1
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
2
|
Ho S, Rice NP, Yu T, Weng Z, Theurkauf WE. Aub, Vasa and Armi localization to phase separated nuage is dispensable for piRNA biogenesis and transposon silencing in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.549160. [PMID: 37546958 PMCID: PMC10402007 DOI: 10.1101/2023.07.25.549160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
From nematodes to placental mammals, key components of the germline transposon silencing piRNAs pathway localize to phase separated perinuclear granules. In Drosophila, the PIWI protein Aub, DEAD box protein Vasa and helicase Armi localize to nuage granules and are required for ping-pong piRNA amplification and phased piRNA processing. Drosophila piRNA mutants lead to genome instability and Chk2 kinase DNA damage signaling. By systematically analyzing piRNA pathway organization, small RNA production, and long RNA expression in single piRNA mutants and corresponding chk2/mnk double mutants, we show that Chk2 activation disrupts nuage localization of Aub and Vasa, and that the HP1 homolog Rhino, which drives piRNA precursor transcription, is required for Aub, Vasa, and Armi localization to nuage. However, these studies also show that ping-pong amplification and phased piRNA biogenesis are independent of nuage localization of Vasa, Aub and Armi. Dispersed cytoplasmic proteins thus appear to mediate these essential piRNA pathway functions.
Collapse
Affiliation(s)
- Samantha Ho
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA
| | - Nicholas P Rice
- Program in Molecular Medicine, UMass Chan Medical School, Worcester MA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester MA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester MA
| | | |
Collapse
|
3
|
Stalker L, Backx AG, Tscherner AK, Russell SJ, Foster RA, LaMarre J. cDNA Cloning of Feline PIWIL1 and Evaluation of Expression in the Testis of the Domestic Cat. Int J Mol Sci 2023; 24:ijms24119346. [PMID: 37298298 DOI: 10.3390/ijms24119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The PIWI clade of Argonaute proteins is essential for spermatogenesis in all species examined to date. This protein family binds specific classes of small non-coding RNAs known as PIWI-interacting RNAs (piRNAs) which together form piRNA-induced silencing complexes (piRISCs) that are recruited to specific RNA targets through sequence complementarity. These complexes facilitate gene silencing through endonuclease activity and guided recruitment of epigenetic silencing factors. PIWI proteins and piRNAs have been found to play multiple roles in the testis including the maintenance of genomic integrity through transposon silencing and facilitating the turnover of coding RNAs during spermatogenesis. In the present study, we report the first characterization of PIWIL1 in the male domestic cat, a mammalian system predicted to express four PIWI family members. Multiple transcript variants of PIWIL1 were cloned from feline testes cDNA. One isoform shows high homology to PIWIL1 from other mammals, however, the other has characteristics of a "slicer null" isoform, lacking the domain required for endonuclease activity. Expression of PIWIL1 in the male cat appears limited to the testis and correlates with sexual maturity. RNA-immunoprecipitation revealed that feline PIWIL1 binds small RNAs with an average size of 29 nt. Together, these data suggest that the domestic cat has two PIWIL1 isoforms expressed in the mature testis, at least one of which interacts with piRNAs.
Collapse
Affiliation(s)
- Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alanna G Backx
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Allison K Tscherner
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W12, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Schneider BK, Sun S, Lee M, Li W, Skvir N, Neretti N, Vijg J, Secombe J. Expression of retrotransposons contributes to aging in Drosophila. Genetics 2023; 224:iyad073. [PMID: 37084379 PMCID: PMC10213499 DOI: 10.1093/genetics/iyad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/12/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Retrotransposons are a class of transposable elements capable of self-replication and insertion into new genomic locations. Across species, the mobilization of retrotransposons in somatic cells has been suggested to contribute to the cell and tissue functional decline that occurs during aging. Retrotransposons are broadly expressed across cell types, and de novo insertions have been observed to correlate with tumorigenesis. However, the extent to which new retrotransposon insertions occur during normal aging and their effect on cellular and animal function remains understudied. Here, we use a single nucleus whole genome sequencing approach in Drosophila to directly test whether transposon insertions increase with age in somatic cells. Analyses of nuclei from thoraces and indirect flight muscles using a newly developed pipeline, Retrofind, revealed no significant increase in the number of transposon insertions with age. Despite this, reducing the expression of two different retrotransposons, 412 and Roo, extended lifespan, but did not alter indicators of health such as stress resistance. This suggests a key role for transposon expression and not insertion in regulating longevity. Transcriptomic analyses revealed similar changes to gene expression in 412 and Roo knockdown flies and highlighted changes to genes involved in proteolysis and immune function as potential contributors to the observed changes in longevity. Combined, our data show a clear link between retrotransposon expression and aging.
Collapse
Affiliation(s)
- Blair K Schneider
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Ullmann 809 Bronx, NY 10461, USA
| | - Shixiang Sun
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Price 468 Bronx, NY 10461, USA
| | - Moonsook Lee
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Price 468 Bronx, NY 10461, USA
| | - Wenge Li
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Ullmann 909 Bronx, NY 10461, USA
| | - Nicholas Skvir
- Department of Molecular biology, Cell biology and Biochemistry, Brown University, 70 Ship St., Providence 02903, USA
| | - Nicola Neretti
- Department of Molecular biology, Cell biology and Biochemistry, Brown University, 70 Ship St., Providence 02903, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Price 468 Bronx, NY 10461, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Ullmann 809 Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Wierzbicki F, Kofler R, Signor S. Evolutionary dynamics of piRNA clusters in Drosophila. Mol Ecol 2023; 32:1306-1322. [PMID: 34878692 DOI: 10.1111/mec.16311] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/21/2022]
Abstract
Small RNAs produced from transposable element (TE)-rich sections of the genome, termed piRNA clusters, are a crucial component in the genomic defence against selfish DNA. In animals, it is thought the invasion of a TE is stopped when a copy of the TE inserts into a piRNA cluster, triggering the production of cognate small RNAs that silence the TE. Despite this importance for TE control, little is known about the evolutionary dynamics of piRNA clusters, mostly because these repeat-rich regions are difficult to assemble and compare. Here, we establish a framework for studying the evolution of piRNA clusters quantitatively. Previously introduced quality metrics and a newly developed software for multiple alignments of repeat annotations (Manna) allow us to estimate the level of polymorphism segregating in piRNA clusters and the divergence among homologous piRNA clusters. By studying 20 conserved piRNA clusters in multiple assemblies of four Drosophila species, we show that piRNA clusters are evolving rapidly. While 70%-80% of the clusters are conserved within species, the clusters share almost no similarity between species as closely related as D. melanogaster and D. simulans. Furthermore, abundant insertions and deletions are segregating within the Drosophila species. We show that the evolution of clusters is mainly driven by large insertions of recently active TEs and smaller deletions mostly in older TEs. The effect of these forces is so rapid that homologous clusters often do not contain insertions from the same TE families.
Collapse
Affiliation(s)
- Filip Wierzbicki
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
6
|
Liu X, Majid M, Yuan H, Chang H, Zhao L, Nie Y, He L, Liu X, He X, Huang Y. Transposable element expansion and low-level piRNA silencing in grasshoppers may cause genome gigantism. BMC Biol 2022; 20:243. [PMID: 36307800 PMCID: PMC9615261 DOI: 10.1186/s12915-022-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Transposable elements (TEs) have been likened to parasites in the genome that reproduce and move ceaselessly in the host, continuously enlarging the host genome. However, the Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of TE invasion by imposing small-RNA-mediated silencing. Here we compare the TE activity of two grasshopper species with different genome sizes in Acrididae (Locusta migratoria manilensis♀1C = 6.60 pg, Angaracris rhodopa♀1C = 16.36 pg) to ascertain the influence of piRNAs.
Results
We discovered that repetitive sequences accounted for 74.56% of the genome in A. rhodopa, more than 56.83% in L. migratoria, and the large-genome grasshopper contained a higher TEs proportions. The comparative analysis revealed that 41 TEs (copy number > 500) were shared in both species. The two species exhibited distinct “landscapes” of TE divergence. The TEs outbreaks in the small-genome grasshopper occurred at more ancient times, while the large-genome grasshopper maintains active transposition events in the recent past. Evolutionary history studies on TEs suggest that TEs may be subject to different dynamics and resistances in these two species. We found that TE transcript abundance was higher in the large-genome grasshopper and the TE-derived piRNAs abundance was lower than in the small-genome grasshopper. In addition, we found that the piRNA methylase HENMT, which is underexpressed in the large-genome grasshopper, impedes the piRNA silencing to a lower level.
Conclusions
Our study revealed that the abundance of piRNAs is lower in the gigantic genome grasshopper than in the small genome grasshopper. In addition, the key gene HENMT in the piRNA biogenesis pathway (Ping-Pong cycle) in the gigantic genome grasshopper is underexpressed. We hypothesize that low-level piRNA silencing unbalances the original positive correlation between TEs and piRNAs, and triggers TEs to proliferate out of control, which may be one of the reasons for the gigantism of grasshopper genomes.
Collapse
|
7
|
Ghosh B, Sarkar A, Mondal S, Bhattacharya N, Khatua S, Ghosh Z. piRNAQuest V.2: an updated resource for searching through the piRNAome of multiple species. RNA Biol 2021; 19:12-25. [PMID: 34965192 PMCID: PMC8786328 DOI: 10.1080/15476286.2021.2010960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
PIWI interacting RNAs (piRNAs) have emerged as important gene regulators in recent times. Since the release of our first version of piRNAQuest in 2014, lots of novel piRNAs have been annotated in different species other than human, mouse and rat. Such new developments in piRNA research have led us to develop an updated database piRNAQuest V.2. It consists of 92,77,689 piRNA entries for 25 new species of different phylum along with human, mouse and rat. Besides providing primary piRNA features which include their genomic location, with further information on piRNAs overlapping with repeat elements, pseudogenes and syntenic regions, etc., the novel features of this version includes (i) density based cluster prediction, (ii) piRNA expression profile across various healthy and disease systems and (iii) piRNA target prediction. The concept of density-based piRNA cluster identification is robust as it does not consider parametric distribution in its model. The piRNA expression profile for 21 disease systems including cancer have been hosted in addition to 32 tissue specific piRNA expression profile for various species. Further, the piRNA target prediction section includes both predicted and curated piRNA targets within eight disease systems and developmental stages of mouse testis. Further, users can visualize the piRNA-target duplex structure and the ping-pong signature pattern for all the ping-pong piRNA partners in different species. Overall, piRNAQuest V.2 is an updated user-friendly database which will serve as a useful resource to survey, search and retrieve information on piRNAs for multiple species. This freely accessible database is available at http://dibresources.jcbose.ac.in/zhumur/pirnaquest2.
Collapse
Affiliation(s)
- Byapti Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Arijita Sarkar
- Division of Bioinformatics, Bose Institute, Kolkata, India.,Present Affiliation: Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sudip Mondal
- Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
| | - Namrata Bhattacharya
- Department of Computer Science and Engineering, Indraprastha Institute of Information Technology, Delhi, India
| | - Sunirmal Khatua
- Department of Computer Science and Engineering, University of Calcutta, Kolkata, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| |
Collapse
|
8
|
Complex Genetic Interactions between Piwi and HP1a in the Repression of Transposable Elements and Tissue-Specific Genes in the Ovarian Germline. Int J Mol Sci 2021; 22:ijms222413430. [PMID: 34948223 PMCID: PMC8707237 DOI: 10.3390/ijms222413430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Insertions of transposable elements (TEs) in eukaryotic genomes are usually associated with repressive chromatin, which spreads to neighbouring genomic sequences. In ovaries of Drosophila melanogaster, the Piwi-piRNA pathway plays a key role in the transcriptional silencing of TEs considered to be exerted mostly through the establishment of H3K9me3 histone marks recruiting Heterochromatin Protein 1a (HP1a). Here, using RNA-seq, we investigated the expression of TEs and the adjacent genomic regions upon Piwi and HP1a germline knockdowns sharing a similar genetic background. We found that the depletion of Piwi and HP1a led to the derepression of only partially overlapping TE sets. Several TEs were silenced predominantly by HP1a, whereas the upregulation of some other TEs was more pronounced upon Piwi knockdown and, surprisingly, was diminished upon a Piwi/HP1a double-knockdown. We revealed that HP1a loss influenced the expression of thousands of protein-coding genes mostly not adjacent to TE insertions and, in particular, downregulated a putative transcriptional factor required for TE activation. Nevertheless, our results indicate that Piwi and HP1a cooperatively exert repressive effects on the transcription of euchromatic loci flanking the insertions of some Piwi-regulated TEs. We suggest that this mechanism controls the silencing of a small set of TE-adjacent tissue-specific genes, preventing their inappropriate expression in ovaries.
Collapse
|
9
|
Li D, Taylor DH, van Wolfswinkel JC. PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep 2021; 37:109776. [PMID: 34610311 PMCID: PMC8532177 DOI: 10.1016/j.celrep.2021.109776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/27/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
PIWI proteins are known as mediators of transposon silencing in animal germlines but are also found in adult pluripotent stem cells of highly regenerative animals, where they are essential for regeneration. Study of the nuclear PIWI protein SMEDWI-2 in the planarian somatic stem cell system reveals an intricate interplay between transposons and cell differentiation in which a subset of transposons is inevitably activated during cell differentiation, and the PIWI protein is required to regain control. Absence of SMEDWI-2 leads to tissue-specific transposon derepression related to cell-type-specific chromatin remodeling events and in addition causes reduced accessibility of lineage-specific genes and defective cell differentiation, resulting in fatal tissue dysfunction. Finally, we show that additional PIWI proteins provide a stem-cell-specific second layer of protection in planarian neoblasts. These findings reveal a far-reaching role of PIWI proteins and PIWI-interacting RNAs (piRNAs) in stem cell biology and cell differentiation.
Collapse
Affiliation(s)
- Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - David H Taylor
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Chen P, Luo Y, Aravin AA. RDC complex executes a dynamic piRNA program during Drosophila spermatogenesis to safeguard male fertility. PLoS Genet 2021; 17:e1009591. [PMID: 34473737 PMCID: PMC8412364 DOI: 10.1371/journal.pgen.1009591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022] Open
Abstract
piRNAs are small non-coding RNAs that guide the silencing of transposons and other targets in animal gonads. In Drosophila female germline, many piRNA source loci dubbed “piRNA clusters” lack hallmarks of active genes and exploit an alternative path for transcription, which relies on the Rhino-Deadlock-Cutoff (RDC) complex. RDC was thought to be absent in testis, so it remains to date unknown how piRNA cluster transcription is regulated in the male germline. We found that components of RDC complex are expressed in male germ cells during early spermatogenesis, from germline stem cells (GSCs) to early spermatocytes. RDC is essential for expression of dual-strand piRNA clusters and transposon silencing in testis; however, it is dispensable for expression of Y-linked Suppressor of Stellate piRNAs and therefore Stellate silencing. Despite intact Stellate repression, males lacking RDC exhibited compromised fertility accompanied by germline DNA damage and GSC loss. Thus, piRNA-guided repression is essential for normal spermatogenesis beyond Stellate silencing. While RDC associates with multiple piRNA clusters in GSCs and early spermatogonia, its localization changes in later stages as RDC concentrates on a single X-linked locus, AT-chX. Dynamic RDC localization is paralleled by changes in piRNA cluster expression, indicating that RDC executes a fluid piRNA program during different stages of spermatogenesis. These results disprove the common belief that RDC is dispensable for piRNA biogenesis in testis and uncover the unexpected, sexually dimorphic and dynamic behavior of a core piRNA pathway machinery. Large fractions of eukaryotic genomes are occupied by mobile genetic elements called transposons. Active transposons can move in the genome causing DNA damage and mutations, while inactive copies can contribute to chromosome organization and regulation of gene expression. Host cells employ several mechanisms to discriminate transposons from other genes and repress transposon activities. In germ cells, a conserved class of short RNAs called Piwi-interacting (pi)RNAs recognize target RNAs in both the nucleus and cytoplasm and then guide transposon repression by preventing their transcription and destroying their RNAs. piRNAs are encoded in extended genomic regions dubbed piRNA clusters. Previously, composition and regulation of piRNA clusters were studied in the female germline of fruit flies, where a nuclear protein complex, the RDC complex, was shown to promote non-canonical transcription of these regions. However, RDC was believed to be dispensable in males. Here, we showed that RDC is essential for transposon repression in males, and males lacking RDC exhibit compromised fertility and loss of germ cells. We found that RDC binds multiple piRNA clusters in early germ cells but concentrates on a single locus at later stages. Our results indicate dynamic regulation of loci that produce piRNAs and, therefore, piRNA targets throughout spermatogenesis.
Collapse
Affiliation(s)
- Peiwei Chen
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States of America
- * E-mail: (PC); (AAA)
| | - Yicheng Luo
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States of America
| | - Alexei A. Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States of America
- * E-mail: (PC); (AAA)
| |
Collapse
|
11
|
Binding of guide piRNA triggers methylation of the unstructured N-terminal region of Aub leading to assembly of the piRNA amplification complex. Nat Commun 2021; 12:4061. [PMID: 34210982 PMCID: PMC8249470 DOI: 10.1038/s41467-021-24351-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/10/2021] [Indexed: 11/08/2022] Open
Abstract
PIWI proteins use guide piRNAs to repress selfish genomic elements, protecting the genomic integrity of gametes and ensuring the fertility of animal species. Efficient transposon repression depends on amplification of piRNA guides in the ping-pong cycle, which in Drosophila entails tight cooperation between two PIWI proteins, Aub and Ago3. Here we show that post-translational modification, symmetric dimethylarginine (sDMA), of Aub is essential for piRNA biogenesis, transposon silencing and fertility. Methylation is triggered by loading of a piRNA guide into Aub, which exposes its unstructured N-terminal region to the PRMT5 methylosome complex. Thus, sDMA modification is a signal that Aub is loaded with piRNA guide. Amplification of piRNA in the ping-pong cycle requires assembly of a tertiary complex scaffolded by Krimper, which simultaneously binds the N-terminal regions of Aub and Ago3. To promote generation of new piRNA, Krimper uses its two Tudor domains to bind Aub and Ago3 in opposite modification and piRNA-loading states. Our results reveal that post-translational modifications in unstructured regions of PIWI proteins and their binding by Tudor domains that are capable of discriminating between modification states is essential for piRNA biogenesis and silencing.
Collapse
|
12
|
Jin S, Zhan J, Zhou Y. Argonaute proteins: structures and their endonuclease activity. Mol Biol Rep 2021; 48:4837-4849. [PMID: 34117606 DOI: 10.1007/s11033-021-06476-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/05/2021] [Indexed: 01/12/2023]
Abstract
Argonaute proteins are highly conserved and widely expressed in almost all organisms. They not only play a critical role in the biogenesis of small RNAs but also defend against invading nucleic acids via small RNA or DNA-mediated gene silencing pathways. One functional mechanism of Argonaute proteins is acting as a nucleic-acid-guided endonuclease, which can cleave targets complementary to DNA or RNA guides. The cleavage then leads to translational silencing directly or indirectly by recruiting additional silencing proteins. Here, we summarized the latest research progress in structural and biological studies of Argonaute proteins and pointed out their potential applications in the field of gene editing.
Collapse
Affiliation(s)
- Shujuan Jin
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Yaoqi Zhou
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia.
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Shim E, Zuccarello GC, Kim GH. Sex-Specific Genes and their Expression in the Life History of the Red Alga Bostrychia moritziana (Ceramiales, Rhodomelaceae). JOURNAL OF PHYCOLOGY 2021; 57:528-540. [PMID: 33191515 DOI: 10.1111/jpy.13103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Diverse sex determination mechanisms have been reported in eukaryotes, but little is known about the genetic pathways leading to sex determination in red algae. Sex-specific genes that could be involved in sex determination and sexual differentiation were investigated in the red alga Bostrychia moritziana by analyzing the transcriptomes of various phases including males, females, and tetrasporophytes. Sex dominantly expressed genes which showed >10-fold difference between sexes was isolated using comparative RNA-seq analysis. We found 19 gene homologues, 10 from males, and nine from females, that were found only in one sex in genomic amplification using strains collected from five different localities. Most of the sex-specific genes are involved in important cellular processes including chromosome segregation, nucleo-cytoplasmic protein shuttling, or tRNA modification. Quantitative PCR analysis showed that some sex-specific genes were differently regulated during critical events of sexual reproduction like fertilization and carposporophyte development. We could localize the expression of a male-specific gene in spermatia before and after gamete binding using RNA in situ hybridization. Amino acid sequence identity between male and female homologues of importin alpha gene and PreQ(0) reductase were highly divergent (75% and 74%, respectively), suggesting that these divergent homologues are on non-recombining UV-type chromosomes in their respective sexes. Another set of transcripts were found that were sex dominantly expressed, but not sex-specific. Nineteen out of 39 sex dominantly expressed transcripts were annotated to transposable elements. Our results suggest that sexual differentiation in B. moritziana may be achieved by multi-level regulation of cellular processes, both from genes present only in one sex and differential expression of shared genes.
Collapse
Affiliation(s)
- Eunyoung Shim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
| | - Gwang Hoon Kim
- Department of Biological Sciences, Kongju National University, Gongju, 32588, Korea
| |
Collapse
|
14
|
Small RNAs Are Implicated in Regulation of Gene and Transposable Element Expression in the Protist Trichomonas vaginalis. mSphere 2021; 6:6/1/e01061-20. [PMID: 33408230 PMCID: PMC7845603 DOI: 10.1128/msphere.01061-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent nonviral sexually transmitted infection worldwide. Repetitive elements, including transposable elements (TEs) and virally derived repeats, comprise more than half of the ∼160-Mb T. vaginalis genome. An intriguing question is how the parasite controls its potentially lethal complement of mobile elements, which can disrupt transcription of protein-coding genes and genome functions. In this study, we generated high-throughput RNA sequencing (RNA-Seq) and small RNA-Seq data sets in triplicate for the T. vaginalis G3 reference strain and characterized the mRNA and small RNA populations and their mapping patterns along all six chromosomes. Mapping the RNA-Seq transcripts to the genome revealed that the majority of genes predicted within repetitive elements are not expressed. Interestingly, we identified a novel species of small RNA that maps bidirectionally along the chromosomes and is correlated with reduced protein-coding gene expression and reduced RNA-Seq coverage in repetitive elements. This novel small RNA family may play a regulatory role in gene and repetitive element expression. Our results identify a possible small RNA pathway mechanism by which the parasite regulates expression of genes and TEs and raise intriguing questions as to the role repeats may play in shaping T. vaginalis genome evolution and the diversity of small RNA pathways in general. IMPORTANCE Trichomoniasis, caused by the protozoan Trichomonas vaginalis, is the most common nonviral sexually transmitted infection in humans. The millions of cases each year have sequelae that may include complications during pregnancy and increased risk of HIV infection. Given its evident success in this niche, it is paradoxical that T. vaginalis harbors in its genome thousands of transposable elements that have the potential to be extremely detrimental to normal genomic function. In many organisms, transposon expression is regulated by the activity of endogenously expressed short (∼21 to 35 nucleotides [nt]) small RNA molecules that effect gene silencing by targeting mRNAs for degradation or by recruiting epigenetic silencing machinery to locations in the genome. Our research has identified small RNA molecules correlated with reduced expression of T. vaginalis genes and transposons. This suggests that a small RNA pathway is a major contributor to gene expression patterns in the parasite and opens up new avenues for investigation into small RNA biogenesis, function, and diversity.
Collapse
|
15
|
Ho T, Panyim S, Udomkit A. Assessment of the function of gonad-specific PmAgo4 in viral replication and spermatogenesis in Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103824. [PMID: 32791174 DOI: 10.1016/j.dci.2020.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Argonaute family is phylogenetically subdivided into Ago and Piwi subfamilies that operate either transcriptional or post-transcriptional regulation in association with particular types of small RNAs. Among the four members of Ago subfamily (PmAgo1-4) found in black tiger shrimp Penaeus monodon, PmAgo4 exhibits gonad-restricted expression and takes part in transposon repression as the Piwi subfamily. While PmAgo1-3 participate in RNA interference (RNAi)-based mechanism, the role of PmAgo4 in RNAi is still mysterious, and was therefore investigated in this study. The results showed that knockdown of PmAgo4 in shrimp testis did not have a significant effect on the potency of PmRab7 silencing by dsPmRab7. In addition, replication of YHV as well as YHV-induced cumulative mortality in PmAgo4-knockdown shrimp are comparable to the control shrimp, suggesting the irrelevant association of PmAgo4 with RNAi-mediated gene silencing and antiviral immunity. Since PmAgo4 did not function in common with the Ago subfamily, its potential function in gametogenesis of male shrimp was further investigated. The reduction of PmAgo4 transcript levels in male shrimp revealed significant defect in testicular maturity as measured by Testicular Index (TI). Moreover, the numbers of mature sperm in spermatophore of PmAgo4-knockdown shrimp were significantly decreased comparing with the control shrimp. Our studies thus suggest a distinctive role of PmAgo4 that is not consistent with a dsRNA-mediate gene regulation and virus replication, but has a key function in controlling spermatogenesis in P. monodon.
Collapse
Affiliation(s)
- Teerapong Ho
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
16
|
Wu SK, Roberts JT, Balas MM, Johnson AM. RNA matchmaking in chromatin regulation. Biochem Soc Trans 2020; 48:2467-2481. [PMID: 33245317 PMCID: PMC7888525 DOI: 10.1042/bst20191225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/12/2023]
Abstract
Beyond being the product of gene expression, RNA can also influence the regulation of chromatin. The majority of the human genome has the capacity to be transcribed and the majority of the non-protein-coding transcripts made by RNA Polymerase II are enriched in the nucleus. Many chromatin regulators can bind to these ncRNAs in the nucleus; in some cases, there are clear examples of direct RNA-mediated chromatin regulation mechanisms stemming from these interactions, while others have yet to be determined. Recent studies have highlighted examples of chromatin regulation via RNA matchmaking, a term we use broadly here to describe intermolecular base-pairing interactions between one RNA molecule and an RNA or DNA match. This review provides examples of RNA matchmaking that regulates chromatin processes and summarizes the technical approaches used to capture these events.
Collapse
Affiliation(s)
- Stephen K. Wu
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Justin T. Roberts
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Maggie M. Balas
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| | - Aaron M. Johnson
- Molecular Biology Program, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus 12801 East 17 Ave., Aurora, CO, United States
| |
Collapse
|
17
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
18
|
Kashima M, Agata K, Shibata N. What is the role of PIWI family proteins in adult pluripotent stem cells? Insights from asexually reproducing animals, planarians. Dev Growth Differ 2020; 62:407-422. [PMID: 32621324 DOI: 10.1111/dgd.12688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Planarians have a remarkable regenerative ability owing to their adult pluripotent stem cells (aPSCs), which are called "neoblasts." Planarians maintain a considerable number of neoblasts throughout their adulthood to supply differentiated cells for the maintenance of tissue homeostasis and asexual reproduction (fission followed by regeneration). Thus, planarians serve as a good model to study the regulatory mechanisms of in vivo aPSCs. In asexually reproducing invertebrates, such as sponge, Hydra, and planaria, piwi family genes are the markers most commonly expressed in aPSCs. While piwi family genes are known as guardians against transposable elements in the germline cells of animals that only sexually propagate, their functions in the aPSC system have remained elusive. In this review, we introduce recent knowledge on the PIWI family proteins in the aPSC system in planarians and other organisms and discuss how PIWI family proteins contribute to the regulation of the aPSC system.
Collapse
Affiliation(s)
- Makoto Kashima
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara Chuo Ku, Japan
| | - Kiyokazu Agata
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Norito Shibata
- Department of Integrated Science and Technology, National Institute of Technology, Tsuyama College, Tsuyama-City, Japan
| |
Collapse
|
19
|
Kukushkina IV, Makhnovskii PA, Nefedova LN, Milyaeva PA, Kuzmin IV, Lavrenov AR, Kim AI. Analysis of Transcriptome of Drosophila melanogaster Strains with Disrupted Control of gypsy Retrotransposon Transposition. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420050087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Shi Z, Lim C, Tran V, Cui K, Zhao K, Chen X. Single-cyst transcriptome analysis of Drosophila male germline stem cell lineage. Development 2020; 147:dev.184259. [PMID: 32122991 DOI: 10.1242/dev.184259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/23/2020] [Indexed: 12/31/2022]
Abstract
The Drosophila male germline stem cell (GSC) lineage provides a great model to understand stem cell maintenance, proliferation, differentiation and dedifferentiation. Here, we use the Drosophila GSC lineage to systematically analyze the transcriptome of discrete but continuously differentiating germline cysts. We first isolated single cysts at each recognizable stage from wild-type testes, which were subsequently applied for RNA-seq analyses. Our data delineate a high-resolution transcriptome atlas in the entire male GSC lineage: the most dramatic switch occurs from early to late spermatocyte, followed by the change from the mitotic spermatogonia to early meiotic spermatocyte. By contrast, the transit-amplifying spermatogonia cysts display similar transcriptomes, suggesting common molecular features among these stages, which may underlie their similar behavior during both differentiation and dedifferentiation processes. Finally, distinct differentiating germ cell cyst samples do not exhibit obvious dosage compensation of X-chromosomal genes, even considering the paucity of X-chromosomal gene expression during meiosis, which is different from somatic cells. Together, our single cyst-resolution, genome-wide transcriptional profile analyses provide an unprecedented resource to understand many questions in both germ cell biology and stem cell biology fields.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Cindy Lim
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Vuong Tran
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Kairong Cui
- Systems Biology Center (SBC), Division of Intramural Research (DIR), National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, MSC 1674, Building 10, Room 7B05, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center (SBC), Division of Intramural Research (DIR), National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, MSC 1674, Building 10, Room 7B05, Bethesda, MD 20892, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
21
|
Díaz-González J, Domínguez A. Different structural variants of roo retrotransposon are active in Drosophila melanogaster. Gene 2020; 741:144546. [PMID: 32165306 DOI: 10.1016/j.gene.2020.144546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/30/2020] [Accepted: 03/08/2020] [Indexed: 11/29/2022]
Abstract
Retrotransposon roo is one of the most active elements in Drosophila melanogaster. The level of nucleotide diversity between copies of roo is very low but structural variation in the 5'-UTR is considerable. Transposition of roo at high frequency (around 5 × 10-2 per generation) has been shown previously in the set of mutation accumulation lines named Oviedo. Here we isolated thirteen individual insertions by inverse PCR and sequenced the 5' end of the elements (between 1663 and 2039 nt) including the LTR, the 5'-UTR and a fragment of 661 nucleotides from the ORF, to study whether the new transposed copies come from a unique variant (the master copy model) or different elements are able to move (the transposon model). The elements in the Oviedo lines presented the same structural variants as the reference genome. Different structural variants were active, a behaviour compatible with the "transposon model" in which the copies localized in multiple sites in the genome are able to transpose. At the level of sequence, the copies of roo in our lines are highly similar to the elements in the reference genome. The phylogenetic tree shows a shallow diversification with unsupported nodes denoting that all the elements currently active are very young. This observation together with the great polymorphism in insertion sites implies a rapid turnover of the elements.
Collapse
Affiliation(s)
- J Díaz-González
- Departamento de Biología Funcional, Área de Genética. Universidad de Oviedo, 33071 Oviedo, Spain
| | - A Domínguez
- Departamento de Biología Funcional, Área de Genética. Universidad de Oviedo, 33071 Oviedo, Spain.
| |
Collapse
|
22
|
The Developmental Transcriptome of Aedes albopictus, a Major Worldwide Human Disease Vector. G3-GENES GENOMES GENETICS 2020; 10:1051-1062. [PMID: 31964684 PMCID: PMC7056973 DOI: 10.1534/g3.119.401006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aedes albopictus mosquitoes are important vectors for a number of human pathogens including the Zika, dengue, and chikungunya viruses. Capable of displacing Aedes aegypti populations, this mosquito adapts to cooler environments which increases its geographical range and transmission potential. There are limited control strategies for Aedes albopictus mosquitoes which is likely attributed to the lack of comprehensive biological studies on this emerging vector. To fill this void, here using RNAseq we characterized Aedes albopictus mRNA expression profiles at 34 distinct time points throughout development providing the first high-resolution comprehensive view of the developmental transcriptome of this worldwide human disease vector. This enabled us to identify several patterns of shared gene expression among tissues as well as sex-specific expression patterns. To illuminate the similarities and differences with Aedes aegypti, a related human disease vector, we also performed a comparative analysis between the two developmental transcriptomes, identifying life stages where the two species exhibit similar and distinct gene expression patterns. These findings provide insights into the similarities and differences between Aedes albopictus and Aedes aegypti mosquito biology. In summary, the results generated from this study should form the basis for future investigations on the biology of Aedes albopictus and provide a gold mine resource for the development of transgene-based vector control strategies.
Collapse
|
23
|
Stolyarenko AD. Nuclear Argonaute Piwi Gene Mutation Affects rRNA by Inducing rRNA Fragment Accumulation, Antisense Expression, and Defective Processing in Drosophila Ovaries. Int J Mol Sci 2020; 21:ijms21031119. [PMID: 32046213 PMCID: PMC7037970 DOI: 10.3390/ijms21031119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022] Open
Abstract
Drosophila key nuclear piRNA silencing pathway protein Piwi of the Argonaute family has been classically studied as a factor controlling transposable elements and fertility. Piwi has been shown to concentrate in the nucleolus for reasons largely unknown. Ribosomal RNA is the main component of the nucleolus. In this work the effect of a piwi mutation on rRNA is described. This work led to three important conclusions: A mutation in piwi induces antisense 5S rRNA expression, a processing defect of 2S rRNA orthologous to the 3′-end of eukaryotic 5.8S rRNA, and accumulation of fragments of all five rRNAs in Drosophilamelanogaster ovaries. Hypotheses to explain these phenomena are proposed, possibly involving the interaction of the components of the piRNA pathway with the RNA surveillance machinery.
Collapse
Affiliation(s)
- Anastasia D Stolyarenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow 123182, Russia
| |
Collapse
|
24
|
Abstract
In mammals and invertebrates, the proliferation of an invading transposable element (TE) is thought to be stopped by an insertion into a piRNA cluster. Here, we explore the dynamics of TE invasions under this trap model using computer simulations. We found that piRNA clusters confer a substantial benefit, effectively preventing extinction of host populations from a proliferation of deleterious TEs. TE invasions consist of three distinct phases: first, the TE amplifies within the population, next TE proliferation is stopped by segregating cluster insertions, and finally the TE is inactivated by fixation of a cluster insertion. Suppression by segregating cluster insertions is unstable and bursts of TE activity may yet occur. The transposition rate and the population size mostly influence the length of the phases but not the amount of TEs accumulating during an invasion. Solely, the size of piRNA clusters was identified as a major factor influencing TE abundance. We found that a single nonrecombining cluster is more efficient in stopping invasions than clusters distributed over several chromosomes. Recombination among cluster sites makes it necessary that each diploid carries, on the average, four cluster insertions to stop an invasion. Surprisingly, negative selection in a model with piRNA clusters can lead to a novel equilibrium state, where TE copy numbers remain stable despite only some individuals in a population carrying a cluster insertion. In Drosophila melanogaster, the trap model accounts for the abundance of TEs produced in the germline but fails to predict the abundance of TEs produced in the soma.
Collapse
Affiliation(s)
- Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
| |
Collapse
|
25
|
Cheng Y, Wang Q, Jiang W, Bian Y, zhou Y, Gou A, Zhang W, Fu K, Shi W. Emerging roles of piRNAs in cancer: challenges and prospects. Aging (Albany NY) 2019; 11:9932-9946. [PMID: 31727866 PMCID: PMC6874451 DOI: 10.18632/aging.102417] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/28/2019] [Indexed: 04/19/2023]
Abstract
PiRNAs are a small class of non-coding small RNAs newly discovered in recent years. Millions of piRNAs have been discovered to date, and more than 20,000 piRNA genes have been found in the human genome. Due to the relatively small number of studies related to piRNA, our understanding of piRNAs is very limited. Currently, the clear biological function of piRNAs is transposon mobilization inhibition by promoting transcript degradation and regulating chromatin formation. In addition, piRNAs can form piRNA-PIWI protein complexes with some members of the PIWI branch of the Argonaute protein. Based on these biological functions, piRNAs and PIWI proteins are important in maintaining the genomic integrity of germline cells. Because of this, the popularity of piRNAs research has been focused on its role in germline cells for a long time after the discovery of piRNAs. As the field of research expands, there is growing evidence that piRNAs and PIWI proteins are abnormally expressed in various types of cancers, which may be potential cancer biomarkers and cancer therapeutic targets. In this review, we will focus on the relationship between piRNAs and PIWI proteins and cancers based on previous research, as well as their significance in cancer detection, grading and treatment.
Collapse
Affiliation(s)
- Ye Cheng
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yonghua Bian
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yang zhou
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Anxing Gou
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Wenling Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Fu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihong Shi
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
26
|
Barckmann B, El-Barouk M, Pélisson A, Mugat B, Li B, Franckhauser C, Fiston Lavier AS, Mirouze M, Fablet M, Chambeyron S. The somatic piRNA pathway controls germline transposition over generations. Nucleic Acids Res 2019; 46:9524-9536. [PMID: 30312469 PMCID: PMC6182186 DOI: 10.1093/nar/gky761] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/22/2018] [Indexed: 11/14/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA sequences that threaten genome integrity by replicative transposition in host gonads. The Piwi-interacting RNAs (piRNAs) pathway is assumed to maintain Drosophila genome homeostasis by downregulating transcriptional and post-transcriptional TE expression in the ovary. However, the bursts of transposition that are expected to follow transposome derepression after piRNA pathway impairment have not yet been reported. Here, we show, at a genome-wide level, that piRNA loss in the ovarian somatic cells boosts several families of the endogenous retroviral subclass of TEs, at various steps of their replication cycle, from somatic transcription to germinal genome invasion. For some of these TEs, the derepression caused by the loss of piRNAs is backed up by another small RNA pathway (siRNAs) operating in somatic tissues at the post transcriptional level. Derepressed transposition during 70 successive generations of piRNA loss exponentially increases the genomic copy number by up to 10-fold.
Collapse
Affiliation(s)
| | - Marianne El-Barouk
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Cochin, Paris, France
| | | | - Bruno Mugat
- IGH, CNRS, Univ. Montpellier, Montpellier, France
| | - Blaise Li
- IGH, CNRS, Univ. Montpellier, Montpellier, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756, IP CNRS, Paris France
| | | | | | - Marie Mirouze
- LGPD, CNRS, Univ Perpignan Via Domitia, Perpignan, France
| | - Marie Fablet
- Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de Biométrie et Biologie Evolutive. 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| | | |
Collapse
|
27
|
Giebler M, Greither T, Müller L, Mösinger C, Behre HM. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics. Asian J Androl 2019; 20:260-264. [PMID: 29286006 PMCID: PMC5952480 DOI: 10.4103/aja.aja_58_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.
Collapse
Affiliation(s)
- Maria Giebler
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Lisa Müller
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Carina Mösinger
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06120, Germany
| |
Collapse
|
28
|
Genenncher B, Durdevic Z, Hanna K, Zinkl D, Mobin MB, Senturk N, Da Silva B, Legrand C, Carré C, Lyko F, Schaefer M. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats. Cell Rep 2019; 22:1861-1874. [PMID: 29444437 DOI: 10.1016/j.celrep.2018.01.061] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
The maintenance of eukaryotic genome stability is ensured by the interplay of transcriptional as well as post-transcriptional mechanisms that control recombination of repeat regions and the expression and mobility of transposable elements. We report here that mutations in two (cytosine-5) RNA methyltransferases, Dnmt2 and NSun2, impact the accumulation of mobile element-derived sequences and DNA repeat integrity in Drosophila. Loss of Dnmt2 function caused moderate effects under standard conditions, while heat shock exacerbated these effects. In contrast, NSun2 function affected mobile element expression and genome integrity in a heat shock-independent fashion. Reduced tRNA stability in both RCMT mutants indicated that tRNA-dependent processes affected mobile element expression and DNA repeat stability. Importantly, further experiments indicated that complex formation with RNA could also contribute to the impact of RCMT function on gene expression control. These results thus uncover a link between tRNA modification enzymes, the expression of repeat DNA, and genomic integrity.
Collapse
Affiliation(s)
- Bianca Genenncher
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Zeljko Durdevic
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Katharina Hanna
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Daniela Zinkl
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Mehrpouya Balaghy Mobin
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nevcin Senturk
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Bruno Da Silva
- Drosophila Genetics and Epigenetics Lab, Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris Seine (IBPS), 9, Quai St Bernard, Boîte courrier 24, 75252 Paris Cedex 05, France
| | - Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Clément Carré
- Drosophila Genetics and Epigenetics Lab, Sorbonne Universités, Université Pierre et Marie Curie (UPMC), CNRS, Institut de Biologie Paris Seine (IBPS), 9, Quai St Bernard, Boîte courrier 24, 75252 Paris Cedex 05, France
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Matthias Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Kahney EW, Snedeker JC, Chen X. Regulation of Drosophila germline stem cells. Curr Opin Cell Biol 2019; 60:27-35. [PMID: 31014993 DOI: 10.1016/j.ceb.2019.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
The asymmetric division of adult stem cells into one self-renewing stem cell and one differentiating cell is critical for maintaining homeostasis in many tissues. One paradigmatic model of this division is the Drosophila male and female germline stem cell, which provides two model systems not only sharing common features but also having distinct characteristics for studying asymmetric stem cell division in vivo. This asymmetric division is controlled by a combination of extrinsic signaling molecules and intrinsic factors that are either asymmetrically segregated or regulated differentially following division. In this review, we will discuss recent advances in understanding the molecular and cellular mechanisms guiding this asymmetric outcome, including extrinsic cues, intrinsic factors governing cell fate specification, and cell cycle control.
Collapse
Affiliation(s)
- Elizabeth W Kahney
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Jonathan C Snedeker
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
30
|
Schultz B, Spock C, Tom L, Kong Y, Canadas K, Kim S, Waner M, O. T, Antaya R, Narayan D. MicroRNA Microarray Profiling in Infantile Hemangiomas. EPLASTY 2019; 19:e13. [PMID: 31068993 PMCID: PMC6482871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective: MicroRNAs are short, noncoding RNA molecules that negatively regulate the stability and translational efficiency of target mRNAs. They are critical regulators of growth and development. Our aim was to identify microRNAs involved in the growth and regulation of infantile hemangiomas. In addition, we searched for the presence of Piwi-interacting RNAs in hemangioma tissue as another regulator of infantile hemangiomas. Methods: RNA was extracted from hemangioma specimens from 3 clinical, age-based categories: proliferative (N = 16), quiescent (N = 8), and involuting (N = 9). RNAs from human dermal microvascular endothelial cells were used as controls. MicroRNA microarray was performed, and the expression profiles of the hemangiomas and endothelial cells were compared using the t test. 5' End-labeling of RNA of our hemangioma specimens was performed for Piwi-interacting RNA detection. Results: Analysis confirmed statistically significant downregulated (N = 18) and upregulated (N = 15) microRNAs. Piwi-interacting RNA analysis did not detect Piwi-interacting RNA transcripts in the hemangioma specimens. Conclusions: The differential expression of microRNAs found in our hemangioma specimens provides insight into the regulation of hemangioma formation and proliferation, quiescence, and fibrofatty involution. Piwi-interacting RNA transcripts were not detected in the hemangioma specimens. These novel findings will help in establishing new therapeutic and diagnostic initiatives for these tumors.
Collapse
Affiliation(s)
| | | | | | - Yong Kong
- bYale School of Public Health: Biostatistics, New Haven, Conn
| | | | - Samuel Kim
- dSection of Plastic and Reconstructive Surgery
| | | | - Teresa O.
- fVascular Birthmark Institute, New York, NY
| | - Richard Antaya
- eDepartments of Dermatology and Pediatrics, Yale School of Medicine, New Haven, Conn
| | - Deepak Narayan
- dSection of Plastic and Reconstructive Surgery,Correspondence:
| |
Collapse
|
31
|
Sukthaworn S, Panyim S, Udomkit A. Functional characterization of a cDNA encoding Piwi protein in Penaeus monodon and its potential roles in controlling transposon expression and spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol 2019; 229:60-68. [DOI: 10.1016/j.cbpa.2018.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/22/2023]
|
32
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
33
|
Ho T, Panyim S, Udomkit A. Suppression of argonautes compromises viral infection in Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:130-137. [PMID: 30227218 DOI: 10.1016/j.dci.2018.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Argonaute (Ago) proteins, the catalytic component of an RNA-induced silencing complex (RISC) in RNA interference pathway, function in diverse processes, especially in antiviral defense and transposon regulation. So far, cDNAs encoding four members of Argonaute were found in Penaeus monodon (PmAgo1-4). Two PmAgo proteins, PmAgo1 and PmAgo3 shared high percentage of amino acid identity to Ago1 and Ago2, respectively in other Penaeid shrimps. Therefore, the possible roles of PmAgo1 and PmAgo3 upon viral infection in shrimp were characterized in this study. The level of PmAgo1 mRNA expression in shrimp hemolymph was stimulated upon YHV challenge, but not with dsRNA administration. Interestingly, silencing of either PmAgo1 or PmAgo3 using sequence-specific dsRNAs impaired the efficiency of PmRab7-dsRNA to knockdown shrimp endogenous PmRab7 expression. Inhibition of yellow head virus (YHV) replication and delayed mortality rate were also observed in both PmAgo1-and PmAgo3-knockdown shrimp. In addition, silencing of PmAgo3 transcript, but not PmAgo1, revealed partial inhibition of white spot syndrome virus (WSSV) infection and delayed mortality rate. Therefore, our study provides insights into PmAgo1and PmAgo3 functions that are involved in a dsRNA-mediated gene silencing pathway and play roles in YHV and WSSV replication in the shrimp.
Collapse
Affiliation(s)
- Teerapong Ho
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand
| | - Sakol Panyim
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Apinunt Udomkit
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon 4 Road, Salaya, Nahkon Pathom, 73170, Thailand.
| |
Collapse
|
34
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
35
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
36
|
Huang X, Fejes Tóth K, Aravin AA. piRNA Biogenesis in Drosophila melanogaster. Trends Genet 2017; 33:882-894. [PMID: 28964526 DOI: 10.1016/j.tig.2017.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The PIWI-interacting RNA (piRNA) pathway is a conserved defense system that protects the genome integrity of the animal germline from deleterious transposable elements. Targets of silencing are recognized by small noncoding piRNAs that are processed from long precursor molecules. Although piRNAs and other classes of small noncoding RNAs, such as miRNAs and small interfering (si)RNAs, interact with members of the same family of Argonaute (Ago) proteins and their function in target repression is similar, the biogenesis of piRNAs differs from those of the other two small RNAs. Recently, many aspects of piRNA biogenesis have been revealed in Drosophila melanogaster. In this review, we elaborate on piRNA biogenesis in Drosophila somatic and germline cells. We focus on the mechanisms by which piRNA precursor transcription is regulated and highlight recent work that has advanced our understanding of piRNA precursor processing to mature piRNAs. We finish by discussing current models to the still unresolved question of how piRNA precursors are selected and channeled into the processing machinery.
Collapse
Affiliation(s)
- Xiawei Huang
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
37
|
Ryazansky S, Radion E, Mironova A, Akulenko N, Abramov Y, Morgunova V, Kordyukova MY, Olovnikov I, Kalmykova A. Natural variation of piRNA expression affects immunity to transposable elements. PLoS Genet 2017; 13:e1006731. [PMID: 28448516 PMCID: PMC5407775 DOI: 10.1371/journal.pgen.1006731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/31/2017] [Indexed: 11/25/2022] Open
Abstract
In the Drosophila germline, transposable elements (TEs) are silenced by PIWI-interacting RNA (piRNA) that originate from distinct genomic regions termed piRNA clusters and are processed by PIWI-subfamily Argonaute proteins. Here, we explore the variation in the ability to restrain an alien TE in different Drosophila strains. The I-element is a retrotransposon involved in the phenomenon of I-R hybrid dysgenesis in Drosophila melanogaster. Genomes of R strains do not contain active I-elements, but harbour remnants of ancestral I-related elements. The permissivity to I-element activity of R females, called reactivity, varies considerably in natural R populations, indicating the existence of a strong natural polymorphism in defense systems targeting transposons. To reveal the nature of such polymorphisms, we compared ovarian small RNAs between R strains with low and high reactivity and show that reactivity negatively correlates with the ancestral I-element-specific piRNA content. Analysis of piRNA clusters containing remnants of I-elements shows increased expression of the piRNA precursors and enrichment by the Heterochromatin Protein 1 homolog, Rhino, in weak R strains, which is in accordance with stronger piRNA expression by these regions. To explore the nature of the differences in piRNA production, we focused on two R strains, weak and strong, and showed that the efficiency of maternal inheritance of piRNAs as well as the I-element copy number are very similar in both strains. At the same time, germline and somatic uni-strand piRNA clusters generate more piRNAs in strains with low reactivity, suggesting the relationship between the efficiency of primary piRNA production and variable response to TE invasions. The strength of adaptive genome defense is likely driven by naturally occurring polymorphisms in the rapidly evolving piRNA pathway proteins. We hypothesize that hyper-efficient piRNA production is contributing to elimination of a telomeric retrotransposon HeT-A, which we have observed in one particular transposon-resistant R strain. Transposon activity in the germline is suppressed by the PIWI-interacting RNA (piRNA) pathway. The resistance of natural Drosophila strains to transposon invasion varies considerably, but the nature of this variability is unknown. We discovered that natural variation in the efficiency of primary piRNA production in the germline causes dramatic differences in the susceptibility to expansion of a newly invaded transposon. A high level of piRNA production in the germline is achieved by increased expression of piRNA precursors. In one of the most transposon-resistant strains, increased content of primary piRNA is observed in both the germline and ovarian somatic cells. We suggest that polymorphisms in piRNA pathway factors are responsible for increased piRNA production. piRNA pathway proteins have been shown to be evolving rapidly under selective pressure. Our data are the first to describe a phenotype that might be caused by this kind of polymorphism. We also demonstrate a likely explanation as to why an overly active piRNA pathway can cause more harm than good in Drosophila: Highly efficient piRNA processing leads to elimination of domesticated telomeric retrotransposons essential for telomere elongation, an effect which has been observed in a natural strain that is extremely resistant to transposon invasion.
Collapse
Affiliation(s)
- Sergei Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta Radion
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Mironova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Yuri Abramov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Valeriya Morgunova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Maria Y. Kordyukova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ivan Olovnikov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Alla Kalmykova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
- * E-mail:
| |
Collapse
|
38
|
van Kruijsbergen I, Hontelez S, Elurbe DM, van Heeringen SJ, Huynen MA, Veenstra GJC. Heterochromatic histone modifications at transposons in Xenopus tropicalis embryos. Dev Biol 2016; 426:460-471. [PMID: 27639284 DOI: 10.1016/j.ydbio.2016.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/20/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022]
Abstract
Transposable elements are parasitic genomic elements that can be deleterious for host gene function and genome integrity. Heterochromatic histone modifications are involved in the repression of transposons. However, it remains unknown how these histone modifications mark different types of transposons during embryonic development. Here we document the variety of heterochromatic epigenetic signatures at parasitic elements during development in Xenopus tropicalis, using genome-wide ChIP-sequencing data and ChIP-qPCR analysis. We show that specific subsets of transposons in various families and subfamilies are marked by different combinations of the heterochromatic histone modifications H4K20me3, H3K9me2/3 and H3K27me3. Many DNA transposons are marked at the blastula stage already, whereas at retrotransposons the histone modifications generally accumulate at the gastrula stage or later. Furthermore, transposons marked by H3K9me3 and H4K20me3 are more prominent in gene deserts. Using intra-subfamily divergence as a proxy for age, we show that relatively young DNA transposons are preferentially marked by early embryonic H4K20me3 and H3K27me3. In contrast, relatively young retrotransposons are marked by increasing H3K9me3 and H4K20me3 during development, and are also linked to piRNA-sized small non-coding RNAs. Our results implicate distinct repression mechanisms that operate in a transposon-selective and developmental stage-specific fashion.
Collapse
Affiliation(s)
- Ila van Kruijsbergen
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Saartje Hontelez
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dei M Elurbe
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Simon J van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A Huynen
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
39
|
Dias GB, Heringer P, Svartman M, Kuhn GCS. Helitrons shaping the genomic architecture of Drosophila: enrichment of DINE-TR1 in α- and β-heterochromatin, satellite DNA emergence, and piRNA expression. Chromosome Res 2016; 23:597-613. [PMID: 26408292 DOI: 10.1007/s10577-015-9480-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Drosophila INterspersed Elements (DINEs) constitute an abundant but poorly understood group of Helitrons present in several Drosophila species. The general structure of DINEs includes two conserved blocks that may or not contain a region with tandem repeats in between. These central tandem repeats (CTRs) are similar within species but highly divergent between species. It has been assumed that CTRs have independent origins. Herein, we identify a subset of DINEs, termed DINE-TR1, which contain homologous CTRs of approximately 150 bp. We found DINE-TR1 in the sequenced genomes of several Drosophila species and in Bactrocera tryoni (Acalyptratae, Diptera). However, interspecific high sequence identity (∼ 88 %) is limited to the first ∼ 30 bp of each tandem repeat, implying that evolutionary constraints operate differently over the monomer length. DINE-TR1 is unevenly distributed across the Drosophila phylogeny. Nevertheless, sequence analysis suggests vertical transmission. We found that CTRs within DINE-TR1 have independently expanded into satellite DNA-like arrays at least twice within Drosophila. By analyzing the genome of Drosophila virilis and Drosophila americana, we show that DINE-TR1 is highly abundant in pericentromeric heterochromatin boundaries, some telomeric regions and in the Y chromosome. It is also present in the centromeric region of one autosome from D. virilis and dispersed throughout several euchromatic sites in both species. We further found that DINE-TR1 is abundant at piRNA clusters, and small DINE-TR1-derived RNA transcripts (∼25 nt) are predominantly expressed in the testes and the ovaries, suggesting active targeting by the piRNA machinery. These features suggest potential piRNA-mediated regulatory roles for DINEs at local and genome-wide scales in Drosophila.
Collapse
Affiliation(s)
- Guilherme B Dias
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Heringer
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marta Svartman
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo C S Kuhn
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
40
|
Production of Small Noncoding RNAs from the flamenco Locus Is Regulated by the gypsy Retrotransposon of Drosophila melanogaster. Genetics 2016; 204:631-644. [PMID: 27558137 DOI: 10.1534/genetics.116.187922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/18/2016] [Indexed: 11/18/2022] Open
Abstract
Protective mechanisms based on RNA silencing directed against the propagation of transposable elements are highly conserved in eukaryotes. The control of transposable elements is mediated by small noncoding RNAs, which derive from transposon-rich heterochromatic regions that function as small RNA-generating loci. These clusters are transcribed and the precursor transcripts are processed to generate Piwi-interacting RNAs (piRNAs) and endogenous small interfering RNAs (endo-siRNAs), which silence transposable elements in gonads and somatic tissues. The flamenco locus is a Drosophila melanogaster small RNA cluster that controls gypsy and other transposable elements, and has played an important role in understanding how small noncoding RNAs repress transposable elements. In this study, we describe a cosuppression mechanism triggered by new euchromatic gypsy insertions in genetic backgrounds carrying flamenco alleles defective in gypsy suppression. We found that the silencing of gypsy is accompanied by the silencing of other transposons regulated by flamenco, and of specific flamenco sequences from which small RNAs against gypsy originate. This cosuppression mechanism seems to depend on a post-transcriptional regulation that involves both endo-siRNA and piRNA pathways and is associated with the occurrence of developmental defects. In conclusion, we propose that new gypsy euchromatic insertions trigger a post-transcriptional silencing of gypsy sense and antisense sequences, which modifies the flamenco activity. This cosuppression mechanism interferes with some developmental processes, presumably by influencing the expression of specific genes.
Collapse
|
41
|
Lewis SH, Salmela H, Obbard DJ. Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine. Genome Biol Evol 2016; 8:507-18. [PMID: 26868596 PMCID: PMC4824172 DOI: 10.1093/gbe/evw018] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic studies of Drosophila melanogaster have provided a paradigm for RNA interference (RNAi) in arthropods, in which the microRNA and antiviral pathways are each mediated by a single Argonaute (Ago1 and Ago2) and germline suppression of transposable elements is mediated by a trio of Piwi-subfamily Argonaute proteins (Ago3, Aub, and Piwi). Without a suitable evolutionary context, deviations from this can be interpreted as derived or idiosyncratic. Here we analyze the evolution of Argonaute genes across the genomes and transcriptomes of 86 Dipteran species, showing that variation in copy number can occur rapidly, and that there is constant flux in some RNAi mechanisms. The lability of the RNAi pathways is illustrated by the divergence of Aub and Piwi (182-156 Ma), independent origins of multiple Piwi-family genes in Aedes mosquitoes (less than 25Ma), and the recent duplications of Ago2 and Ago3 in the tsetse fly Glossina morsitans. In each case the tissue specificity of these genes has altered, suggesting functional divergence or innovation, and consistent with the action of dynamic selection pressures across the Argonaute gene family. We find there are large differences in evolutionary rates and gene turnover between pathways, and that paralogs of Ago2, Ago3, and Piwi/Aub show contrasting rates of evolution after duplication. This suggests that Argonautes undergo frequent evolutionary expansions that facilitate functional divergence.
Collapse
Affiliation(s)
- Samuel H Lewis
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Present Address: Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH
| | - Heli Salmela
- Department of Biosciences, Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, United Kingdom Centre for Immunity, Infection and Evolution, University of Edinburgh, United Kingdom
| |
Collapse
|
42
|
Zhai L, Wang L, Teng F, Zhou L, Zhang W, Xiao J, Liu Y, Deng W. Argonaute and Argonaute-Bound Small RNAs in Stem Cells. Int J Mol Sci 2016; 17:208. [PMID: 26861290 PMCID: PMC4783940 DOI: 10.3390/ijms17020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/15/2022] Open
Abstract
Small RNAs are essential for a variety of cellular functions. Argonaute (AGO) proteins are associated with all of the different classes of small RNAs, and are indispensable in small RNA-mediated regulatory pathways. AGO proteins have been identified in various types of stem cells in diverse species from plants and animals. This review article highlights recent progress on how AGO proteins and AGO-bound small RNAs regulate the self-renewal and differentiation of distinct stem cell types, including pluripotent, germline, somatic, and cancer stem cells.
Collapse
Affiliation(s)
- Lihong Zhai
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lin Wang
- Xiangyang Oral Hospital, Xiangyang 441003, Hubei, China.
| | - Feng Teng
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Lanting Zhou
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Wenjing Zhang
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Juan Xiao
- Medical College, Hubei University of Arts and Science, Xiangyang 441053, Hubei, China.
| | - Ying Liu
- Department of Neurosurgery, Medical School, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
- Center for Stem Cell and Regenerative Medicine, the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
43
|
Stalker L, Russell SJ, Co C, Foster RA, LaMarre J. PIWIL1 Is Expressed in the Canine Testis, Increases with Sexual Maturity, and Binds Small RNAs. Biol Reprod 2015; 94:17. [PMID: 26658707 DOI: 10.1095/biolreprod.115.131854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/02/2015] [Indexed: 01/23/2023] Open
Abstract
Spermatogenesis is a highly regulated process leading to the development of functional spermatozoa through meiotic division and subsequent maturation. Recent studies have suggested that a novel class of Argonaute proteins, known as the PIWI clade, plays important roles in multiple stages of spermatogenesis. PIWI proteins bind specific small noncoding RNAs, called PIWI-interacting RNAs (piRNAs). These piRNAs guide the PIWI-piRNA complex to retrotransposon targets that become expressed during meiosis. Retrotransposons are subsequently silenced, either through PIWI "slicer" activity or through PIWI-directed methylation of the retrotransposon locus. Most mammalian studies have employed mouse models where sterility follows PIWI inactivation. The goal of this study was to characterize canine PIWIL1 to determine whether expression pattern and functional characteristics support a similar function in that species. Canine PIWIL1 cDNA is a 2.6-kb transcript that encodes an 861-amino acid protein showing high homology to other mammalian PIWIL1 proteins and containing features consistent with PIWI family members (PAZ, PIWI domains). Analysis of PIWIL1 protein and transcript levels revealed that PIWIL1 expression is limited to the testes and is associated with sexual maturity, with mature dogs showing higher levels of PIWIL1 expression. Immunohistochemistry demonstrated expression primarily in seminiferous tubules and confirmed higher levels of PIWIL1 in mature dogs. Functional characterization by RNA immunoprecipitation demonstrated that canine PIWIL1 binds short RNAs consistent in size with piRNAs (27-32 nucleotides). Together, these studies represent the first characterization of a PIWI protein in the dog and suggest that it is a functional piRNA-binding protein most highly expressed in the mature testes.
Collapse
Affiliation(s)
- Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Carmon Co
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
44
|
A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements. Stem Cells Int 2015; 2016:7595791. [PMID: 26681955 PMCID: PMC4670677 DOI: 10.1155/2016/7595791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.
Collapse
|
45
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
46
|
Drosophila glob1expresses dynamically and is required for development and oxidative stress response. Genesis 2015; 53:719-37. [DOI: 10.1002/dvg.22902] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/23/2023]
|
47
|
Gebert D, Rosenkranz D. RNA-based regulation of transposon expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:687-708. [DOI: 10.1002/wrna.1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| | - David Rosenkranz
- Institute of Anthropology; Johannes Gutenberg University; Mainz Germany
| |
Collapse
|
48
|
Gebert D, Ketting RF, Zischler H, Rosenkranz D. piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals. PLoS One 2015; 10:e0124860. [PMID: 25950437 PMCID: PMC4423968 DOI: 10.1371/journal.pone.0124860] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/10/2015] [Indexed: 12/31/2022] Open
Abstract
Piwi-interacting (pi-) RNAs guide germline-expressed Piwi proteins in order to suppress the activity of transposable elements (TEs). But notably, the majority of pachytene piRNAs in mammalian testes is not related to TEs. This raises the question of whether the Piwi/piRNA pathway exerts functions beyond TE silencing. Although gene-derived piRNAs were described many times, a possible gene-regulatory function was doubted due to the absence of antisense piRNAs. Here we sequenced and analyzed piRNAs expressed in the adult testis of the pig, as this taxon possesses the full set of mammalian Piwi paralogs while their spermatozoa are marked by an extreme fitness due to selective breeding. We provide an exhaustive characterization of porcine piRNAs and genomic piRNA clusters. Moreover, we reveal that both sense and antisense piRNAs derive from protein-coding genes, while exhibiting features that clearly show that they originate from the Piwi/piRNA-mediated post-transcriptional silencing pathway, commonly referred to as ping-pong cycle. We further show that the majority of identified piRNA clusters in the porcine genome spans exonic sequences of protein-coding genes or pseudogenes, which reveals a mechanism by which primary antisense piRNAs directed against mRNA can be generated. Our data provide evidence that spliced mRNAs, derived from such loci, are not only targeted by piRNAs but are also subject to ping-pong cycle processing. Finally, we demonstrate that homologous genes are targeted and processed by piRNAs in pig, mouse and human. Altogether, this strongly suggests a conserved role for the mammalian Piwi/piRNA pathway in post-transcriptional regulation of protein-coding genes, which did not receive much attention so far.
Collapse
Affiliation(s)
- Daniel Gebert
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Germany
| | | | - Hans Zischler
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Germany
| | - David Rosenkranz
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| |
Collapse
|
49
|
Gvozdev VA, Stolyarenko AD, Klenov MS. Functions of piRNAs and the Piwi protein in Drosophila. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415040055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Henriet S, Sumic S, Doufoundou-Guilengui C, Jensen MF, Grandmougin C, Fal K, Thompson E, Volff JN, Chourrout D. Embryonic expression of endogenous retroviral RNAs in somatic tissues adjacent to the Oikopleura germline. Nucleic Acids Res 2015; 43:3701-11. [PMID: 25779047 PMCID: PMC4402516 DOI: 10.1093/nar/gkv169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Selective pressure to maintain small genome size implies control of transposable elements, and most old classes of retrotransposons are indeed absent from the very compact genome of the tunicate Oikopleura dioica. Nonetheless, two families of retrotransposons are present, including the Tor elements. The gene organization within Tor elements is similar to that of LTR retrotransposons and retroviruses. In addition to gag and pol, many Tor elements carry a third gene encoding viral envelope-like proteins (Env) that may mediate infection. We show that the Tor family contains distinct classes of elements. In some classes, env mRNA is transcribed from the 5′LTR as in retroviruses. In others, env is transcribed from an additional promoter located downstream of the 5′LTR. Tor Env proteins are membrane-associated glycoproteins which exhibit some features of viral membrane fusion proteins. Whereas some elements are expressed in the adult testis, many others are specifically expressed in embryonic somatic cells adjacent to primordial germ cells. Such embryonic expression depends on determinants present in the Tor elements and not on their surrounding genomic environment. Our study shows that unusual modes of transcription and expression close to the germline may contribute to the proliferation of Tor elements.
Collapse
Affiliation(s)
- Simon Henriet
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Sara Sumic
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | | | - Marit Flo Jensen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Camille Grandmougin
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Kateryna Fal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| | - Eric Thompson
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway Department of Biology, University of Bergen, Bergen, N-5020, Norway
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon - CNRS UMR 5242 - INRA USC 1370, Lyon, 69364 Lyon cedex 07, France
| | - Daniel Chourrout
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, N-5008, Norway
| |
Collapse
|