1
|
Wollman AJM, Syeda AH, Howard JAL, Payne-Dwyer A, Leech A, Warecka D, Guy C, McGlynn P, Hawkins M, Leake MC. Tetrameric UvrD Helicase Is Located at the E. Coli Replisome due to Frequent Replication Blocks. J Mol Biol 2024; 436:168369. [PMID: 37977299 DOI: 10.1016/j.jmb.2023.168369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.
Collapse
Affiliation(s)
- Adam J M Wollman
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aisha H Syeda
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jamieson A L Howard
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andrew Leech
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dominika Warecka
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Colin Guy
- Covance Laboratories Ltd., Otley Road, Harrogate HG3 1PY, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Michelle Hawkins
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
2
|
Wang H, Canasto-Chibuque C, Kim JH, Hohl M, Leslie C, Reis-Filho JS, Petrini JH. Chronic Interferon Stimulated Gene Transcription Promotes Oncogene Induced Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562529. [PMID: 37905095 PMCID: PMC10614814 DOI: 10.1101/2023.10.16.562529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The Mre11 complex (comprising Mre11, Rad50, Nbs1) is integral to the maintenance of genome stability. We previously showed that a hypomorphic Mre11 mutant mouse strain ( Mre11 ATLD1/ATLD1 ) was highly susceptible to oncogene induced breast cancer. Here we used a mammary organoid system to examine which Mre11 dependent responses are tumor suppressive. We found that Mre11 ATLD1/ATLD1 organoids exhibited an elevated interferon stimulated gene (ISG) signature and sustained changes in chromatin accessibility. This Mre11 ATLD1/ATLD1 phenotype depended on DNA binding of a nuclear innate immune sensor, IFI205. Ablation of Ifi205 in Mre11 ATLD1/ATLD1 organoids restored baseline and oncogene-induced chromatin accessibility patterns to those observed in WT . Implantation of Mre11 ATLD1/ATLD1 organoids and activation of oncogene led to aggressive metastatic breast cancer. This outcome was reversed in implanted Ifi205 -/- Mre11 ATLD1/ATLD1 organoids. These data reveal a connection between innate immune signaling and tumor suppression in mammary epithelium. Given the abundance of aberrant DNA structures that arise in the context of genome instability syndromes, the data further suggest that cancer predisposition in those contexts may be partially attributable to tonic innate immune transcriptional programs.
Collapse
|
3
|
Marshall CJ, Qayyum MZ, Walker JE, Murakami KS, Santangelo TJ. The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex. Proc Natl Acad Sci U S A 2022; 119:e2207581119. [PMID: 35917344 PMCID: PMC9371683 DOI: 10.1073/pnas.2207581119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Transcription must be properly regulated to ensure dynamic gene expression underlying growth, development, and response to environmental cues. Regulation is imposed throughout the transcription cycle, and while many efforts have detailed the regulation of transcription initiation and early elongation, the termination phase of transcription also plays critical roles in regulating gene expression. Transcription termination can be driven by only a few proteins in each domain of life. Detailing the mechanism(s) employed provides insight into the vulnerabilities of transcription elongation complexes (TECs) that permit regulated termination to control expression of many genes and operons. Here, we describe the biochemical activities and crystal structure of the superfamily 2 helicase Eta, one of two known factors capable of disrupting archaeal transcription elongation complexes. Eta retains a twin-translocase core domain common to all superfamily 2 helicases and a well-conserved C terminus wherein individual amino acid substitutions can critically abrogate termination activities. Eta variants that perturb ATPase, helicase, single-stranded DNA and double-stranded DNA translocase and termination activities identify key regions of the C terminus of Eta that, when combined with modeling Eta-TEC interactions, provide a structural model of Eta-mediated termination guided in part by structures of Mfd and the bacterial TEC. The susceptibility of TECs to disruption by termination factors that target the upstream surface of RNA polymerase and potentially drive termination through forward translocation and allosteric mechanisms that favor opening of the clamp to release the encapsulated nucleic acids emerges as a common feature of transcription termination mechanisms.
Collapse
Affiliation(s)
- Craig J. Marshall
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - M. Zuhaib Qayyum
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Julie E. Walker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
4
|
Mycobacterium tuberculosis DNA repair helicase UvrD1 is activated by redox-dependent dimerization via a 2B domain cysteine. Proc Natl Acad Sci U S A 2022; 119:2114501119. [PMID: 35173050 PMCID: PMC8872793 DOI: 10.1073/pnas.2114501119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes tuberculosis and, during infection, is exposed to reactive oxygen species and reactive nitrogen intermediates from the host immune response that can cause DNA damage. UvrD-like proteins are involved in DNA repair and replication and belong to the SF1 family of DNA helicases that use ATP hydrolysis to catalyze DNA unwinding. In Mtb, there are two UvrD-like enzymes, where UvrD1 is most closely related to other family members. Previous studies have suggested that UvrD1 is exclusively monomeric; however, it is well known that Escherichia coli UvrD and other UvrD family members exhibit monomer-dimer equilibria and unwind as dimers in the absence of accessory factors. Here, we reconcile these incongruent studies by showing that Mtb UvrD1 exists in monomer, dimer, and higher-order oligomeric forms, where dimerization is regulated by redox potential. We identify a 2B domain cysteine, conserved in many Actinobacteria, that underlies this effect. We also show that UvrD1 DNA-unwinding activity correlates specifically with the dimer population and is thus titrated directly via increasing positive (i.e., oxidative) redox potential. Consistent with the regulatory role of the 2B domain and the dimerization-based activation of DNA unwinding in UvrD family helicases, these results suggest that UvrD1 is activated under oxidizing conditions when it may be needed to respond to DNA damage during infection.
Collapse
|
5
|
Agapov A, Olina A, Kulbachinskiy A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3018-3041. [PMID: 35323981 PMCID: PMC8989532 DOI: 10.1093/nar/gkac174] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular DNA is continuously transcribed into RNA by multisubunit RNA polymerases (RNAPs). The continuity of transcription can be disrupted by DNA lesions that arise from the activities of cellular enzymes, reactions with endogenous and exogenous chemicals or irradiation. Here, we review available data on translesion RNA synthesis by multisubunit RNAPs from various domains of life, define common principles and variations in DNA damage sensing by RNAP, and consider existing controversies in the field of translesion transcription. Depending on the type of DNA lesion, it may be correctly bypassed by RNAP, or lead to transcriptional mutagenesis, or result in transcription stalling. Various lesions can affect the loading of the templating base into the active site of RNAP, or interfere with nucleotide binding and incorporation into RNA, or impair RNAP translocation. Stalled RNAP acts as a sensor of DNA damage during transcription-coupled repair. The outcome of DNA lesion recognition by RNAP depends on the interplay between multiple transcription and repair factors, which can stimulate RNAP bypass or increase RNAP stalling, and plays the central role in maintaining the DNA integrity. Unveiling the mechanisms of translesion transcription in various systems is thus instrumental for understanding molecular pathways underlying gene regulation and genome stability.
Collapse
Affiliation(s)
- Aleksei Agapov
- Correspondence may also be addressed to Aleksei Agapov. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| | - Anna Olina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute” Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 499 196 0015; Fax: +7 499 196 0015;
| |
Collapse
|
6
|
Urrutia-Irazabal I, Ault JR, Sobott F, Savery NJ, Dillingham MS. Analysis of the PcrA-RNA polymerase complex reveals a helicase interaction motif and a role for PcrA/UvrD helicase in the suppression of R-loops. eLife 2021; 10:68829. [PMID: 34279225 PMCID: PMC8318588 DOI: 10.7554/elife.68829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the β subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.
Collapse
Affiliation(s)
- Inigo Urrutia-Irazabal
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Nigel J Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol. Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| |
Collapse
|
7
|
Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proc Natl Acad Sci U S A 2021; 118:2008498118. [PMID: 33443179 DOI: 10.1073/pnas.2008498118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA polymerase (RNAP) encounters various roadblocks during transcription. These obstacles can impede RNAP movement and influence transcription, ultimately necessitating the activity of RNAP-associated factors. One such factor is the bacterial protein Mfd, a highly conserved DNA translocase and evolvability factor that interacts with RNAP. Although Mfd is thought to function primarily in the repair of DNA lesions that stall RNAP, increasing evidence suggests that it may also be important for transcription regulation. However, this is yet to be fully characterized. To shed light on Mfd's in vivo functions, we identified the chromosomal regions where it associates. We analyzed Mfd's impact on RNAP association and transcription regulation genome-wide. We found that Mfd represses RNAP association at many chromosomal regions. We found that these regions show increased RNAP pausing, suggesting that they are hard to transcribe. Interestingly, we noticed that the majority of the regions where Mfd regulates transcription contain highly structured regulatory RNAs. The RNAs identified regulate a myriad of biological processes, ranging from metabolism to transfer RNA regulation to toxin-antitoxin (TA) functions. We found that cells lacking Mfd are highly sensitive to toxin overexpression. Finally, we found that Mfd promotes mutagenesis in at least one toxin gene, suggesting that its function in regulating transcription may promote evolution of certain TA systems and other regions containing strong RNA secondary structures. We conclude that Mfd is an RNAP cofactor that is important, and at times critical, for transcription regulation at hard-to-transcribe regions, especially those that express structured regulatory RNAs.
Collapse
|
8
|
Shi J, Wen A, Zhao M, Jin S, You L, Shi Y, Dong S, Hua X, Zhang Y, Feng Y. Structural basis of Mfd-dependent transcription termination. Nucleic Acids Res 2021; 48:11762-11772. [PMID: 33068413 PMCID: PMC7672476 DOI: 10.1093/nar/gkaa904] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022] Open
Abstract
Mfd-dependent transcription termination plays an important role in transcription-coupled DNA repair, transcription-replication conflict resolution, and antimicrobial resistance development. Despite extensive studies, the molecular mechanism of Mfd-dependent transcription termination in bacteria remains unclear, with several long-standing puzzles. How Mfd is activated by stalled RNA polymerase (RNAP) and how activated Mfd translocates along the DNA are unknown. Here, we report the single-particle cryo-electron microscopy structures of T. thermophilus Mfd-RNAP complex with and without ATPγS. The structures reveal that Mfd undergoes profound conformational changes upon activation, contacts the RNAP β1 domain and its clamp, and pries open the RNAP clamp. These structures provide a foundation for future studies aimed at dissecting the precise mechanism of Mfd-dependent transcription termination and pave the way for rational drug design targeting Mfd for the purpose of tackling the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou 310058, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Minxing Zhao
- Department of Emergency Medicine of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Shi
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shuling Dong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoting Hua
- Department of Infectious Disease, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310058, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory diseases, Hangzhou 310058, China
| |
Collapse
|
9
|
Han S, Gong Z, Liang T, Chen Y, Xie J. The role of Mfd in Mycobacterium tuberculosis physiology and underlying regulatory network. Microbiol Res 2021; 246:126718. [PMID: 33588338 DOI: 10.1016/j.micres.2021.126718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis with millions of deaths annually, remains one of the most formidable pathogen to global public health. As the most successful intracellular pathogens, Mtb can spatiotemporally coordinate the transcription and translation timely to reconcile the inevitable transcription-replication conflicts. Mutation frequency decline (Mfd) is a bacterial ATP-dependent DNA translocase that couples DNA repair to transcription via hydrolyzing ATP as energy, which preferentially acts on the damaged DNA transcribed strand to rescue stalled RNAP or dissociate RNAP to terminate the transcription depending on impediment severity, mitigating the damage to bacteria. In addition to the traditional damage repair effect, Mfd may also promote bacteria mutagenesis under stresses and boost the drug resistance. Mfd is widespread among bacteria and intensively studied, but there are very few studies in Mycobacteria, especially Mtb. In this review, the structure, function and mechanism characteristics of Mfd in Mtb (MtbMfd, Rv1020) are explored, with emphasis on the regulatory network of MtbMfd and its potential as a prime target for antibiotic drugs against tuberculosis.
Collapse
Affiliation(s)
- Shuang Han
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Tian Liang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Yu Chen
- Department of Tuberculosis, Shenyang Tenth People's Hospital and Shenyang Chest Hospital, Shenyang, Liaoning Province, 110044, China.
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, Ministry of Education, Chongqing Municipal Key Laboratory of Karst Environment, School of Life Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
10
|
Martin HA, Sundararajan A, Ermi TS, Heron R, Gonzales J, Lee K, Anguiano-Mendez D, Schilkey F, Pedraza-Reyes M, Robleto EA. Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells. Front Microbiol 2021; 12:625705. [PMID: 33603726 PMCID: PMC7885715 DOI: 10.3389/fmicb.2021.625705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd– cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | | | - Tatiana S Ermi
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Robert Heron
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jason Gonzales
- West Career and Technical Academy, Las Vegas, NV, United States
| | - Kaiden Lee
- The College of Idaho, Caldwell, ID, United States
| | - Diana Anguiano-Mendez
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
11
|
Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Structural basis for transcription complex disruption by the Mfd translocase. eLife 2021; 10:62117. [PMID: 33480355 PMCID: PMC7864632 DOI: 10.7554/elife.62117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (ECs). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.
Collapse
Affiliation(s)
- Jin Young Kang
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Joshua Brewer
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| |
Collapse
|
12
|
Ragheb M, Merrikh H. The enigmatic role of Mfd in replication-transcription conflicts in bacteria. DNA Repair (Amst) 2019; 81:102659. [PMID: 31311770 PMCID: PMC6892258 DOI: 10.1016/j.dnarep.2019.102659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conflicts between replication and transcription can have life-threatening consequences. RNA polymerase (RNAP) is the major impediment to replication progression, and its efficient removal from DNA should mitigate the consequences of collisions with replication. Cells have various proteins that can resolve conflicts by removing stalled (or actively translocating) RNAP from DNA. It would therefore seem logical that RNAP-associated factors, such as the bacterial DNA translocase Mfd, would minimize the effects of conflicts. Despite seemingly conclusive statements in most textbooks, the role of Mfd in conflicts remains an enigma. In this review, we will discuss the different physical states of RNAP during transcription, and how each distinct state can influence conflict severity and potentially trigger the involvement of Mfd. We propose models to explain the contradictory conclusions from published studies on the potential role of Mfd in resolving conflicts.
Collapse
Affiliation(s)
- Mark Ragheb
- Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Houra Merrikh
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Mosaei H, Molodtsov V, Kepplinger B, Harbottle J, Moon CW, Jeeves RE, Ceccaroni L, Shin Y, Morton-Laing S, Marrs ECL, Wills C, Clegg W, Yuzenkova Y, Perry JD, Bacon J, Errington J, Allenby NEE, Hall MJ, Murakami KS, Zenkin N. Mode of Action of Kanglemycin A, an Ansamycin Natural Product that Is Active against Rifampicin-Resistant Mycobacterium tuberculosis. Mol Cell 2018; 72:263-274.e5. [PMID: 30244835 PMCID: PMC6202310 DOI: 10.1016/j.molcel.2018.08.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/17/2018] [Indexed: 01/07/2023]
Abstract
Antibiotic-resistant bacterial pathogens pose an urgent healthcare threat, prompting a demand for new medicines. We report the mode of action of the natural ansamycin antibiotic kanglemycin A (KglA). KglA binds bacterial RNA polymerase at the rifampicin-binding pocket but maintains potency against RNA polymerases containing rifampicin-resistant mutations. KglA has antibiotic activity against rifampicin-resistant Gram-positive bacteria and multidrug-resistant Mycobacterium tuberculosis (MDR-M. tuberculosis). The X-ray crystal structures of KglA with the Escherichia coli RNA polymerase holoenzyme and Thermus thermophilus RNA polymerase-promoter complex reveal an altered-compared with rifampicin-conformation of KglA within the rifampicin-binding pocket. Unique deoxysugar and succinate ansa bridge substituents make additional contacts with a separate, hydrophobic pocket of RNA polymerase and preclude the formation of initial dinucleotides, respectively. Previous ansa-chain modifications in the rifamycin series have proven unsuccessful. Thus, KglA represents a key starting point for the development of a new class of ansa-chain derivatized ansamycins to tackle rifampicin resistance.
Collapse
Affiliation(s)
- Hamed Mosaei
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Vadim Molodtsov
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Bernhard Kepplinger
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK,Demuris Limited, Newcastle Biomedicine Bio-Incubators, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - John Harbottle
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Christopher William Moon
- TB Research Group, National Infection Service, Public Health England, Manor Farm Road, Porton, Salisbury SP4 0JG, UK
| | - Rose Elizabeth Jeeves
- TB Research Group, National Infection Service, Public Health England, Manor Farm Road, Porton, Salisbury SP4 0JG, UK
| | - Lucia Ceccaroni
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Stephanie Morton-Laing
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Corinne Wills
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - William Clegg
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - John David Perry
- Microbiology Department, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
| | - Joanna Bacon
- TB Research Group, National Infection Service, Public Health England, Manor Farm Road, Porton, Salisbury SP4 0JG, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK,Demuris Limited, Newcastle Biomedicine Bio-Incubators, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | - Michael John Hall
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Katsuhiko S. Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA,Corresponding author
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK,Corresponding author
| |
Collapse
|
14
|
Portman JR, Strick TR. Transcription-Coupled Repair and Complex Biology. J Mol Biol 2018; 430:4496-4512. [DOI: 10.1016/j.jmb.2018.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/24/2022]
|
15
|
The transcription-repair coupling factor Mfd associates with RNA polymerase in the absence of exogenous damage. Nat Commun 2018; 9:1570. [PMID: 29679003 PMCID: PMC5910403 DOI: 10.1038/s41467-018-03790-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/13/2018] [Indexed: 12/27/2022] Open
Abstract
During transcription elongation, bacterial RNA polymerase (RNAP) can pause, backtrack or stall when transcribing template DNA. Stalled transcription elongation complexes at sites of bulky lesions can be rescued by the transcription terminator Mfd. The molecular mechanisms of Mfd recruitment to transcription complexes in vivo remain to be elucidated, however. Using single-molecule live-cell imaging, we show that Mfd associates with elongation transcription complexes even in the absence of exogenous genotoxic stresses. This interaction requires an intact RNA polymerase-interacting domain of Mfd. In the presence of drugs that stall RNAP, we find that Mfd associates pervasively with RNAP. The residence time of Mfd foci reduces from 30 to 18 s in the presence of endogenous UvrA, suggesting that UvrA promotes the resolution of Mfd-RNAP complexes on DNA. Our results reveal that RNAP is frequently rescued by Mfd during normal growth and highlight a ubiquitous house-keeping role for Mfd in regulating transcription elongation.
Collapse
|
16
|
Sanders K, Lin CL, Smith AJ, Cronin N, Fisher G, Eftychidis V, McGlynn P, Savery NJ, Wigley DB, Dillingham MS. The structure and function of an RNA polymerase interaction domain in the PcrA/UvrD helicase. Nucleic Acids Res 2017; 45:3875-3887. [PMID: 28160601 PMCID: PMC5397179 DOI: 10.1093/nar/gkx074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/25/2017] [Indexed: 11/14/2022] Open
Abstract
The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood. In this work, we define a minimal RNA polymerase interaction domain in PcrA, and report its crystal structure at 1.5 Å resolution. The domain adopts a Tudor-like fold that is similar to other RNA polymerase interaction domains, including that of the prototype transcription-repair coupling factor Mfd. Removal or mutation of the interaction domain reduces the ability of PcrA/UvrD to interact with and to remodel RNA polymerase complexes in vitro. The implications of this work for our understanding of the role of PcrA/UvrD at the interface of DNA replication, transcription and repair are discussed.
Collapse
Affiliation(s)
- Kelly Sanders
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chia-Liang Lin
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Abigail J Smith
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Nora Cronin
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Gemma Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nigel J Savery
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Dale B Wigley
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
17
|
Selby CP. Mfd Protein and Transcription-Repair Coupling in Escherichia coli. Photochem Photobiol 2017; 93:280-295. [PMID: 27864884 DOI: 10.1111/php.12675] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023]
Abstract
In 1989, transcription-repair coupling (TRC) was first described in Escherichia coli, as the transcription-dependent, preferential nucleotide excision repair (NER) of UV photoproducts located in the template DNA strand. This finding led to pioneering biochemical studies of TRC in the laboratory of Professor Aziz Sancar, where, at the time, major contributions were being made toward understanding the roles of the UvrA, UvrB and UvrC proteins in NER. When the repair studies were extended to TRC, template but not coding strand lesions were found to block RNA polymerase (RNAP) in vitro, and unexpectedly, the blocked RNAP inhibited NER. A transcription-repair coupling factor, also called Mfd protein, was found to remove the blocked RNAP, deliver the repair enzyme to the lesion and thereby mediate more rapid repair of the transcription-blocking lesion compared with lesions elsewhere. Structural and functional analyses of Mfd protein revealed helicase motifs responsible for ATP hydrolysis and DNA binding, and regions that interact with RNAP and UvrA. These and additional studies provided a basis upon which other investigators, in following decades, have characterized fascinating and unexpected structural and mechanistic features of Mfd, revealed the possible existence of additional pathways of TRC and discovered additional roles of Mfd in the cell.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
18
|
Fan J, Leroux-Coyau M, Savery NJ, Strick TR. Reconstruction of bacterial transcription-coupled repair at single-molecule resolution. Nature 2016; 536:234-7. [PMID: 27487215 DOI: 10.1038/nature19080] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/05/2016] [Indexed: 01/23/2023]
Abstract
Escherichia coli Mfd translocase enables transcription-coupled repair by displacing RNA polymerase (RNAP) stalled on a DNA lesion and then coordinating assembly of the UvrAB(C) components at the damage site. Recent studies have shown that after binding to and dislodging stalled RNAP, Mfd remains on the DNA in the form of a stable, slowly translocating complex with evicted RNAP attached. Here we find, using a series of single-molecule assays, that recruitment of UvrA and UvrAB to Mfd-RNAP arrests the translocating complex and causes its dissolution. Correlative single-molecule nanomanipulation and fluorescence measurements show that dissolution of the complex leads to loss of both RNAP and Mfd. Subsequent DNA incision by UvrC is faster than when only UvrAB(C) are available, in part because UvrAB binds 20-200 times more strongly to Mfd–RNAP than to DNA damage. These observations provide a quantitative framework for comparing complementary DNA repair pathways in vivo.
Collapse
|
19
|
A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence. Nat Struct Mol Biol 2015; 22:452-7. [PMID: 25961799 DOI: 10.1038/nsmb.3019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 04/03/2015] [Indexed: 01/20/2023]
Abstract
We characterize in real time the composition and catalytic state of the initial Escherichia coli transcription-coupled repair (TCR) machinery by using correlative single-molecule methods. TCR initiates when RNA polymerase (RNAP) stalled by a lesion is displaced by the Mfd DNA translocase, thus giving repair components access to the damage. We previously used DNA nanomanipulation to obtain a nanomechanical readout of protein-DNA interactions during TCR initiation. Here we correlate this signal with simultaneous single-molecule fluorescence imaging of labeled components (RNAP, Mfd or RNA) to monitor the composition and localization of the complex. Displacement of stalled RNAP by Mfd results in loss of nascent RNA but not of RNAP, which remains associated with Mfd as a long-lived complex on the DNA. This complex translocates at ∼4 bp/s along the DNA, in a manner determined by the orientation of the stalled RNAP on the DNA.
Collapse
|
20
|
Epshtein V. UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward. Bioessays 2014; 37:12-9. [PMID: 25345862 DOI: 10.1002/bies.201400106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription-coupled repair (TCR) is a phenomenon that exists in a wide variety of organisms from bacteria to humans. This mechanism allows cells to repair the actively transcribed DNA strand much faster than the non-transcribed one. At the sites of bulky DNA damage RNA polymerase stalls, initiating recruitment of the repair machinery. It is a commonly accepted paradigm that bacterial cells utilize a sole coupling factor, called Mfd to initiate TCR. According to that model, Mfd removes transcription complexes stalled at the lesion site and simultaneously recruits repair machinery. However, this model was recently put in doubt by various discrepancies between the proposed universal role of Mfd in the TCR and its biochemical and phenotypical properties. Here, I present a second pathway of bacterial TCR recently discovered in my laboratory, which does not involve Mfd but implicates a common repair factor, UvrD, in a central position in the process.
Collapse
Affiliation(s)
- Vitaliy Epshtein
- Department of Biochemistry, New York University, Langhorn Medical Center, New York, NY, USA
| |
Collapse
|
21
|
Savery N. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Transcription 2014; 2:168-172. [PMID: 21922058 DOI: 10.4161/trns.2.4.16146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
Transcription-coupled DNA repair pathways enable lesions that block transcription to be repaired more quickly than similar lesions in other parts of the genome. Here I consider the recent progress that has been made in understanding how bacteria prioritize certain lesions for nucleotide excision repair.
Collapse
Affiliation(s)
- Nigel Savery
- DNA-Protein Interactions Unit; School of Biochemistry; University of Bristol; Bristol, UK
| |
Collapse
|
22
|
Gallego-García A, Mirassou Y, García-Moreno D, Elías-Arnanz M, Jiménez MA, Padmanabhan S. Structural insights into RNA polymerase recognition and essential function of Myxococcus xanthus CdnL. PLoS One 2014; 9:e108946. [PMID: 25272012 PMCID: PMC4182748 DOI: 10.1371/journal.pone.0108946] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
CdnL and CarD are two functionally distinct members of the CarD_CdnL_TRCF family of bacterial RNA polymerase (RNAP)-interacting proteins, which co-exist in Myxococcus xanthus. While CarD, found exclusively in myxobacteria, has been implicated in the activity of various extracytoplasmic function (ECF) σ-factors, the function and mode of action of the essential CdnL, whose homologs are widespread among bacteria, remain to be elucidated in M. xanthus. Here, we report the NMR solution structure of CdnL and present a structure-based mutational analysis of its function. An N-terminal five-stranded β-sheet Tudor-like module in the two-domain CdnL mediates binding to RNAP-β, and mutations that disrupt this interaction impair cell growth. The compact CdnL C-terminal domain consists of five α-helices folded as in some tetratricopeptide repeat-like protein-protein interaction domains, and contains a patch of solvent-exposed nonpolar and basic residues, among which a set of basic residues is shown to be crucial for CdnL function. We show that CdnL, but not its loss-of-function mutants, stabilizes formation of transcriptionally competent, open complexes by the primary σA-RNAP holoenzyme at an rRNA promoter in vitro. Consistent with this, CdnL is present at rRNA promoters in vivo. Implication of CdnL in RNAP-σA activity and of CarD in ECF-σ function in M. xanthus exemplifies how two related members within a widespread bacterial protein family have evolved to enable distinct σ-dependent promoter activity.
Collapse
Affiliation(s)
- Aránzazu Gallego-García
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Yasmina Mirassou
- Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Madrid, Spain
| | - Diana García-Moreno
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
- * E-mail: (MEA); (MAJ); (SP)
| | - María Angeles Jiménez
- Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Madrid, Spain
- * E-mail: (MEA); (MAJ); (SP)
| | - S. Padmanabhan
- Instituto de Química Física ‘Rocasolano’, Consejo Superior de Investigaciones Científicas (IQFR-CSIC), Madrid, Spain
- * E-mail: (MEA); (MAJ); (SP)
| |
Collapse
|
23
|
Abstract
A quarter of a century has elapsed since the discovery of transcription-coupled repair (TCR), and yet our fascination with this process has not diminished. Nucleotide excision repair (NER) is a versatile pathway that removes helix-distorting DNA lesions from the genomes of organisms across the evolutionary scale, from bacteria to humans. TCR, defined as a subpathway of NER, is dedicated to the repair of lesions that, by virtue of their location on the transcribed strands of active genes, encumber elongation by RNA polymerases. In this review, we will report on newly identified proteins, protein modifications, and protein complexes that participate in TCR in Escherichia coli and in human cells. We will discuss general models for the biochemical pathways and how and when cells might choose to utilize TCR or other pathways for repair or bypass of transcription-blocking DNA alterations.
Collapse
Affiliation(s)
- Graciela Spivak
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| | - Ann K Ganesan
- Biology Department, Stanford University, 385 Serra Mall, Stanford, CA 94305-5020, USA.
| |
Collapse
|
24
|
Howan K, Monnet J, Fan J, Strick TR. Stopped in its tracks: the RNA polymerase molecular motor as a robust sensor of DNA damage. DNA Repair (Amst) 2014; 20:49-57. [PMID: 24685770 DOI: 10.1016/j.dnarep.2014.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
DNA repair is often a complex, multi-component, multi-step process; this makes detailed kinetic analysis of the different steps of repair a challenging task using standard biochemical methods. At the same time, single-molecule methods are well-suited for extracting kinetic information despite time-averaging due to diffusion of biochemical components and stochasticity of chemical reaction steps. Here we discuss recent experiments using DNA nanomanipulation in a magnetic trap to study the initiation of transcription-coupled repair in a model bacterial system comprising the canonical Escherichia coli RNA polymerase and the Mfd translocase which specifically binds to it. These experiments provide kinetic insight into the reaction process, helping to explain how Mfd discriminates between transcribing RNAP and stalled RNAP. They also identify a reliably long-lived intermediate containing Mfd translocase and, potentially, RNA polymerase. This intermediate presumably serves as a platform for assembly of downstream repair components UvrAB(C).
Collapse
Affiliation(s)
- K Howan
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - J Monnet
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - J Fan
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - T R Strick
- Institut Jacques Monod, CNRS, UMR7592, University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
25
|
Stalled transcription complexes promote DNA repair at a distance. Proc Natl Acad Sci U S A 2014; 111:4037-42. [PMID: 24554077 DOI: 10.1073/pnas.1322350111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription-coupled nucleotide excision repair (TCR) accelerates the removal of noncoding lesions from the template strand of active genes, and hence contributes to genome-wide variations in mutation frequency. Current models for TCR suppose that a lesion must cause RNA polymerase (RNAP) to stall if it is to be a substrate for accelerated repair. We have examined the substrate requirements for TCR using a system in which transcription stalling and damage location can be uncoupled. We show that Mfd-dependent TCR in bacteria involves the formation of a damage search complex that can detect lesions downstream of a stalled RNAP, and that the strand specificity of the accelerated repair pathway is independent of the requirement for a lesion to stall RNAP. We also show that an ops (operon polarity suppressor) transcription pause site, which causes backtracking of RNAP, can promote the repair of downstream lesions when those lesions do not themselves cause the polymerase to stall. Our findings indicate that the transcription-repair coupling factor Mfd, which is an ATP-dependent superfamily 2 helicase that binds to RNAP, continues to translocate along DNA after RNAP has been displaced until a lesion in the template strand is located. The discovery that pause sites can promote the repair of nonstalling lesions suggests that TCR pathways may play a wider role in modulating mutation frequencies in different parts of the genome than has previously been suspected.
Collapse
|
26
|
Shanmughapriya V, Meenakshi S, Munavar MH. Selective alleviation of Mitomycin C sensitivity in lexA3 strains of Escherichia coli demands allele specificity of rif-nal mutations: a pivotal role for rpoB87-gyrA87 mutations. PLoS One 2014; 9:e87702. [PMID: 24498357 PMCID: PMC3912069 DOI: 10.1371/journal.pone.0087702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 01/02/2014] [Indexed: 11/18/2022] Open
Abstract
Very recently, we have reported about an unconventional mode of elicitation of Mitomycin C (MMC) specific resistance in lexA3 (SOS repair deficient) mutants due to a combination of Rif-Nal mutations (rpoB87-gyrA87). We have clearly shown that UvrB is mandatory for this unconventional MMC resistance in rpoB87-gyrA87-lexA3 strains and uvrB is expressed more even without DNA damage induction from its LexA dependent promoter despite the uncleavable LexA3 repressor. The rpoB87 allele is same as the rpoB3595 which is known to give rise to a fast moving RNA Polymerase and gyrA87 is a hitherto unreported Nal(R) allele. Thus, it is proposed that the RNA Polymerase with higher elongation rate with the mutant DNA Gyrase is able to overcome the repressional hurdle posed by LexA3 to express uvrB. In this study we have systematically analysed the effect of three other rpoB (rif) mutations-two known to give rise to fast moving RNAP (rpoB2 and rpoB111) and one to a slow moving RNAP (rpoB8) and four different alleles of gyrA Nal(R) mutations (gyrA199, gyrA247, gyrA250, gyrA259) isolated spontaneously, on elicitation of MMC resistance in lexA3 strains. Our results indicate that in order to acquire resistance to 0.5 µg/ml MMC cells require both rpoB87 and gyrA87 but resistance to 0.25 µg/ml of MMC can be brought about by either rpoB87, gyrA87, fast moving rpoB mutations or other nal mutations also. We have also depicted increased constitutive uvrB expression in strains carrying fast moving RNAP (rpoB2 and rpoB111) with gyrA87 and another nal mutation with rpoB87 and expression level in these strains is lesser than rpoB87-gyrA87 strain. These results evidently suggest an allele specific role for the rif-nal mutations to acquire MMC resistance in lexA3 strains via increased constitutive uvrB expression and a pivotal role for rpoB87-gyrA87 combination to elicit higher levels of resistance.
Collapse
Affiliation(s)
- Vinod Shanmughapriya
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Shanmugaraja Meenakshi
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - M. Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
- * E-mail:
| |
Collapse
|
27
|
Deaconescu AM. RNA polymerase between lesion bypass and DNA repair. Cell Mol Life Sci 2013; 70:4495-509. [PMID: 23807206 PMCID: PMC11113250 DOI: 10.1007/s00018-013-1384-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 11/29/2022]
Abstract
DNA damage leads to heritable changes in the genome via DNA replication. However, as the DNA helix is the site of numerous other transactions, notably transcription, DNA damage can have diverse repercussions on cellular physiology. In particular, DNA lesions have distinct effects on the passage of transcribing RNA polymerases, from easy bypass to almost complete block of transcription elongation. The fate of the RNA polymerase positioned at a lesion is largely determined by whether the lesion is structurally subtle and can be accommodated and eventually bypassed, or bulky, structurally distorting and requiring remodeling/complete dissociation of the transcription elongation complex, excision, and repair. Here we review cellular responses to DNA damage that involve RNA polymerases with a focus on bacterial transcription-coupled nucleotide excision repair and lesion bypass via transcriptional mutagenesis. Emphasis is placed on the explosion of new structural information on RNA polymerases and relevant DNA repair factors and the mechanistic models derived from it.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS029, Waltham, MA, 02454, USA,
| |
Collapse
|
28
|
Gwynn EJ, Smith AJ, Guy CP, Savery NJ, McGlynn P, Dillingham MS. The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLoS One 2013; 8:e78141. [PMID: 24147116 PMCID: PMC3797733 DOI: 10.1371/journal.pone.0078141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/13/2013] [Indexed: 12/31/2022] Open
Abstract
UvrD-like helicases play diverse roles in DNA replication, repair and recombination pathways. An emerging body of evidence suggests that their different cellular functions are directed by interactions with partner proteins that target unwinding activity to appropriate substrates. Recent studies in E. coli have shown that UvrD can act as an accessory replicative helicase that resolves conflicts between the replisome and transcription complexes, but the mechanism is not understood. Here we show that the UvrD homologue PcrA interacts physically with B. subtilis RNA polymerase, and that an equivalent interaction is conserved in E. coli where UvrD, but not the closely related helicase Rep, also interacts with RNA polymerase. The PcrA-RNAP interaction is direct and independent of nucleic acids or additional mediator proteins. A disordered but highly conserved C-terminal region of PcrA, which distinguishes PcrA/UvrD from otherwise related enzymes such as Rep, is both necessary and sufficient for interaction with RNA polymerase.
Collapse
Affiliation(s)
- Emma J. Gwynn
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Abigail J. Smith
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Colin P. Guy
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nigel J. Savery
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Peter McGlynn
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark S. Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Deaconescu AM, Artsimovitch I, Grigorieff N. Interplay of DNA repair with transcription: from structures to mechanisms. Trends Biochem Sci 2012; 37:543-52. [PMID: 23084398 DOI: 10.1016/j.tibs.2012.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 01/29/2023]
Abstract
Many DNA transactions are crucial for maintaining genomic integrity and faithful transfer of genetic information but remain poorly understood. An example is the interplay between nucleotide excision repair (NER) and transcription, also known as transcription-coupled DNA repair (TCR). Discovered decades ago, the mechanisms for TCR have remained elusive, not in small part due to the scarcity of structural studies of key players. Here we summarize recent structural information on NER/TCR factors, focusing on bacterial systems, and integrate it with existing genetic, biochemical, and biophysical data to delineate the mechanisms at play. We also review emerging, alternative modalities for recruitment of NER proteins to DNA lesions.
Collapse
Affiliation(s)
- Alexandra M Deaconescu
- Howard Hughes Medical Institute, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South St., MS 029, Waltham, MA 02454, USA.
| | | | | |
Collapse
|
30
|
Gaillard H, Aguilera A. Transcription coupled repair at the interface between transcription elongation and mRNP biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:141-50. [PMID: 23046879 DOI: 10.1016/j.bbagrm.2012.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 01/13/2023]
Abstract
During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Throughout transcription elongation, RNA polymerases frequently deal with a number of obstacles that need to be removed for transcription resumption. One important type of hindrance consists of helix-distorting DNA lesions. Transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair, ensures a fast repair of such transcription-blocking lesions. While the nucleotide excision repair reaction is fairly well understood, its regulation and the way it deals with DNA transcription remains largely unknown. In this review, we update our current understanding of the factors involved in TC-NER and discuss their functional interplay with the processes of transcription elongation and mRNP biogenesis. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
31
|
Howan K, Smith AJ, Westblade LF, Joly N, Grange W, Zorman S, Darst SA, Savery NJ, Strick TR. Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 2012; 490:431-4. [PMID: 22960746 PMCID: PMC3475728 DOI: 10.1038/nature11430] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 07/20/2012] [Indexed: 12/02/2022]
Abstract
Transcription-coupled repair employs components of the transcription machinery to identify DNA lesions and initiate their repair. These repair pathways are complex so their mechanistic features remain poorly understood. Bacterial transcription-coupled repair is initiated when RNA polymerase stalled at a DNA lesion is removed by Mfd, an ATP-dependent DNA translocase [1–3]. Here we use single-molecule DNA nanomanipulation to observe the dynamic interactions of E. coli Mfd with RNA polymerase elongation complexes stalled by a cyclopyrimidine dimer or by nucleotide starvation. We show that Mfd acts by catalyzing two irreversible, ATP-dependent steps with different structural, kinetic, and mechanistic features. Mfd remains bound to the DNA in a long-lived complex that could serve as a marker for sites of DNA damage, directing assembly of subsequent DNA repair factors. These results provide a framework for considering the kinetics of transcription-coupled repair in vivo, and open the way to reconstruction of complete DNA repair pathways at single-molecule resolution.
Collapse
Affiliation(s)
- Kévin Howan
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité F-75205 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Interaction of CarD with RNA polymerase mediates Mycobacterium tuberculosis viability, rifampin resistance, and pathogenesis. J Bacteriol 2012; 194:5621-31. [PMID: 22904282 DOI: 10.1128/jb.00879-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis infection continues to cause substantial human suffering. New chemotherapeutic strategies, which require insight into the pathways essential for M. tuberculosis pathogenesis, are imperative. We previously reported that depletion of the CarD protein in mycobacteria compromises viability, resistance to oxidative stress and fluoroquinolones, and pathogenesis. CarD associates with the RNA polymerase (RNAP), but it has been unknown which of the diverse functions of CarD are mediated through the RNAP; this question must be answered to understand the CarD mechanism of action. Herein, we describe the interaction between the M. tuberculosis CarD and the RNAP β subunit and identify point mutations that weaken this interaction. The characterization of mycobacterial strains with attenuated CarD/RNAP β interactions demonstrates that the CarD/RNAP β association is required for viability and resistance to oxidative stress but not for fluoroquinolone resistance. Weakening the CarD/RNAP β interaction also increases the sensitivity of mycobacteria to rifampin and streptomycin. Surprisingly, depletion of the CarD protein did not affect sensitivity to rifampin. These findings define the CarD/RNAP interaction as a new target for chemotherapeutic intervention that could also improve the efficacy of rifampin treatment of tuberculosis. In addition, our data demonstrate that weakening the CarD/RNAP β interaction does not completely phenocopy the depletion of CarD and support the existence of functions for CarD independent of direct RNAP binding.
Collapse
|
33
|
Abstract
ATP-dependent nucleic acid helicases and translocases play essential roles in many aspects of DNA and RNA biology. In order to ensure that these proteins act only in specific contexts, their activity is often regulated by intramolecular contacts and interaction with partner proteins. We have studied the bacterial Mfd protein, which is an ATP-dependent DNA translocase that relocates or displaces transcription ECs in a variety of cellular contexts. When bound to RNAP, Mfd exhibits robust ATPase and DNA translocase activities, but when released from its substrate these activities are repressed by autoinhibitory interdomain contacts. In this work, we have identified an interface within the Mfd protein that is important for regulating the activity of the protein, and whose disruption permits Mfd to act indiscriminately at transcription complexes that lack the usual determinants of Mfd specificity. Our results indicate that regulation of Mfd occurs through multiple nodes, and that activation of Mfd may be a multi-stage process.
Collapse
Affiliation(s)
- Abigail J Smith
- DNA-protein interactions unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
34
|
Ganesan A, Spivak G, Hanawalt PC. Transcription-coupled DNA repair in prokaryotes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:25-40. [PMID: 22749141 DOI: 10.1016/b978-0-12-387665-2.00002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair (NER) that acts specifically on lesions in the transcribed strand of expressed genes. First reported in mammalian cells, TCR was then documented in Escherichia coli. In this organism, an RNA polymerase arrested at a lesion is displaced by the transcription repair coupling factor, Mfd. This protein recruits the NER lesion-recognition factor UvrA, and then dissociates from the DNA. UvrA binds UvrB, and the assembled UvrAB* complex initiates repair. In mutants lacking active Mfd, TCR is absent. A gene transcribed by the bacteriophage T7 RNA polymerase in E. coli also requires Mfd for TCR. The CSB protein (missing or defective in cells of patients with Cockayne syndrome, complementation group B) is essential for TCR in humans. CSB and its homologs in higher eukaryotes are likely functional equivalents of Mfd.
Collapse
Affiliation(s)
- Ann Ganesan
- Department of Biology, Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
35
|
Prabha S, China A, Rao DN, Nagaraja V. WITHDRAWN: Stimulation of the Mycobacterium tuberculosis transcription elongation by MtbMfd. Tuberculosis (Edinb) 2011:S1472-9792(11)00213-7. [PMID: 22129656 DOI: 10.1016/j.tube.2011.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 11/20/2022]
Abstract
This article has been withdrawn at the request of the author(s). The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Swayam Prabha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
36
|
Manelyte L, Kim YIT, Smith AJ, Smith RM, Savery NJ. Regulation and rate enhancement during transcription-coupled DNA repair. Mol Cell 2011; 40:714-24. [PMID: 21145481 PMCID: PMC3025350 DOI: 10.1016/j.molcel.2010.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/03/2010] [Accepted: 09/14/2010] [Indexed: 11/22/2022]
Abstract
Transcription-coupled DNA repair (TCR) is a subpathway of nucleotide excision repair (NER) that is triggered when RNA polymerase is stalled by DNA damage. Lesions targeted by TCR are repaired more quickly than lesions repaired by the transcription-independent “global” NER pathway, but the mechanism underlying this rate enhancement is not understood. Damage recognition during bacterial NER depends upon UvrA, which binds to the damage and loads UvrB onto the DNA. Bacterial TCR additionally requires the Mfd protein, a DNA translocase that removes the stalled transcription complexes. We have determined the properties of Mfd, UvrA, and UvrB that are required for the elevated rate of repair observed during TCR. We show that TCR and global NER differ in their requirements for damage recognition by UvrA, indicating that Mfd acts at the very earliest stage of the repair process and extending the functional similarities between TCR in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Laura Manelyte
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
37
|
Srivastava DB, Darst SA. Derepression of bacterial transcription-repair coupling factor is associated with a profound conformational change. J Mol Biol 2010; 406:275-84. [PMID: 21185303 DOI: 10.1016/j.jmb.2010.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/28/2010] [Accepted: 12/02/2010] [Indexed: 11/16/2022]
Abstract
Transcription-repair coupling factor (TRCF; the product of the mfd gene) is a widely conserved bacterial protein that couples DNA repair with transcription. TRCF recognizes RNA polymerase stalled at a noncoding lesion in the DNA template strand, uses the energy from ATP hydrolysis to disrupt the transcription complex, and stimulates DNA repair by recruiting UvrA, a component of the nucleotide excision repair machinery, to the site. TRCF is a large (130 kDa) multifunctional protein with a complex structure-function relationship consisting of a compact arrangement of eight structured domains linked by flexible linkers. Through a conserved, intramolecular, interdomain interaction, TRCF is held in a conformation in which its enzymatic activities (ATPase activity and DNA translocase activity) are strongly repressed. Disruption of the repressive interdomain interaction by amino acid substitutions within the interface derepresses ATPase and DNA translocase activities. In this work, we have shown that derepressed TRCF mutants are dramatically sensitized to limited proteolysis compared with repressed TRCF, pointing to an altered conformational state. Analysis of the protease cleavage sites mapped onto the structure of the repressed TRCF conformation indicates that (1) the cleavage sites tend to cluster at linkers connecting the TRCF structured domains, and (2) many of the cleavage sites sensitized in the derepressed TRCF are partially or completely buried to protease access in the repressed TRCF structure. We conclude that TRCF derepression is associated with profound conformational changes that primarily involve a reorganization of the interdomain interactions.
Collapse
|
38
|
Westblade LF, Campbell EA, Pukhrambam C, Padovan JC, Nickels BE, Lamour V, Darst SA. Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res 2010; 38:8357-69. [PMID: 20702425 PMCID: PMC3001067 DOI: 10.1093/nar/gkq692] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The transcription-repair coupling factor (TRCF, the product of the mfd gene) is a widely conserved bacterial protein that mediates transcription-coupled DNA repair. TRCF uses its ATP-dependent DNA translocase activity to remove transcription complexes stalled at sites of DNA damage, and stimulates repair by recruiting components of the nucleotide excision repair pathway to the site. A protein/protein interaction between TRCF and the β-subunit of RNA polymerase (RNAP) is essential for TRCF function. CarD (also called CdnL), an essential regulator of rRNA transcription in Mycobacterium tuberculosis, shares a homologous RNAP interacting domain with TRCF and also interacts with the RNAP β-subunit. We determined the 2.9-Å resolution X-ray crystal structure of the RNAP interacting domain of TRCF complexed with the RNAP-β1 domain, which harbors the TRCF interaction determinants. The structure reveals details of the TRCF/RNAP protein/protein interface, providing a basis for the design and interpretation of experiments probing TRCF, and by homology CarD, function and interactions with the RNAP.
Collapse
Affiliation(s)
- Lars F Westblade
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Lane WJ, Darst SA. Molecular evolution of multisubunit RNA polymerases: structural analysis. J Mol Biol 2009; 395:686-704. [PMID: 19895816 DOI: 10.1016/j.jmb.2009.10.063] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/24/2009] [Accepted: 10/26/2009] [Indexed: 11/17/2022]
Abstract
Comprehensive multiple sequence alignments of the multisubunit DNA-dependent RNA polymerase (RNAP) large subunits, including the bacterial beta and beta' subunits and their homologs from archaebacterial RNAPs, eukaryotic RNAPs I-III, nuclear-cytoplasmic large double-stranded DNA virus RNAPs, and plant plastid RNAPs, were created [Lane, W. J. and Darst, S. A. (2009). Molecular evolution of multisubunit RNA polymerases: sequence analysis. In press]. The alignments were used to delineate sequence regions shared among all classes of multisubunit RNAPs, defining common, fundamental RNAP features as well as identifying highly conserved positions. Here, we present a systematic, detailed structural analysis of these shared regions and highly conserved positions in terms of the RNAP structure, as well as the RNAP structure/function relationship, when known.
Collapse
Affiliation(s)
- William J Lane
- The Rockefeller University, Box 224, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
40
|
Murphy MN, Gong P, Ralto K, Manelyte L, Savery NJ, Theis K. An N-terminal clamp restrains the motor domains of the bacterial transcription-repair coupling factor Mfd. Nucleic Acids Res 2009; 37:6042-53. [PMID: 19700770 PMCID: PMC2764443 DOI: 10.1093/nar/gkp680] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Motor proteins that translocate on nucleic acids are key players in gene expression and maintenance. While the function of these proteins is diverse, they are driven by highly conserved core motor domains. In transcription-coupled DNA repair, motor activity serves to remove RNA polymerase stalled on damaged DNA, making the lesion accessible for repair. Structural and biochemical data on the bacterial transcription-repair coupling factor Mfd suggest that this enzyme undergoes large conformational changes from a dormant state to an active state upon substrate binding. Mfd can be functionally dissected into an N-terminal part instrumental in recruiting DNA repair proteins (domains 1–3, MfdN), and a C-terminal part harboring motor activity (domains 4–7, MfdC). We show that isolated MfdC has elevated ATPase and motor activities compared to the full length protein. While MfdN has large effects on MfdC activity and thermostability in cis, these effects are not observed in trans. The structure of MfdN is independent of interactions with MfdC, implying that MfdN acts as a clamp that restrains motions of the motor domains in the dormant state. We conclude that releasing MfdN:MfdC interactions serves as a central molecular switch that upregulates Mfd functions during transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Michael N Murphy
- Department of Chemistry, Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The elongation phase of transcription by RNA polymerase is highly regulated and modulated. Both general and operon-specific elongation factors determine the local rate and extent of transcription to coordinate the appearance of transcript with its use as a messenger or functional ribonucleoprotein or regulatory element, as well as to provide operon-specific gene regulation.
Collapse
Affiliation(s)
- Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
42
|
Khodak YA, Koroleva ON, Drutsa VL. A system for heterologous expression and isolation of Escherichia coli RNA polymerase and its components. BIOCHEMISTRY (MOSCOW) 2007; 72:178-87. [PMID: 17367295 DOI: 10.1134/s0006297907020071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A set of plasmid vectors for expression of all major Escherichia coli RNA polymerase subunits as fusion proteins with intein- and chitin-binding domains, allowing protein purification in accordance with IMPACT technology, was constructed. It is demonstrated that the fusion subunits alpha, beta or beta' in conjunction with the natural subunits alpha, beta, beta', and sigma can participate in RNA polymerase assembly in vivo, providing affinity-based isolation of the enzyme. Functional activity of the enzyme preparations was demonstrated in the experiments on in vitro transcription and promoter complex formation. With the use of IMPACT technology, sigma(70) subunit can be isolated as an individual protein without admixture of RNA polymerase.
Collapse
Affiliation(s)
- Yu A Khodak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
43
|
Savery NJ. The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 2007; 15:326-33. [PMID: 17572090 DOI: 10.1016/j.tim.2007.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/11/2007] [Accepted: 05/25/2007] [Indexed: 02/04/2023]
Abstract
DNA damage that blocks the transcription of genes is prioritized for repair by transcription-coupled DNA repair pathways. RNA polymerases stalled at DNA lesions obstruct repair enzymes, but this situation is turned to the advantage of the cell by transcription-repair coupling factors that remove the stalled RNA polymerase from DNA and increase the rate at which the lesion is repaired. Recent structural studies of the bacterial transcription-repair coupling factor, Mfd, have revealed a modular architecture in which an ATP-dependent DNA-based motor is coupled to protein-protein interaction domains that can attach the motor to RNA polymerase and the DNA repair protein UvrA. Here I review the key features of this multifunctional protein and discuss how recent mechanistic and structural findings have advanced our understanding of transcription-coupled DNA repair in bacteria.
Collapse
Affiliation(s)
- Nigel J Savery
- DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
44
|
Ganesan AK, Smith AJ, Savery NJ, Zamos P, Hanawalt PC. Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the beta subunit of RNA polymerase. DNA Repair (Amst) 2007; 6:1434-40. [PMID: 17532270 PMCID: PMC2578841 DOI: 10.1016/j.dnarep.2007.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
The proposed mechanism for transcription coupled nucleotide excision repair (TCR) invokes RNA polymerase (RNAP) blocked at a DNA lesion as a signal to initiate repair. In Escherichia coli, TCR requires the interaction of RNAP with a transcription-repair coupling factor encoded by the mfd gene. The interaction between RNAP and Mfd depends upon amino acids 117, 118, and 119 of the beta subunit of RNAP; changing any one of these to alanine diminishes the interaction [1]. Using direct assays for TCR, and the lac operon of E. coli containing UV induced cyclobutane pyrimidine dimers (CPDs) as substrate, we have found that a change from arginine to cysteine at amino acid 529 of the beta subunit of the RNAP inactivates TCR, but does not prevent the interaction of RNAP with Mfd. Our results suggest that this interaction may be necessary but not sufficient to facilitate TCR.
Collapse
Affiliation(s)
- Ann K Ganesan
- Department of Biological Sciences, Stanford University, Stanford, CA 94303-5020, USA.
| | | | | | | | | |
Collapse
|
45
|
Smith AJ, Szczelkun MD, Savery NJ. Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Res 2007; 35:1802-11. [PMID: 17329375 PMCID: PMC1874598 DOI: 10.1093/nar/gkm019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Motor proteins that couple ATP hydrolysis to movement along nucleic acids play a variety of essential roles in DNA metabolism. Often these enzymes function as components of macromolecular complexes, and DNA translocation by the motor protein drives movement of other components of the complex. In order to understand how the activity of motor proteins is regulated within multi-protein complexes we have studied the bacterial transcription-repair coupling factor, Mfd, which is a helicase superfamily 2 member that binds to RNA polymerase (RNAP) and removes stalled transcription complexes from DNA. Using an oligonucleotide displacement assay that monitors protein movement on double-stranded DNA we show that Mfd has little motor activity in isolation, but exhibits efficient oligonucleotide displacement activity when bound to a stalled transcription complex. Deletion of the C-terminal domain of Mfd increases the ATPase activity of the protein and allows efficient oligo-displacement in the absence of RNAP. Our results suggest that an autoinhibitory domain ensures the motor activity of Mfd is only functional within the correct macromolecular context: recruitment of Mfd to a stalled transcription complex relieves the autoinhibition and unmasks the motor activity.
Collapse
Affiliation(s)
| | | | - Nigel J. Savery
- *To whom correspondence should be addressed. +(44) 117 928 9708+(44) 117 928 8274
| |
Collapse
|
46
|
Deaconescu AM, Savery N, Darst SA. The bacterial transcription repair coupling factor. Curr Opin Struct Biol 2007; 17:96-102. [PMID: 17239578 PMCID: PMC2757452 DOI: 10.1016/j.sbi.2007.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 11/27/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
The widely conserved bacterial transcription repair coupling factor (TRCF) is a large, multidomain, superfamily 2 ATPase. It couples nucleotide excision repair with transcription by dislodging inactive RNA polymerase molecules stalled at template DNA lesions and increasing the rate at which the Uvr(A)BC excinuclease acts at these sites. The recent elucidation of X-ray crystal structures of Escherichia coli TRCF revealed its architectural details, and will enable the design of more incisive experiments addressing how TRCF translocates on double-stranded DNA, destabilizes the RNA polymerase ternary elongation complex and recruits the Uvr(A)BC system.
Collapse
Affiliation(s)
| | - Nigel Savery
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Seth A. Darst
- Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
- Corresponding author: Darst, Seth A. ()
| |
Collapse
|
47
|
Saxowsky TT, Doetsch PW. RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? Chem Rev 2006; 106:474-88. [PMID: 16464015 DOI: 10.1021/cr040466q] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Tina T Saxowsky
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
48
|
Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, Savery NJ, Darst SA. Structural basis for bacterial transcription-coupled DNA repair. Cell 2006; 124:507-20. [PMID: 16469698 DOI: 10.1016/j.cell.2005.11.045] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/07/2005] [Accepted: 11/17/2005] [Indexed: 01/22/2023]
Abstract
Coupling of transcription and DNA repair in bacteria is mediated by transcription-repair coupling factor (TRCF, the product of the mfd gene), which removes transcription elongation complexes stalled at DNA lesions and recruits the nucleotide excision repair machinery to the site. Here we describe the 3.2 A-resolution X-ray crystal structure of Escherichia coli TRCF. The structure consists of a compact arrangement of eight domains, including a translocation module similar to the SF2 ATPase RecG, and a region of structural similarity to UvrB. Biochemical and genetic experiments establish that another domain with structural similarity to the Tudor-like domain of the transcription elongation factor NusG plays a critical role in TRCF/RNA polymerase interactions. Comparison with the translocation module of RecG as well as other structural features indicate that TRCF function involves large-scale conformational changes. These data, along with a structural model for the interaction of TRCF with the transcription elongation complex, provide mechanistic insights into TRCF function.
Collapse
|