1
|
Kanarskaya MA, Novikova SV, Lomzov AA. Hybrid RNA/DNA Concatemers and Self-Limited Complexes: Structure and Prospects for Therapeutic Applications. Molecules 2024; 29:5896. [PMID: 39769985 PMCID: PMC11677838 DOI: 10.3390/molecules29245896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The development of new convenient tools for the design of multicomponent nucleic acid (NA) complexes is one of the challenges in biomedicine and NA nanotechnology. In this paper, we analyzed the formation of hybrid RNA/DNA concatemers and self-limited complexes by a pair of oligonucleotides using UV melting, circular dichroism spectroscopy, and a gel shift assay. Effects of the size of the linker between duplex-forming segments of the oligonucleotides on complexes' shape and number of subunits were compared and systematized for RNA/DNA, DNA/DNA, and RNA/RNA assemblies. The data on complex types summarized here as heat maps offer a convenient tool for the design of NA constructs. General rules found for RNA/DNA, DNA/DNA, and RNA/RNA complexes allow not only designing complexes with desired structures but also purposefully transforming their geometry. The A-form of the double helix of the studied RNA/DNA complexes was confirmed by circular dichroism analysis. Moreover, we show for the first time efficient degradation of RNA in hybrid self-limited complexes by RNase H and imidazole. The results open up new prospects for the design of supramolecular complexes as tools for nanotechnology, nanomachinery, and biomedical applications.
Collapse
Affiliation(s)
- Maria A. Kanarskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; (M.A.K.); (S.V.N.)
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Sofia V. Novikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; (M.A.K.); (S.V.N.)
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Alexander A. Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia; (M.A.K.); (S.V.N.)
- Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
2
|
Bulge-Forming miRNases Cleave Oncogenic miRNAs at the Central Loop Region in a Sequence-Specific Manner. Int J Mol Sci 2022; 23:ijms23126562. [PMID: 35743015 PMCID: PMC9224474 DOI: 10.3390/ijms23126562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The selective degradation of disease-associated microRNA is promising for the development of new therapeutic approaches. In this study, we engineered a series of bulge-loop-forming oligonucleotides conjugated with catalytic peptide [(LeuArg)2Gly]2 (BC-miRNases) capable of recognizing and destroying oncogenic miR-17 and miR-21. The principle behind the design of BC-miRNase is the cleavage of miRNA at a three-nucleotide bulge loop that forms in the central loop region, which is essential for the biological competence of miRNA. A thorough study of mono- and bis-BC-miRNases (containing one or two catalytic peptides, respectively) revealed that: (i) the sequence of miRNA bulge loops and neighbouring motifs are of fundamental importance for efficient miRNA cleavage (i.e., motifs containing repeating pyrimidine-A bonds are more susceptible to cleavage); (ii) the incorporation of the second catalytic peptide in the same molecular scaffold increases the potency of BC-miRNase, providing a complete degradation of miR-17 within 72 h; (iii) the synergetic co-operation of BC-miRNases with RNase H accelerates the rate of miRNA catalytic cleavage by both the conjugate and the enzyme. Such synergy allows the rapid destruction of constantly emerging miRNA to maintain sufficient knockdown and achieve a desired therapeutic effect.
Collapse
|
3
|
Staroseletz Y, Amirloo B, Williams A, Lomzov A, Burusco KK, Clarke DJ, Brown T, Zenkova MA, Bichenkova EV. Strict conformational demands of RNA cleavage in bulge-loops created by peptidyl-oligonucleotide conjugates. Nucleic Acids Res 2020; 48:10662-10679. [PMID: 33010175 PMCID: PMC7641753 DOI: 10.1093/nar/gkaa780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
Potent knockdown of pathogenic RNA in vivo is an urgent health need unmet by both small-molecule and biologic drugs. ‘Smart’ supramolecular assembly of catalysts offers precise recognition and potent destruction of targeted RNA, hitherto not found in nature. Peptidyl-oligonucleotide ribonucleases are here chemically engineered to create and attack bulge-loop regions upon hybridization to target RNA. Catalytic peptide was incorporated either via a centrally modified nucleotide (Type 1) or through an abasic sugar residue (Type 2) within the RNA-recognition motif to reveal striking differences in biological performance and strict structural demands of ribonuclease activity. None of the Type 1 conjugates were catalytically active, whereas all Type 2 conjugates cleaved RNA target in a sequence-specific manner, with up to 90% cleavage from 5-nt bulge-loops (BC5-α and BC5L-β anomers) through multiple cuts, including in folds nearby. Molecular dynamics simulations provided structural explanation of accessibility of the RNA cleavage sites to the peptide with adoption of an ‘in-line’ attack conformation for catalysis. Hybridization assays and enzymatic probing with RNases illuminated how RNA binding specificity and dissociation after cleavage can be balanced to permit turnover of the catalytic reaction. This is an essential requirement for inactivation of multiple copies of disease-associated RNA and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russia
| | - Bahareh Amirloo
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aled Williams
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Alexander Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russia
| | - Kepa K Burusco
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - David J Clarke
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090 Novosibirsk, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
4
|
Dual miRNases for Triple Incision of miRNA Target: Design Concept and Catalytic Performance. Molecules 2020; 25:molecules25102459. [PMID: 32466298 PMCID: PMC7287882 DOI: 10.3390/molecules25102459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Irreversible destruction of disease-associated regulatory RNA sequences offers exciting opportunities for safe and powerful therapeutic interventions against human pathophysiology. In 2017, for the first time we introduced miRNAses–miRNA-targeted conjugates of a catalytic peptide and oligonucleotide capable of cleaving an miRNA target. Herein, we report the development of Dual miRNases against oncogenic miR-21, miR-155, miR-17 and miR-18a, each containing the catalytic peptide placed in-between two short miRNA-targeted oligodeoxyribonucleotide recognition motifs. Substitution of adenines with 2-aminoadenines in the sequence of oligonucleotide “shoulders” of the Dual miRNase significantly enhanced the efficiency of hybridization with the miRNA target. It was shown that sequence-specific cleavage of the target by miRNase proceeded metal-independently at pH optimum 5.5–7.5 with an efficiency varying from 15% to 85%, depending on the miRNA sequence. A distinct advantage of the engineered nucleases is their ability to additionally recruit RNase H and cut miRNA at three different locations. Such cleavage proceeds at the central part by Dual miRNase, and at the 5′- and 3′-regions by RNase H, which significantly increases the efficiency of miRNA degradation. Due to increased activity at lowered pH Dual miRNases could provide an additional advantage in acidic tumor conditions and may be considered as efficient tumor-selective RNA-targeted therapeutic.
Collapse
|
5
|
Patutina OA, Bazhenov MA, Miroshnichenko SK, Mironova NL, Pyshnyi DV, Vlassov VV, Zenkova MA. Peptide-oligonucleotide conjugates exhibiting pyrimidine-X cleavage specificity efficiently silence miRNA target acting synergistically with RNase H. Sci Rep 2018; 8:14990. [PMID: 30302012 PMCID: PMC6177439 DOI: 10.1038/s41598-018-33331-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Taking into account the important role of miRNA in carcinogenesis, oncogenic miRNAs are attractive molecules for gene-targeted therapy. Here, we developed a novel series of peptide-oligonucleotide conjugates exhibiting ribonuclease activity targeted to highly oncogenic miRNAs miR-21 and miR-17. When designing the conjugates, we enhanced both nuclease resistance of the targeted oligodeoxyribonucleotide by introducing at its 3'-end mini-hairpin structure displaying high thermostability and robustness against nuclease digestion and the efficiency of its functioning by attachment of the catalytic construction (amide)NH2-Gly(ArgLeu)4-TCAA displaying ribonuclease activity to its 5'-end. Designed miRNases efficiently cleaved miRNA targets, exhibiting Pyr-X specificity, and cleavage specificity had strong dependence on the miRNA sequence in the site of peptide location. In vitro, designed miRNases do not prevent cleavage of miRNA bound with the conjugate by RNase H, and more than an 11-fold enhancement of miRNA cleavage by the conjugate is observed in the presence of RNase H. In murine melanoma cells, miRNase silences mmu-miR-17 with very high efficiency as a result of miR-17 cleavage by miRNase and by recruited RNase H. Thus, miRNases provide a system of double attack of the miRNA molecules, significantly increasing the efficiency of miRNA downregulation in the cells in comparison with antisense oligonucleotide.
Collapse
Affiliation(s)
- O A Patutina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - M A Bazhenov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - S K Miroshnichenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - N L Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - D V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - V V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia
| | - M A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev ave., 8, Novosibirsk, 630090, Russia.
| |
Collapse
|
6
|
Staroseletz Y, Williams A, Burusco KK, Alibay I, Vlassov VV, Zenkova MA, Bichenkova EV. 'Dual' peptidyl-oligonucleotide conjugates: Role of conformational flexibility in catalytic cleavage of RNA. Biomaterials 2016; 112:44-61. [PMID: 27744220 DOI: 10.1016/j.biomaterials.2016.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Traditional therapeutic interventions against abnormal gene expression in disease states at the level of expressed proteins are becoming increasingly difficult due to poor selectivity, off-target effects and associated toxicity. Upstream catalytic targeting of specific RNA sequences offers an alternative platform for drug discovery to achieve more potent and selective treatment through antisense interference with disease-relevant RNAs. We report a novel class of catalytic biomaterials, comprising amphipathic RNA-cleaving peptides placed between two RNA recognition motifs, here demonstrated to target the TΨC loop and 3'- acceptor stem of tRNAPhe. These unique peptidyl-oligonucleotide 'dual' conjugates (DCs) were created by phosphoramidate or thiol-maleimide conjugation chemistry of a TΨC-targeting oligonucleotide to the N-terminus of the amphipathic peptide sequence, followed by amide coupling of a 3'-acceptor stem-targeting oligonucleotide to the free C-terminal carboxylic acid functionality of the same peptide. Hybridization of the DCs bearing two spatially-separated recognition motifs with the target tRNAPhe placed the peptide adjacent to a single-stranded RNA region and promoted cleavage within the 'action radius' of the catalytic peptide. Up to 100% cleavage of the target tRNAPhe was achieved by the best candidate (i.e. DC6) within 4 h, when conformational flexibility was introduced into the linker regions between the peptide and oligonucleotide components. This study provides the strong position for future development of highly selective RNA-targeting agents that can potentially be used for disease-selective treatment at the level of messenger, micro, and genomic viral RNA.
Collapse
Affiliation(s)
- Yaroslav Staroseletz
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090, Novosibirsk, Russia
| | - Aled Williams
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Kepa K Burusco
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Irfan Alibay
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Valentin V Vlassov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090, Novosibirsk, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090, Novosibirsk, Russia
| | - Elena V Bichenkova
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
7
|
2,6-Bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)pyridine and Its Benzene Analog as Nonmetallic Cleaving Agents of RNA Phosphodiester Linkages. Int J Mol Sci 2015; 16:17798-811. [PMID: 26247935 PMCID: PMC4581222 DOI: 10.3390/ijms160817798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/13/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
2,6-Bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)pyridine (11a) and 1,3-bis(1,4,7,10-tetraazacyclododecan-1-ylmethyl)benzene (11b) have been shown to accelerate at 50 mmol·L−1 concentration both the cleavage and mutual isomerization of uridylyl-3′,5′-uridine and uridylyl-2′,5′-uridine by up to two orders of magnitude. The catalytically active ionic forms are the tri- (in the case of 11b) tetra- and pentacations. The pyridine nitrogen is not critical for efficient catalysis, since the activity of 11b is even slightly higher than that of 11a. On the other hand, protonation of the pyridine nitrogen still makes 11a approximately four times more efficient as a catalyst, but only for the cleavage reaction. Interestingly, the respective reactions of adenylyl-3′,5′-adenosine were not accelerated, suggesting that the catalysis is base moiety selective.
Collapse
|
8
|
Williams A, Staroseletz Y, Zenkova MA, Jeannin L, Aojula H, Bichenkova EV. Peptidyl-oligonucleotide conjugates demonstrate efficient cleavage of RNA in a sequence-specific manner. Bioconjug Chem 2015; 26:1129-43. [PMID: 25955796 DOI: 10.1021/acs.bioconjchem.5b00193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Described here is a new class of peptidyl-oligonucleotide conjugates (POCs) which show efficient cleavage of a target RNA in a sequence-specific manner. Through phosphoramidate attachment of a 17-mer TΨC-targeting oligonucleotide to amphiphilic peptide sequences containing leucine, arginine, and glycine, zero-linker conjugates are created which exhibit targeted phosphodiester cleavage under physiological conditions. tRNA(Phe) from brewer's yeast was used as a model target sequence in order to probe different structural variants of POCs in terms of selective TΨC-arm directed cleavage. Almost quantitative (97-100%) sequence-specific tRNA cleavage is observed for several POCs over a 24 h period with a reaction half-life of less than 1 h. Nontargeted cleavage of tRNA(Phe) or HIV-1 RNA is absent. Structure-activity relationships reveal that removal of the peptide's central glycine residue significantly decreases tRNA cleavage activity; however, this can be entirely restored through replacement of the peptide's C-terminal carboxylic acid group with the carboxamide functionality. Truncation of the catalytic peptide also has a detrimental effect on POC activity. Based on the encouraging results presented, POCs could be further developed with the aim of creating useful tools for molecular biology or novel therapeutics targeting specific messenger, miRNA, and genomic viral RNA sequences.
Collapse
Affiliation(s)
- Aled Williams
- †Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PT
| | - Yaroslav Staroseletz
- ‡Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090, Novosibirsk, Russia
| | - Marina A Zenkova
- ‡Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Laurentiev Avenue, 630090, Novosibirsk, Russia
| | - Laurent Jeannin
- §Peptisyntha S.A., 310 Rue de Ransbeek, 1120 Brussels, Belgium
| | - Harmesh Aojula
- †Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PT
| | - Elena V Bichenkova
- †Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, United Kingdom, M13 9PT
| |
Collapse
|
9
|
Rahimian M, Yeole SD, Gejji SP. Mechanistic insights for β-cyclodextrin catalyzed phosphodiester hydrolysis. J Mol Model 2014; 20:2198. [PMID: 24652502 DOI: 10.1007/s00894-014-2198-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 03/02/2014] [Indexed: 11/24/2022]
Abstract
Hydrolysis of phosphodiester bond in different substrates containing alkyl or aryl substituents, in the presence of β-cyclodextrin (β-CD) as a catalyst, has been investigated employing the density functional theory. It has been shown that the mechanism of β-CD catalyzed phosphodiester hydrolysis in modeled substrates viz. [p-nitrophenyl][(2,2) methylpropan] phosphodiester (G1); [p-nitrophenyl] [(2,2)methyl butan] phosphodiester (G2); (p-nitrophenyl) (2-methyl pentan) phosphodiester (G3); (p-nitrophenyl) (phenyl) phosphodiester (G4); (p-nitrophenyl) (m-tert-butyl phenyl) phosphodiester (G5) and (p-nitrophenyl) (p-nitrophenyl) phosphodiester (G6) involves net phosphoryl transfer from p-nitrophenyl to the catalyst. The hydrolysis occurs in a single-step D(N)A(N) mechanism wherein the β-CD acts as a competitive general base. The nucleophile addition is facilitated via face-to-face hydrogen-bonded interactions from the secondary hydroxyl groups attached to the top rim of β-CD. The insights for cleavage of phosphodiester along the dissociative pathway have been derived using the molecular electrostatic potential studies as a tool. The activation barrier of substrates containing alkyl group (G2 and G3) are found to be lower than those containing aryl groups (G4, G5 and G6).
Collapse
|
10
|
Peacey E, Rodriguez L, Liu Y, Wolfe MS. Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing. Nucleic Acids Res 2012; 40:9836-49. [PMID: 22844088 PMCID: PMC3479178 DOI: 10.1093/nar/gks710] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Approximately 15% of human genetic diseases are estimated to involve dysregulation of alternative pre-mRNA splicing. Antisense molecules designed to alter these and other splicing events typically target continuous linear sequences of the message. Here, we show that a structural feature in a pre-mRNA can be targeted by bipartite antisense molecules designed to hybridize with the discontinuous elements that flank the structure and thereby alter splicing. We targeted a hairpin structure at the boundary between exon 10 and intron 10 of the pre-mRNA of tau. Mutations in this region that are associated with certain forms of frontotemporal dementia, destabilize the hairpin to cause increased inclusion of exon 10. Via electrophoretic mobility shift and RNase protection assays, we demonstrate that bipartite antisense molecules designed to simultaneously interact with the available sequences that immediately flank the tau pre-mRNA hairpin do indeed bind to this structured region. Moreover, these agents inhibit exon 10 splicing and reverse the effect of destabilizing disease-causing mutations, in both in vitro splicing assays and cell culture. This general bipartite antisense strategy could be employed to modulate other splicing events that are regulated by RNA secondary structure.
Collapse
Affiliation(s)
- Eleanor Peacey
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, 77 Avenue Louis Pasteur, HIM 754, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
11
|
Patel S, Rana J, Roy J, Huang H. Cleavage of pyrene-stabilized RNA bulge loops by trans-(±)-cyclohexane-1,2-diamine. Chem Cent J 2012; 6:3. [PMID: 22244351 PMCID: PMC3319420 DOI: 10.1186/1752-153x-6-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 11/10/2022] Open
Abstract
Chemical agents that cleave HIV genome can be potentially used for anti-HIV therapy. In this report, the cleavage of the upper stem-loop region of HIV-1 TAR RNA was studied in a variety of buffers containing organic catalysts. trans-(±)-Cyclohexane-1,2-diamine was found to cleave the RNA with the highest activity (31%, 37°C, 18 h). Cleavage of the RNA in trans-(±)-cyclohexane-1,2-diamine buffer was also studied when the RNA was hybridized with complementary DNAs. A pyrene-modified C3 spacer was incorporated to the DNA strand to facilitate the formation of a RNA bulge loop in the RNA/DNA duplex. In contrast, unmodified DNAs cannot efficiently generate RNA bulge loops, regardless of the DNA sequences. The results showed that the pyrene-stablized RNA bulge loops were efficiently and site-specifically cleaved by trans-(±)-cyclohexane-1,2-diamine.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin L, King Blvd, Newark, NJ, 07102, USA.
| | | | | | | |
Collapse
|
12
|
Saleh AD, Miller PS. Hydrolysis of bulged nucleotides in hybrids formed by RNA and imidazole-derivatized oligo-2'-O-methylribonucleotides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:235-55. [PMID: 21491332 DOI: 10.1080/15257770.2011.569810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to enhance the efficacy of small antisense molecules, we examined a series of antisense oligonucleotides derivatized with functional groups designed to enable them to hydrolyze their RNA target. Solid phase synthetic methods were used to prepare imidazole-derivatized antisense oligo-2'-O-methylribonucleotides. Upon binding, these oligonucleotides create internal bulged bases in the target RNA that serve as sites for hydrolysis. We observed that an oligonucleotide derivatized with a side chain containing two imidazole groups was capable of hydrolyzing 58% of its RNA target when incubated with the target for 48 hours at 37°C and physiological pH.
Collapse
Affiliation(s)
- Anthony D Saleh
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
13
|
|
14
|
Fedorova AA, Azzami K, Ryabchikova EI, Spitsyna YE, Silnikov VN, Ritter W, Gross HJ, Tautz J, Vlassov VV, Beier H, Zenkova MA. Inactivation of a non-enveloped RNA virus by artificial ribonucleases: honey bees and acute bee paralysis virus as a new experimental model for in vivo antiviral activity assessment. Antiviral Res 2011; 91:267-77. [PMID: 21722669 DOI: 10.1016/j.antiviral.2011.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 05/03/2011] [Accepted: 06/16/2011] [Indexed: 11/25/2022]
Abstract
RNA-containing viruses represent a global threat to the health and wellbeing of humans and animals. Hence, the discovery of new approaches for the design of novel vaccines and antiviral compounds attains high attention. Here we describe the potential of artificial ribonucleases (aRNases), low molecular weight compounds capable to cleave phosphodiester bonds in RNA under mild conditions, to act as antiviral compounds via destroying the genome of non-enveloped RNA viruses, and the potential of utilizing honey bee larvae and adult bees (Apis mellifera) as a novel experimental system for the screening of new antiviral compounds. Pre-incubation of an Acute bee paralysis virus (ABPV) suspension with aRNases D3-12, K-D-1 or Dp12F6 in a concentration-dependent manner increased the survival rate of bee larvae and adult bees subsequently infected with these preparations, whereas incubation of the virus with aRNases ABL3C3 or L2-3 had no effect at all. The results of RT-PCR analysis of viral RNA isolated from aRNase-treated virus particles confirmed that virus inactivation occurs via degradation of viral genomic RNA: dose-dependent inactivation of ABPV correlates well with the cleavage of viral RNA. Electron microscopy analysis revealed that the morphology of ABPV particles inactivated by aRNases remains unaffected as compared to control virus preparations. Altogether the obtained results clearly demonstrate the potential of aRNases as a new virus inactivation agents and bee larvae/ABPV as a new in vivo system for the screening of antiviral compounds.
Collapse
Affiliation(s)
- Antonina A Fedorova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lönnberg H. Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight. Org Biomol Chem 2011; 9:1687-703. [PMID: 21258754 DOI: 10.1039/c0ob00486c] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNA molecules participate in many fundamental cellular processes either as a carrier of genetic information or as a catalyst, and hence, RNA has received increasing interest both as a chemotherapeutic agent and as a target of chemotherapy. In addition the dual nature of RNA has led to the RNA-world concept, i.e. an assumption that the evolution at an early stage of life was based on RNA-like oligomers that were responsible for the storage and transfer of information and as catalysts maintained primitive metabolism. Accordingly, the kinetics and mechanisms of the cleavage of RNA phosphodiester bonds have received interest and it is hoped they will shed light on the mechanisms of enzyme action and on the development of artificial enzymes. The major mechanistic findings concerning the cleavage by small molecules and ions and their significance for the development of efficient and biologically applicable artificial catalysts for RNA hydrolysis are surveyed in the present perspective.
Collapse
Affiliation(s)
- Harri Lönnberg
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
16
|
Nechaev SY, Lutay AV, Vlassov VV, Zenkova MA. Non-enzymatic template-directed recombination of RNAs. Int J Mol Sci 2009; 10:1788-1807. [PMID: 19468339 PMCID: PMC2680647 DOI: 10.3390/ijms10041788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/10/2009] [Accepted: 04/15/2009] [Indexed: 12/27/2022] Open
Abstract
RNA non-enzymatic recombination reactions are of great interest within the hypothesis of the “RNA world”, which argues that at some stage of prebiotic life development proteins were not yet engaged in biochemical reactions and RNA carried out both the information storage task and the full range of catalytic roles necessary in primitive self-replicating systems. Here we report on the study of recombination reaction occuring between two 96 nucleotides (nts) fragments of RNAs under physiological conditions and governed by a short oligodeoxyribonucleotide template, partially complementary to sequences within each of the RNAs. Analysis of recombination products shows that ligation is predominantly template-directed, and occurs within the complementary complex with the template in “butt-to-butt” manner, in 1- or 3- nts bulges or in 2–3 nts internal loops. Minor recombination products formed in the template-independent manner are detected as well.
Collapse
Affiliation(s)
- Sergey Y. Nechaev
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +7-383-333-3761; Fax: +7-383-333-3677
| | | | | | | |
Collapse
|
17
|
Ma Q, Xu Z, Schroeder BR, Sun W, Wei F, Hashimoto S, Konishi K, Leitheiser CJ, Hecht SM. Biochemical evaluation of a 108-member deglycobleomycin library: viability of a selection strategy for identifying bleomycin analogues with altered properties. J Am Chem Soc 2007; 129:12439-52. [PMID: 17887752 DOI: 10.1021/ja0722729] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bleomycins (BLMs) are clinically used glycopeptide antitumor antibiotics that have been shown to mediate the sequence-selective oxidative damage of both DNA and RNA. Previously, we described the solid-phase synthesis of a library of 108 unique analogues of deglycoBLM A6, a congener that cleaves DNA analogously to BLM itself. Each member of the library was assayed for its ability to effect single- and double-strand nicking of duplex DNA, sequence-selective DNA cleavage, and RNA cleavage in the presence and absence of a metal ion cofactor. All of the analogues tested were found to mediate concentration-dependent plasmid DNA relaxation to some extent, and a number exhibited double-strand cleavage with an efficiency comparable to or greater than deglycoBLM A6. Further, some analogues having altered linker and metal-binding domains mediated altered sequence-selective cleavage, and a few were found to cleave a tRNA3Lys transcript both in the presence and in the absence of a metal cofactor. The results provide insights into structural elements within BLM that control DNA and RNA cleavage. The present study also permits inferences to be drawn regarding the practicality of a selection strategy for the solid-phase construction and evaluation of large libraries of BLM analogues having altered properties.
Collapse
Affiliation(s)
- Qian Ma
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Holmes SC, Gait MJ. Syntheses and Oligonucleotide Incorporation of Nucleoside Analogues Containing Pendant Imidazolyl or Amino Functionalities - The Search for Sequence-Specific Artificial Ribonucleases. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Abstract
Mimicking the action of enzymes by simpler and more robust man-made catalysts has long inspired bioorganic chemists. During the past decade, mimics for RNA-cleaving enzymes, ribonucleases, or, more precisely, mimics of ribozymes that cleave RNA in sequence-selective rather than base-selective manner, have received special attention. These artificial ribonucleases are typically oligonucleotides (or their structural analogs) that bear a catalytically active conjugate group and catalyze sequence-selective hydrolysis of RNA phosphodiester bonds.
Collapse
Affiliation(s)
- Teija Niittymäki
- Department of Chemistry, University of Turku, FIN-20014, Turku, Finland
| | | |
Collapse
|