1
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Jammal-Touma J, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolic rearrangement enables adaptation of microbial growth rate to temperature shifts. Nat Microbiol 2024:10.1038/s41564-024-01841-4. [PMID: 39672961 DOI: 10.1038/s41564-024-01841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/26/2024] [Indexed: 12/15/2024]
Abstract
Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear. Here we use single-cell microscopy to show that Escherichia coli exhibits a gradual response to temperature upshifts with a timescale of ~1.5 doublings at the higher temperature. The response was largely independent of initial or final temperature and nutrient source. Proteomic and genomic approaches demonstrated that adaptation to temperature is independent of transcriptional, translational or membrane fluidity changes. Instead, an autocatalytic enzyme network model incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, resulting in a transient temperature memory. The model successfully predicts alterations in the temperature response across nutrient conditions, diverse E. coli strains from hosts with different body temperatures, soil-dwelling Bacillus subtilis and fission yeast. In sum, our model provides a mechanistic framework for Arrhenius-dependent growth.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Hohmann KF, Blümler A, Heckel A, Fürtig B. The RNA chaperone StpA enables fast RNA refolding by destabilization of mutually exclusive base pairs within competing secondary structure elements. Nucleic Acids Res 2021; 49:11337-11349. [PMID: 34614185 PMCID: PMC8565331 DOI: 10.1093/nar/gkab876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022] Open
Abstract
In bacteria RNA gene regulatory elements refold dependent on environmental clues between two or more long-lived conformational states each associated with a distinct regulatory state. The refolding kinetics are strongly temperature-dependent and especially at lower temperatures they reach timescales that are biologically not accessible. To overcome this problem, RNA chaperones have evolved. However, the precise molecular mechanism of how these proteins accelerate RNA refolding reactions remains enigmatic. Here we show how the RNA chaperone StpA of Escherichia coli leads to an acceleration of a bistable RNA's refolding kinetics through the selective destabilization of key base pairing interactions. We find in laser assisted real-time NMR experiments on photocaged bistable RNAs that the RNA chaperone leads to a two-fold increase in refolding rates at low temperatures due to reduced stability of ground state conformations. Further, we can show that upon interaction with StpA, base pairing interactions in the bistable RNA are modulated to favor refolding through the dominant pseudoknotted transition pathway. Our results shed light on the molecular mechanism of the interaction between RNA chaperones and bistable RNAs and are the first step into a functional classification of chaperones dependent on their biophysical mode of operation.
Collapse
Affiliation(s)
- Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance BMRZ, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Anja Blümler
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance BMRZ, Goethe University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
3
|
Zhang N, Guo L, Huang L. The Sac10b homolog from Sulfolobus islandicus is an RNA chaperone. Nucleic Acids Res 2020; 48:9273-9284. [PMID: 32761152 PMCID: PMC7498313 DOI: 10.1093/nar/gkaa656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Nucleic acid-binding proteins of the Sac10b family, also known as Alba, are widely distributed in Archaea. However, the physiological roles of these proteins have yet to be clarified. Here, we show that Sis10b, a member of the Sac10b family from the hyperthermophilic archaeon Sulfolobus islandicus, was active in RNA strand exchange, duplex RNA unwinding in vitro and RNA unfolding in a heterologous host cell. This protein exhibited temperature-dependent binding preference for ssRNA over dsRNA and was more efficient in RNA unwinding and RNA unfolding at elevated temperatures. Notably, alanine substitution of a highly conserved basic residue (K) at position 17 in Sis10b drastically reduced the ability of this protein to catalyse RNA strand exchange and RNA unwinding. Additionally, the preferential binding of Sis10b to ssRNA also depended on the presence of K17 or R17. Furthermore, normal growth was restored to a slow-growing Sis10b knockdown mutant by overproducing wild-type Sis10b but not by overproducing K17A in this mutant strain. Our results indicate that Sis10b is an RNA chaperone that likely functions most efficiently at temperatures optimal for the growth of S. islandicus, and K17 is essential for the chaperone activity of the protein.
Collapse
Affiliation(s)
- Ningning Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Li Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
4
|
Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.00731-20. [PMID: 32385085 DOI: 10.1128/aem.00731-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Working mechanisms of CRISPR-Cas systems have been intensively studied. However, far less is known about how they are regulated. The histone-like nucleoid-structuring protein H-NS binds the promoter of cas genes (P cas ) and suppresses the type I-E CRISPR-Cas system in Escherichia coli Although the H-NS paralogue StpA also binds P cas , its role in regulating the CRISPR-Cas system remains unidentified. Our previous work established that E. coli is able to take up double-stranded DNA during natural transformation. Here, we investigated the function of StpA in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli We first documented that although the activated type I-E CRISPR-Cas system, due to hns deletion, interfered with CRISPR-Cas-targeted plasmid transfer, stpA inactivation restored the level of natural transformation. Second, we showed that inactivating stpA reduced the transcriptional activity of P cas Third, by comparing transcriptional activities of the intact P cas and the P cas with a disrupted H-NS binding site in the hns and hns stpA null deletion mutants, we demonstrated that StpA activated transcription of cas genes by binding to the same site as H-NS in P cas Fourth, by expressing StpA with an arabinose-inducible promoter, we confirmed that StpA expressed at a low level stimulated the activity of P cas Finally, by quantifying the level of mature CRISPR RNA (crRNA), we demonstrated that StpA was able to promote the amount of crRNA. Taken together, our work establishes that StpA serves as a transcriptional activator in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli IMPORTANCE StpA is normally considered a molecular backup of the nucleoid-structuring protein H-NS, which was reported as a transcriptional repressor of the type I-E CRISPR-Cas system in Escherichia coli However, the role of StpA in regulating the type I-E CRISPR-Cas system remains elusive. Our previous work uncovered a new route for double-stranded DNA (dsDNA) entry during natural transformation of E. coli In this study, we show that StpA plays a role opposite to that of its paralogue H-NS in regulating the type I-E CRISPR-Cas system against natural transformation of E. coli Our work not only expands our knowledge on CRISPR-Cas-mediated adaptive immunity against extracellular nucleic acids but also sheds new light on understanding the complex regulation mechanism of the CRISPR-Cas system. Moreover, the finding that paralogues StpA and H-NS share a DNA binding site but play opposite roles in transcriptional regulation indicates that higher-order compaction of bacterial chromatin by histone-like proteins could switch prokaryotic transcriptional modes.
Collapse
|
5
|
Abstract
RNA-binding proteins chaperone the biological functions of noncoding RNA by reducing RNA misfolding, improving matchmaking between regulatory RNA and targets, and exerting quality control over RNP biogenesis. Recent studies of Escherichia coli CspA, HIV NCp, and E. coli Hfq are beginning to show how RNA-binding proteins remodel RNA structures. These different protein families use common strategies for disrupting or annealing RNA double helices, which can be used to understand the mechanisms by which proteins chaperone RNA-dependent regulation in bacteria.
Collapse
|
6
|
Bravo JPK, Borodavka A, Barth A, Calabrese AN, Mojzes P, Cockburn JJB, Lamb DC, Tuma R. Stability of local secondary structure determines selectivity of viral RNA chaperones. Nucleic Acids Res 2018; 46:7924-7937. [PMID: 29796667 PMCID: PMC6125681 DOI: 10.1093/nar/gky394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
To maintain genome integrity, segmented double-stranded RNA viruses of the Reoviridae family must accurately select and package a complete set of up to a dozen distinct genomic RNAs. It is thought that the high fidelity segmented genome assembly involves multiple sequence-specific RNA-RNA interactions between single-stranded RNA segment precursors. These are mediated by virus-encoded non-structural proteins with RNA chaperone-like activities, such as rotavirus (RV) NSP2 and avian reovirus σNS. Here, we compared the abilities of NSP2 and σNS to mediate sequence-specific interactions between RV genomic segment precursors. Despite their similar activities, NSP2 successfully promotes inter-segment association, while σNS fails to do so. To understand the mechanisms underlying such selectivity in promoting inter-molecular duplex formation, we compared RNA-binding and helix-unwinding activities of both proteins. We demonstrate that octameric NSP2 binds structured RNAs with high affinity, resulting in efficient intramolecular RNA helix disruption. Hexameric σNS oligomerizes into an octamer that binds two RNAs, yet it exhibits only limited RNA-unwinding activity compared to NSP2. Thus, the formation of intersegment RNA-RNA interactions is governed by both helix-unwinding capacity of the chaperones and stability of RNA structure. We propose that this protein-mediated RNA selection mechanism may underpin the high fidelity assembly of multi-segmented RNA genomes in Reoviridae.
Collapse
Affiliation(s)
- Jack P K Bravo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexander Borodavka
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Anders Barth
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Peter Mojzes
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Joseph J B Cockburn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience (CeNS), Nanosystems Initiative Munich (NIM) and Centre for Integrated Protein Science Munich (CiPSM), Ludwig Maximilian University of Munich, Munich, Germany
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
Borirak O, Rolfe MD, de Koning LJ, Hoefsloot HCJ, Bekker M, Dekker HL, Roseboom W, Green J, de Koster CG, Hellingwerf KJ. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1269-79. [PMID: 26049081 DOI: 10.1016/j.bbapap.2015.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs.
Collapse
Affiliation(s)
- Orawan Borirak
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Matthew D Rolfe
- Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | - Leo J de Koning
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Martijn Bekker
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Winfried Roseboom
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Jeffrey Green
- Krebs Institute, Molecular Biology and Biotechnology, University of Sheffield, United Kingdom
| | - Chris G de Koster
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands.
| |
Collapse
|
8
|
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA. Proc Natl Acad Sci U S A 2014; 111:E2928-36. [PMID: 25002474 DOI: 10.1073/pnas.1404307111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DEAD-box proteins are nonprocessive RNA helicases and can function as RNA chaperones, but the mechanisms of their chaperone activity remain incompletely understood. The Neurospora crassa DEAD-box protein CYT-19 is a mitochondrial RNA chaperone that promotes group I intron splicing and has been shown to resolve misfolded group I intron structures, allowing them to refold. Building on previous results, here we use a series of tertiary contact mutants of the Tetrahymena group I intron ribozyme to demonstrate that the efficiency of CYT-19-mediated unfolding of the ribozyme is tightly linked to global RNA tertiary stability. Efficient unfolding of destabilized ribozyme variants is accompanied by increased ATPase activity of CYT-19, suggesting that destabilized ribozymes provide more productive interaction opportunities. The strongest ATPase stimulation occurs with a ribozyme that lacks all five tertiary contacts and does not form a compact structure, and small-angle X-ray scattering indicates that ATPase activity tracks with ribozyme compactness. Further, deletion of three helices that are prominently exposed in the folded structure decreases the ATPase stimulation by the folded ribozyme. Together, these results lead to a model in which CYT-19, and likely related DEAD-box proteins, rearranges complex RNA structures by preferentially interacting with and unwinding exposed RNA secondary structure. Importantly, this mechanism could bias DEAD-box proteins to act on misfolded RNAs and ribonucleoproteins, which are likely to be less compact and more dynamic than their native counterparts.
Collapse
|
9
|
Yao J, Truong DM, Lambowitz AM. Genetic and biochemical assays reveal a key role for replication restart proteins in group II intron retrohoming. PLoS Genet 2013; 9:e1003469. [PMID: 23637634 PMCID: PMC3636086 DOI: 10.1371/journal.pgen.1003469] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
Mobile group II introns retrohome by an RNP-based mechanism in which the intron RNA reverse splices into a DNA site and is reverse transcribed by the associated intron-encoded protein. The resulting intron cDNA is then integrated into the genome by cellular mechanisms that have remained unclear. Here, we used an Escherichia coli genetic screen and Taqman qPCR assay that mitigate indirect effects to identify host factors that function in retrohoming. We then analyzed mutants identified in these and previous genetic screens by using a new biochemical assay that combines group II intron RNPs with cellular extracts to reconstitute the complete retrohoming reaction in vitro. The genetic and biochemical analyses indicate a retrohoming pathway involving degradation of the intron RNA template by a host RNase H and second-strand DNA synthesis by the host replicative DNA polymerase. Our results reveal ATP-dependent steps in both cDNA and second-strand synthesis and a surprising role for replication restart proteins in initiating second-strand synthesis in the absence of DNA replication. We also find an unsuspected requirement for host factors in initiating reverse transcription and a new RNA degradation pathway that suppresses retrohoming. Key features of the retrohoming mechanism may be used by human LINEs and other non-LTR-retrotransposons, which are related evolutionarily to mobile group II introns. Our findings highlight a new role for replication restart proteins, which function not only to repair DNA damage caused by mobile element insertion, but have also been co-opted to become an integral part of the group II intron retrohoming mechanism. Mobile group II introns are bacterial retrotransposons that are evolutionarily related to introns and retroelements in higher organisms. They spread within and between genomes by a mechanism termed “retrohoming” in which the intron RNA inserts directly into a DNA site and is reverse transcribed by an intron-encoded reverse transcriptase. The resulting intron cDNA is integrated into the genome by host factors, but how it occurs has remained unclear. Here, we investigated the function of host factors in retrohoming by genetic and biochemical approaches, including a new biochemical assay that reconstitutes the complete retrohoming reaction in vitro. Our results lead to a comprehensive model for retrohoming, which includes a surprising role for replication restart proteins in recruiting the host replicative DNA polymerase to copy the intron cDNA into the genome in the absence of DNA replication. We also find an unexpected contribution of host factors to initiating reverse transcription and a new RNA degradation pathway that suppresses retrohoming. We suggest that key features of the group II intron retrohoming mechanism may be used by human LINE elements and other non-LTR-retrotransposons. Additionally, our results provide new insights into the function of replication restart proteins, which are critical for surviving DNA damage in all organisms.
Collapse
Affiliation(s)
- Jun Yao
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - David M. Truong
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alan M. Lambowitz
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, and Section of Molecular Genetics and Microbiology, School of Biological Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Moriyama R, Shimada N, Kano A, Maruyama A. The role of cationic comb-type copolymers in chaperoning DNA annealing. Biomaterials 2011; 32:7671-6. [DOI: 10.1016/j.biomaterials.2011.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/23/2011] [Indexed: 02/05/2023]
|
11
|
Abstract
RNA folding is the most essential process underlying RNA function. While significant progress has been made in understanding the forces driving RNA folding in vitro, exploring the rules governing intracellular RNA structure formation is still in its infancy. The cellular environment hosts a great diversity of factors that potentially influence RNA folding in vivo. For example, the nature of transcription and translation is known to shape the folding landscape of RNA molecules. Trans-acting factors such as proteins, RNAs and metabolites, among others, are also able to modulate the structure and thus the fate of an RNA. Here we summarize the ongoing efforts to uncover how RNA folds in living cells.
Collapse
Affiliation(s)
- Georgeta Zemora
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
12
|
Doetsch M, Gstrein T, Schroeder R, Fürtig B. Mechanisms of StpA-mediated RNA remodeling. RNA Biol 2010; 7:735-43. [PMID: 21057189 DOI: 10.4161/rna.7.6.13882] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In bacteria, transcription, translation and gene regulation are highly coupled processes. The achievement of a certain functional structure at a distinct temporal and spatial position is therefore essential for RNA molecules. Proteins that facilitate this proper folding of RNA molecules are called RNA chaperones. Here a prominent example from E. coli is reviewed: the nucleoid associated protein StpA. Based on its various RNA remodeling functions, we propose a mechanistic model that explains how StpA promotes RNA folding. Through transient interactions via the RNA backbone, thereby shielding repelling charges in RNA, it pre-positions the RNA molecules for the successful formation of transition states from encounter complexes.
Collapse
|
13
|
Abstract
Many non-coding RNAs fold into complex three-dimensional structures, yet the self-assembly of RNA structure is hampered by mispairing, weak tertiary interactions, electrostatic barriers, and the frequent requirement that the 5' and 3' ends of the transcript interact. This rugged free energy landscape for RNA folding means that some RNA molecules in a population rapidly form their native structure, while many others become kinetically trapped in misfolded conformations. Transient binding of RNA chaperone proteins destabilize misfolded intermediates and lower the transition states between conformations, producing a smoother landscape that increases the rate of folding and the probability that a molecule will find the native structure. DEAD-box proteins couple the chemical potential of ATP hydrolysis with repetitive cycles of RNA binding and release, expanding the range of conditions under which they can refold RNA structures.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
14
|
Chadee AB, Bhaskaran H, Russell R. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics. J Mol Biol 2009; 395:656-70. [PMID: 19913030 DOI: 10.1016/j.jmb.2009.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
The Neurospora crassa CYT-18 protein is a mitochondrial tyrosyl-tRNA synthetase that also promotes self-splicing of group I intron RNAs by stabilizing the functional structure in the conserved core. CYT-18 binds the core along the same surface as a common peripheral element, P5abc, suggesting that CYT-18 can replace P5abc functionally. In addition to stabilizing structure generally, P5abc stabilizes the native conformation of the Tetrahymena group I intron relative to a globally similar misfolded conformation that has only local differences within the core and is populated significantly at equilibrium by a ribozyme variant lacking P5abc (E(DeltaP5abc)). Here, we show that CYT-18 specifically promotes formation of the native group I intron core from this misfolded conformation. Catalytic activity assays demonstrate that CYT-18 shifts the equilibrium of E(DeltaP5abc) toward the native state by at least 35-fold, and binding assays suggest an even larger effect. Thus, similar to P5abc, CYT-18 preferentially recognizes the native core, despite the global similarity of the misfolded core and despite forming crudely similar complexes, as revealed by dimethyl sulfate footprinting. Interestingly, the effects of CYT-18 and P5abc on folding kinetics differ. Whereas P5abc inhibits refolding of the misfolded conformation by forming peripheral contacts that must break during refolding, CYT-18 does not display analogous inhibition, most likely because it relies to a greater extent on direct interactions with the core. Although CYT-18 does not encounter this RNA in vivo, our results suggest that it stabilizes its cognate group I introns relative to analogous misfolded intermediates. By specifically recognizing native structural features, CYT-18 may also interact with earlier folding intermediates to avoid RNA misfolding or to trap native contacts as they form. More generally, our results highlight the ability of a protein cofactor to stabilize a functional RNA structure specifically without incurring associated costs in RNA folding kinetics.
Collapse
Affiliation(s)
- Amanda B Chadee
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, TX 78712, USA
| | | | | |
Collapse
|
15
|
Abstract
RNA folds to a myriad of three-dimensional structures and performs an equally diverse set of functions. The ability of RNA to fold and function in vivo is all the more remarkable because, in vitro, RNA has been shown to have a strong propensity to adopt misfolded, non-functional conformations. A principal factor underlying the dominance of RNA misfolding is that local RNA structure can be quite stable even in the absence of enforcing global tertiary structure. This property allows non-native structure to persist, and it also allows native structure to form and stabilize non-native contacts or non-native topology. In recent years it has become clear that one of the central reasons for the apparent disconnect between the capabilities of RNA in vivo and its in vitro folding properties is the presence of RNA chaperones, which facilitate conformational transitions of RNA and therefore mitigate the deleterious effects of RNA misfolding. Over the past two decades, it has been demonstrated that several classes of non-specific RNA binding proteins possess profound RNA chaperone activity in vitro and when overexpressed in vivo, and at least some of these proteins appear to function as chaperones in vivo. More recently, it has been shown that certain DExD/H-box proteins function as general chaperones to facilitate folding of group I and group II introns. These proteins are RNA-dependent ATPases and have RNA helicase activity, and are proposed to function by using energy from ATP binding and hydrolysis to disrupt RNA structure and/or to displace proteins from RNA-protein complexes. This review outlines experimental studies that have led to our current understanding of the range of misfolded RNA structures, the physical origins of RNA misfolding, and the functions and mechanisms of putative RNA chaperone proteins.
Collapse
Affiliation(s)
- Rick Russell
- Department of Chemistry and Biochemistry, The Institute For Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
16
|
Rajkowitsch L, Schroeder R. Dissecting RNA chaperone activity. RNA (NEW YORK, N.Y.) 2007; 13:2053-60. [PMID: 17901153 PMCID: PMC2080586 DOI: 10.1261/rna.671807] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Accepted: 08/20/2007] [Indexed: 05/17/2023]
Abstract
Many RNA-binding proteins help RNAs to fold via their RNA chaperone activity. This term has been used widely without accounting for the diversity of the observed reactions, which include complex events like restructuring of misfolded catalytic RNAs, promoting the assembly of RNA-protein complexes, and mediating RNA-RNA interactions. Proteins display very diverse activities depending on the assays used to measure RNA chaperone activity. To classify proteins with this activity, we compared three exemplary proteins from E. coli, host factor Hfq, ribosomal protein S1, and the histone-like protein StpA for their abilities to promote two simple reactions, RNA annealing and strand displacement. The results of a FRET-based assay show that S1 promotes only RNA strand displacement while Hfq solely enhances RNA annealing. StpA, in contrast, is active in both reactions. To test whether the two activities can be assigned to different domains of the bipartite-structured StpA, we assayed the purified N- and C- terminal domains separately. While both domains are unable to promote RNA annealing, we can attribute the RNA strand displacement activity of StpA to the C-terminal domain. Correlating with their RNA annealing activities, only Hfq and full-length StpA display simultaneous binding of two RNAs, suggesting a matchmaker-like model for this activity. For StpA, this "RNA crowding" requires protein-protein interactions, since a dimerization-deficient StpA mutant lost the ability to bind and anneal two RNAs. These results underline the difference between the two reaction types, making it necessary to distinguish and classify proteins according to their specific RNA chaperone activities.
Collapse
|
17
|
Bhaskaran H, Russell R. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 2007; 449:1014-8. [PMID: 17960235 DOI: 10.1038/nature06235] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/11/2007] [Indexed: 11/09/2022]
Abstract
DExD/H-box proteins are ubiquitously involved in RNA-mediated processes and use ATP to accelerate conformational changes in RNA. However, their mechanisms of action, and what determines which RNA species are targeted, are not well understood. Here we show that the DExD/H-box protein CYT-19, a general RNA chaperone, mediates ATP-dependent unfolding of both the native conformation and a long-lived misfolded conformation of a group I catalytic RNA with efficiencies that depend on the stabilities of the RNA species but not on specific structural features. CYT-19 then allows the RNA to refold, changing the distribution from equilibrium to kinetic control. Because misfolding is favoured kinetically, conditions that allow unfolding of the native RNA yield large increases in the population of misfolded species. Our results suggest that DExD/H-box proteins act with sufficient breadth and efficiency to allow structured RNAs to populate a wider range of conformations than would be present at equilibrium. Thus, RNAs may face selective pressure to stabilize their active conformations relative to inactive ones to avoid significant redistribution by DExD/H-box proteins. Conversely, RNAs whose functions depend on forming multiple conformations may rely on DExD/H-box proteins to increase the populations of less stable conformations, thereby increasing their overall efficiencies.
Collapse
Affiliation(s)
- Hari Bhaskaran
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
18
|
Rajkowitsch L, Schroeder R. Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity. Biotechniques 2007; 43:304, 306, 308 passim. [PMID: 17907573 DOI: 10.2144/000112530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Proteins with RNA chaperone activity help RNAs to obtain their native conformations, and many of them are active in the two basic reactions-RNA annealing and strand displacement. Therefore, we developed a time-saving in vitro assay that detects protein-facilitated annealing and strand displacement of fluorophore-labeled oligoribonucleotides in a microplate reader The two reactions are followed byfluorescence resonance energy transfer (FRET) in real-time, and the effect of the proteins on the reaction constants can be quantified. The high-throughput property of the fluorescence microplate reader the kinetic characterization, and the material-saving aspect of this assay enables a fast and convenient classification of proteins according to their RNA chaperone activity in annealing and strand displacement.
Collapse
Affiliation(s)
- Lukas Rajkowitsch
- Max F. Perutz [corrected] Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
19
|
Ameres SL, Shcherbakov D, Nikonova E, Piendl W, Schroeder R, Semrad K. RNA chaperone activity of L1 ribosomal proteins: phylogenetic conservation and splicing inhibition. Nucleic Acids Res 2007; 35:3752-63. [PMID: 17517772 PMCID: PMC1920258 DOI: 10.1093/nar/gkm318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA chaperone activity is defined as the ability of proteins to either prevent RNA from misfolding or to open up misfolded RNA conformations. One-third of all large ribosomal subunit proteins from E. coli display this activity, with L1 exhibiting one of the highest activities. Here, we demonstrate via the use of in vitro trans- and cis-splicing assays that the RNA chaperone activity of L1 is conserved in all three domains of life. However, thermophilic archaeal L1 proteins do not display RNA chaperone activity under the experimental conditions tested here. Furthermore, L1 does not exhibit RNA chaperone activity when in complexes with its cognate rRNA or mRNA substrates. The evolutionary conservation of the RNA chaperone activity among L1 proteins suggests a functional requirement during ribosome assembly, at least in bacteria, mesophilic archaea and eukarya. Surprisingly, rather than facilitating catalysis, the thermophilic archaeal L1 protein from Methanococcus jannaschii (MjaL1) completely inhibits splicing of the group I thymidylate synthase intron from phage T4. Mutational analysis of MjaL1 excludes the possibility that the inhibitory effect is due to stronger RNA binding. To our knowledge, MjaL1 is the first example of a protein that inhibits group I intron splicing.
Collapse
Affiliation(s)
- Stefan L. Ameres
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry Shcherbakov
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Ekaterina Nikonova
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Wolfgang Piendl
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Renée Schroeder
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Katharina Semrad
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- *To whom correspondence should be addressed. +43-1-4277-54694+43-1-4277-9522
| |
Collapse
|
20
|
Mayer O, Rajkowitsch L, Lorenz C, Konrat R, Schroeder R. RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res 2007; 35:1257-69. [PMID: 17267410 PMCID: PMC1851640 DOI: 10.1093/nar/gkl1143] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The E. coli protein StpA has RNA annealing and strand displacement activities and it promotes folding of RNAs by loosening their structures. To understand the mode of action of StpA, we analysed the relationship of its RNA chaperone activity to its RNA-binding properties. For acceleration of annealing of two short RNAs, StpA binds both molecules simultaneously, showing that annealing is promoted by crowding. StpA binds weakly to RNA with a preference for unstructured molecules. Binding of StpA to RNA is strongly dependent on the ionic strength, suggesting that the interactions are mainly electrostatic. A mutant variant of the protein, with a glycine to valine change in the nucleic-acid-binding domain, displays weaker RNA binding but higher RNA chaperone activity. This suggests that the RNA chaperone activity of StpA results from weak and transient interactions rather than from tight binding to RNA. We further discuss the role that structural disorder in proteins may play in chaperoning RNA folding, using bioinformatic sequence analysis tools, and provide evidence for the importance of conformational disorder and local structural preformation of chaperone nucleic-acid-binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Renée Schroeder
- *To whom correspondence should be addressed: Tel: + 43 1 4277 54690; Fax: + 43 1 4277 9522;
| |
Collapse
|
21
|
Jackson SA, Koduvayur S, Woodson SA. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. RNA (NEW YORK, N.Y.) 2006; 12:2149-59. [PMID: 17135489 PMCID: PMC1664722 DOI: 10.1261/rna.184206] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stable RNAs must form specific three-dimensional structures, yet many RNAs become kinetically trapped in misfolded conformations. To understand the factors that control the accuracy of RNA folding in the cell, the self-splicing activity of the Tetrahymena group I intron was compared in different genetic contexts in budding yeast. The extent of splicing was 98% when the intron was placed in its natural rDNA context, but only 3% when the intron was expressed in an exogenous pre-mRNA. Further experiments showed that the probability of forming the active intron structure depends on local sequence context and transcription by Pol I. Pre-rRNAs decayed at similar rates, whether the intron was wild type or inactivated by an internal deletion, suggesting that most of the unreacted pre-rRNA is incompetent to splice. Northern blots and complementation assays showed that mutations that destabilize the intron tertiary structure inhibited self-splicing and processing of internal transcribed spacer 2. The data are consistent with partitioning of pre-rRNAs into active and inactive populations. The misfolded RNAs are sequestered and degraded without refolding to a significant extent. Thus, the initial fidelity of folding can dictate the intracellular fate of transcripts containing this group I intron.
Collapse
Affiliation(s)
- Scott A Jackson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
22
|
Schoemaker RJW, Gultyaev AP. Computer simulation of chaperone effects of Archaeal C/D box sRNA binding on rRNA folding. Nucleic Acids Res 2006; 34:2015-26. [PMID: 16614451 PMCID: PMC1435978 DOI: 10.1093/nar/gkl154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Revised: 03/12/2006] [Accepted: 03/20/2006] [Indexed: 12/04/2022] Open
Abstract
Archaeal C/D box small RNAs (sRNAs) are homologues of eukaryotic C/D box small nucleolar RNAs (snoRNAs). Their main function is guiding 2'-O-ribose methylation of nucleotides in rRNAs. The methylation requires the pairing of an sRNA antisense element to an rRNA target site with formation of an RNA-RNA duplex. The temporary formation of such a duplex during rRNA maturation is expected to influence rRNA folding in a chaperone-like way, in particular in thermophilic Archaea, where multiple sRNAs with two binding sites are found. Here we investigate possible mechanisms of chaperone function of Archaeoglobus fulgidus and Pyrococcus abyssi C/D box sRNAs using computer simulations of rRNA secondary structure formation by genetic algorithm. The effects of sRNA binding on rRNA structure are introduced as temporary structural constraints during co-transcriptional folding. Comparisons of the final predictions with simulations without sRNA binding and with phylogenetic structures show that sRNAs with two antisense elements may significantly facilitate the correct formation of long-range interactions in rRNAs, in particular at elevated temperatures. The simulations suggest that the main mechanism of this effect is a transient restriction of folding in rRNA domains where the termini are brought together by binding to double-guide sRNAs.
Collapse
MESH Headings
- Archaeoglobus fulgidus/genetics
- Base Sequence
- Binding Sites
- Computer Simulation
- Molecular Chaperones/chemistry
- Molecular Chaperones/metabolism
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pyrococcus abyssi/genetics
- RNA, Antisense/chemistry
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- Temperature
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Ruud J. W. Schoemaker
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| | - Alexander P. Gultyaev
- Section Theoretical Biology, Leiden Institute of Biology, Leiden UniversityKaiserstraat 63, 2311 GP Leiden, The Netherlands
| |
Collapse
|