaction with the bridging protein eIF4G.
Collapse
Affiliation(s)
- Richard W.P. Smith
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Ross C. Anderson
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Joel W.S. Smith
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Matthew Brook
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - William A. Richardson
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Nicola K. Gray
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| |
Collapse
|
13
|
Davis AR, Kirkpatrick CC, Znosko BM. Structural characterization of naturally occurring RNA single mismatches. Nucleic Acids Res 2010; 39:1081-94. [PMID: 20876693 PMCID: PMC3035445 DOI: 10.1093/nar/gkq793] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RNA is known to be involved in several cellular processes; however, it is only active when it is folded into its correct 3D conformation. The folding, bending and twisting of an RNA molecule is dependent upon the multitude of canonical and non-canonical secondary structure motifs. These motifs contribute to the structural complexity of RNA but also serve important integral biological functions, such as serving as recognition and binding sites for other biomolecules or small ligands. One of the most prevalent types of RNA secondary structure motifs are single mismatches, which occur when two canonical pairs are separated by a single non-canonical pair. To determine sequence–structure relationships and to identify structural patterns, we have systematically located, annotated and compared all available occurrences of the 30 most frequently occurring single mismatch-nearest neighbor sequence combinations found in experimentally determined 3D structures of RNA-containing molecules deposited into the Protein Data Bank. Hydrogen bonding, stacking and interaction of nucleotide edges for the mismatched and nearest neighbor base pairs are described and compared, allowing for the identification of several structural patterns. Such a database and comparison will allow researchers to gain insight into the structural features of unstudied sequences and to quickly look-up studied sequences.
Collapse
Affiliation(s)
- Amber R Davis
- Department of Chemistry, Saint Louis University, St Louis, MO 63103, USA
| | | | | |
Collapse
|
14
|
Bettegowda A, Wilkinson MF. Transcription and post-transcriptional regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1637-51. [PMID: 20403875 DOI: 10.1098/rstb.2009.0196] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Spermatogenesis in mammals is achieved by multiple players that pursue a common goal of generating mature spermatozoa. The developmental processes acting on male germ cells that culminate in the production of the functional spermatozoa are regulated at both the transcription and post-transcriptional levels. This review addresses recent progress towards understanding such regulatory mechanisms and identifies future challenges to be addressed in this field. We focus on transcription factors, chromatin-associated factors and RNA-binding proteins necessary for spermatogenesis and/or sperm maturation. Understanding the molecular mechanisms that govern spermatogenesis has enormous implications for new contraceptive approaches and treatments for infertility.
Collapse
Affiliation(s)
- Anilkumar Bettegowda
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0864, La Jolla, CA 92093-0864, USA
| | | |
Collapse
|
15
|
RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci U S A 2009; 106:20252-7. [PMID: 19915141 DOI: 10.1073/pnas.0907916106] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Totipotent stem cells have the potential to differentiate into every cell type. Renewal of totipotent stem cells in the germline and cellular differentiation during early embryogenesis rely upon posttranscriptional regulatory mechanisms. The Caenorhabditis elegans RNA binding protein, MEX-3, plays a key role in both processes. MEX-3 is a maternally-supplied factor that controls the RNA metabolism of transcripts encoding critical cell fate determinants. However, the nucleotide sequence specificity and requirements of MEX-3 mRNA recognition remain unclear. Only a few candidate regulatory targets have been identified, and the full extent of the network of MEX-3 targets is not known. Here, we define the consensus sequence required for MEX-3 RNA recognition and demonstrate that this element is required for MEX-3 dependent regulation of gene expression in live worms. Based on this work, we identify several candidate MEX-3 targets that help explain its dual role in regulating germline stem cell totipotency and embryonic cell fate specification.
Collapse
|
16
|
Brook M, Smith JWS, Gray NK. The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Reproduction 2009; 137:595-617. [DOI: 10.1530/rep-08-0524] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gametogenesis is a highly complex process that requires the exquisite temporal, spatial and amplitudinal regulation of gene expression at multiple levels. Translational regulation is important in a wide variety of cell types but may be even more prevalent in germ cells, where periods of transcriptional quiescence necessitate the use of post-transcriptional mechanisms to effect changes in gene expression. Consistent with this, studies in multiple animal models have revealed an essential role for mRNA translation in the establishment and maintenance of reproductive competence. While studies in humans are less advanced, emerging evidence suggests that translational regulation plays a similarly important role in human germ cells and fertility. This review highlights specific mechanisms of translational regulation that play critical roles in oogenesis by activating subsets of mRNAs. These mRNAs are activated in a strictly determined temporal manner via elements located within their 3′UTR, which serve as binding sites fortrans-acting factors. While we concentrate on oogenesis, these regulatory events also play important roles during spermatogenesis. In particular, we focus on the deleted in azoospermia-like (DAZL) family of proteins, recently implicated in the translational control of specific mRNAs in germ cells; their relationship with the general translation initiation factor poly(A)-binding protein (PABP) and the process of cytoplasmic mRNA polyadenylation.
Collapse
|
17
|
Yang HT, Peggie M, Cohen P, Rousseau S. DAZAP1 interacts via its RNA-recognition motifs with the C-termini of other RNA-binding proteins. Biochem Biophys Res Commun 2009; 380:705-9. [PMID: 19285026 DOI: 10.1016/j.bbrc.2009.01.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 12/01/2022]
Abstract
The turnover and translation of many human mRNAs is regulated by AU-rich elements present in their 3?untranslated region, which bind various trans acting factors. We previously identified a trans acting factor that interacts with these cis elements as DAZAP1 (deleted in Azoospermia (DAZ)-Associated Protein 1), whose interaction with the germ cell-specific protein DAZ was disrupted by the phosphorylation of DAZAP1. Here we have identified several other RNA-binding proteins as binding partners for DAZAP1 in non-germinal cells. Unlike DAZ, these interactions occur between the RNA recognition motifs of DAZAP1 and the C-termini of the binding partners and in a phosphorylation-independent manner. The results suggest that DAZAP1 is a component of complexes that are crucial for the degradation and silencing of mRNA.
Collapse
Affiliation(s)
- Huei-Ting Yang
- MRC Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | | | | | | |
Collapse
|
18
|
Retinoic acid-gated sequence-specific translational control by RARalpha. Proc Natl Acad Sci U S A 2008; 105:20303-8. [PMID: 19073915 DOI: 10.1073/pnas.0807740105] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Retinoic acid (RA) plays important roles in development by modulating gene transcription through nuclear receptor activation. Increasing evidence supports a role for RA and RA receptors (RARs) in synaptic plasticity in the brain. We have recently reported that RA mediates a type of homeostatic synaptic plasticity through activation of dendritic protein synthesis, a process that requires dendritically localized RARalpha and is independent of transcriptional regulation. The molecular basis of this translational regulation by RA/RARalpha signaling, however, is unknown. Here we show that RARalpha is actively exported from the nucleus. Cytoplasmic RARalpha acts as an RNA-binding protein that associates with a subset of mRNAs, including dendritically localized glutamate receptor 1 (GluR1) mRNA. This binding is mediated by the RARalpha carboxyl terminal F-domain and specific sequence motifs in the 5'UTR of the GluR1 mRNA. Moreover, RARalpha association with the GluR1 mRNA directly underlies the translational control of GluR1 by RA: RARalpha represses GluR1 translation, while RA binding to RARalpha reduces its association with the GluR1 mRNA and relieves translational repression. Taken together, our results demonstrate a ligand-gated translational regulation mechanism mediated by a non-genomic function of RA/RARalpha signaling.
Collapse
|
19
|
Mersch B, Gepperth A, Suhai S, Hotz-Wagenblatt A. Automatic detection of exonic splicing enhancers (ESEs) using SVMs. BMC Bioinformatics 2008; 9:369. [PMID: 18783607 PMCID: PMC2567995 DOI: 10.1186/1471-2105-9-369] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 09/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Exonic splicing enhancers (ESEs) activate nearby splice sites and promote the inclusion (vs. exclusion) of exons in which they reside, while being a binding site for SR proteins. To study the impact of ESEs on alternative splicing it would be useful to have a possibility to detect them in exons. Identifying SR protein-binding sites in human DNA sequences by machine learning techniques is a formidable task, since the exon sequences are also constrained by their functional role in coding for proteins. Results The choice of training examples needed for machine learning approaches is difficult since there are only few exact locations of human ESEs described in the literature which could be considered as positive examples. Additionally, it is unclear which sequences are suitable as negative examples. Therefore, we developed a motif-oriented data-extraction method that extracts exon sequences around experimentally or theoretically determined ESE patterns. Positive examples are restricted by heuristics based on known properties of ESEs, e.g. location in the vicinity of a splice site, whereas negative examples are taken in the same way from the middle of long exons. We show that a suitably chosen SVM using optimized sequence kernels (e.g., combined oligo kernel) can extract meaningful properties from these training examples. Once the classifier is trained, every potential ESE sequence can be passed to the SVM for verification. Using SVMs with the combined oligo kernel yields a high accuracy of about 90 percent and well interpretable parameters. Conclusion The motif-oriented data-extraction method seems to produce consistent training and test data leading to good classification rates and thus allows verification of potential ESE motifs. The best results were obtained using an SVM with the combined oligo kernel, while oligo kernels with oligomers of a certain length could be used to extract relevant features.
Collapse
Affiliation(s)
- Britta Mersch
- Department of Molecular Biophysics, German Cancer Research Center DKFZ, Im Neuenheimer Feld 580, Heidelberg, Germany.
| | | | | | | |
Collapse
|
20
|
Hsu LCL, Chen HY, Lin YW, Chu WC, Lin MJ, Yan YT, Yen PH. DAZAP1, an hnRNP protein, is required for normal growth and spermatogenesis in mice. RNA (NEW YORK, N.Y.) 2008; 14:1814-1822. [PMID: 18669443 PMCID: PMC2525968 DOI: 10.1261/rna.1152808] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 05/23/2008] [Indexed: 05/26/2023]
Abstract
DAZAP1 (Deleted in Azoospermia Associated Protein 1) is a ubiquitous hnRNP protein that is expressed most abundantly in the testis. Its ability to shuttle between the nucleus and the cytoplasm and its exclusion from the transcriptionally inactive XY body in pachytene spermatocytes implicate it in mRNA transcription and transport. We generated Dazap1 mutant alleles to study the role of DAZAP1 in mouse development. Most mice homozygous for the null allele as well as a hypomorphic Fn allele died soon after birth. The few Dazap1(Fn/Fn) mice that survived could nonetheless live for more than a year. They appeared and behaved normally but were much smaller in size compared to their wild-type and heterozygous littermates. Both male and female Dazap1(Fn/Fn) mice were sterile. Males had small testes, and the seminiferous tubules were atrophic with increased numbers of apoptotic cells. The tubules contained many germ cells, including pachytene spermatocytes with visible XY-bodies and diplotene spermatocytes, but no post-meiotic cells. FACS analyses confirmed the absence of haploid germ cells, indicating spermatogenesis arrested right before the meiotic division. Female Dazap1(Fn/Fn) mice had small ovaries that contained normal-appearing follicles, yet their pregnancy produced no progeny due to failure in embryonic development. The phenotypes of Dazap1 mutant mice indicate that DAZAP1 is not only essential for spermatogenesis, but also required for the normal growth and development of mice.
Collapse
Affiliation(s)
- Lea Chia-Ling Hsu
- 1Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Binding of DAZAP1 and hnRNPA1/A2 to an exonic splicing silencer in a natural BRCA1 exon 18 mutant. Mol Cell Biol 2008; 28:3850-60. [PMID: 18391021 DOI: 10.1128/mcb.02253-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A disease-causing G-to-T transversion at position +6 of BRCA1 exon 18 induces exclusion of the exon from the mRNA and, as has been suggested by in silico analysis, disrupts an ASF/SF2-dependent splicing enhancer. We show here using a pulldown assay with an internal standard that wild-type (WT) and mutant T6 sequences displayed similar ASF/SF2 binding efficiencies, which were significantly lower than that of a typical exonic splicing enhancer derived from the extra domain A exon of fibronectin. Overexpression or small interfering RNA (siRNA)-mediated depletion of ASF/SF2 did not affect the splicing of a WT BRCA1 minigene but resulted in an increase and decrease of T6 exon 18 inclusion, respectively. Furthermore, extensive mutation analysis using hybrid minigenes indicated that the T6 mutant creates a sequence with a prevalently inhibitory function. Indeed, RNA-protein interaction and siRNA experiments showed that the skipping of T6 BRCA1 exon 18 is due to the creation of a splicing factor-dependent silencer. This sequence specifically binds to the known repressor protein hnRNPA1/A2 and to DAZAP1, the involvement of which in splicing inhibition we have demonstrated. Our results indicate that the binding of the splicing factors hnRNPA1/A2 and DAZAP1 is the primary determinant of T6 BRCA1 exon 18 exclusion.
Collapse
|
22
|
Hiller M, Pudimat R, Busch A, Backofen R. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions. Nucleic Acids Res 2006; 34:e117. [PMID: 16987907 PMCID: PMC1903381 DOI: 10.1093/nar/gkl544] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/07/2006] [Accepted: 07/13/2006] [Indexed: 01/05/2023] Open
Abstract
RNA binding proteins recognize RNA targets in a sequence specific manner. Apart from the sequence, the secondary structure context of the binding site also affects the binding affinity. Binding sites are often located in single-stranded RNA regions and it was shown that the sequestration of a binding motif in a double-strand abolishes protein binding. Thus, it is desirable to include knowledge about RNA secondary structures when searching for the binding motif of a protein. We present the approach MEMERIS for searching sequence motifs in a set of RNA sequences and simultaneously integrating information about secondary structures. To abstract from specific structural elements, we precompute position-specific values measuring the single-strandedness of all substrings of an RNA sequence. These values are used as prior knowledge about the motif starts to guide the motif search. Extensive tests with artificial and biological data demonstrate that MEMERIS is able to identify motifs in single-stranded regions even if a stronger motif located in double-strand parts exists. The discovered motif occurrences in biological datasets mostly coincide with known protein-binding sites. This algorithm can be used for finding the binding motif of single-stranded RNA-binding proteins in SELEX or other biological sequence data.
Collapse
Affiliation(s)
- Michael Hiller
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University FreiburgGeorges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rainer Pudimat
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University FreiburgGeorges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Anke Busch
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University FreiburgGeorges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Institute of Computer Science, Chair for Bioinformatics, Albert-Ludwigs-University FreiburgGeorges-Koehler-Allee 106, 79110 Freiburg, Germany
| |
Collapse
|
23
|
Lin YT, Yen PH. A novel nucleocytoplasmic shuttling sequence of DAZAP1, a testis-abundant RNA-binding protein. RNA (NEW YORK, N.Y.) 2006; 12:1486-93. [PMID: 16772659 PMCID: PMC1524892 DOI: 10.1261/rna.42206] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Deleted in Azoospermia Associated Protein 1 (DAZAP1) is a ubiquitous RNA-binding protein highly expressed in the human and the mouse testes. It shows a dynamic subcellular localization during spermatogenesis, present predominantly in the nuclei of late-stage spermatocytes and round spermatids and translocated to the cytoplasm during spermatid elongation. To test the hypothesis that DAZAP1 shuttles between the nucleus and the cytoplasm, we studied the nuclear transport of DAZAP1 in somatic cells using immunostaining, heterokaryon formation, and mutagenesis. DAZAP1 is detected exclusively in the nucleus and has the ability to shuttle between the nucleus and the cytoplasm using a highly conserved 25 amino acid segment, designated ZNS, at its C terminus. ZNS shares no sequence homology with other known nuclear localization or export signals. Attachment of ZNS to a red fluorescent protein DsRed2 confers the nucleocytoplasmic shuttling ability to that protein. The nuclear localization of DAZAP1 depends on active transcription. In the presence of an RNA polymerase II inhibitor, DAZAP1 is retained in the cytoplasm. DAZAP1 colocalizes with hnRNP A1 and hnRNP C1 in the nucleus and is a component of the heterogeneous nuclear ribonucleoprotein particles. Our results suggest that DAZAP1 plays a key role in mRNA transport during spermatogenesis.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | |
Collapse
|
24
|
Czaplinski K, Mattaj IW. 40LoVe interacts with Vg1RBP/Vera and hnRNP I in binding the Vg1-localization element. RNA (NEW YORK, N.Y.) 2006; 12:213-22. [PMID: 16373488 PMCID: PMC1370901 DOI: 10.1261/rna.2820106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Localizing mRNAs within the cytoplasm gives cells the ability to spatially restrict protein production, a powerful means to regulate gene expression. Localized mRNA is often visible in microscopically observable particles or granules, and the association of mRNA localization with these structures is an indication that particles or granules may be essential to the localization process. Understanding how such structures form will therefore be important for understanding the function of localization RNPs (L-RNPs). We previously identified a novel component of an L-RNP from the Vg1 mRNA from Xenopus oocytes called 40LoVe. 40LoVe interaction with the Vg1-localization element (Vg1LE) was previously shown to be dependent on the VM1 and E2 sequence motifs within the Vg1LE that cross-link to hnRNP I and Vg1RBP/Vera, respectively. We report interaction of these motif-binding proteins with 40LoVe and identify a 40LoVe-Xenopus hnRNP D/AUF1 interaction. We further demonstrate that titration of VM1 and E2 motif binding activity in vivo surprisingly suggests that the motif binding proteins have differing roles during Vg1LE-dependent mRNA localization.
Collapse
|