1
|
Zhang H, Hu J, Zhu J, Li Q, Fang L. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1026938. [PMID: 36482994 PMCID: PMC9722730 DOI: 10.3389/fendo.2022.1026938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To identify the diagnostic biomarkers of metabolism-related genes (MRGs), and investigate the association of the MRGs and immune infiltration landscape in diabetic nephropathy (DN). METHODS The transcriptome matrix was downloaded from the GEO database. R package "limma" was utilized to identify the differential expressed MRGs (DE-MRGs) of HC and DN samples. Genetic Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DE-MRGs were performed using "clusterProfiler" R package. WGCNA, LASSO, SVM-RFE, and RFE algorithms were employed to select the diagnostic feature biomarkers for DN. The ROC curve was used to evaluate discriminatory ability for diagnostic feature biomarkers. CIBERSORT algorithm was performed to investigate the fraction of the 22-types immune cells in HC and DN group. The correlation of diagnostic feature biomarkers and immune cells were performed via Spearman-rank correlation algorithm. RESULTS A total of 449 DE-MRGs were identified in this study. GO and KEGG pathway enrichment analysis indicated that the DE-MRGs were mainly enriched in small molecules catabolic process, purine metabolism, and carbon metabolism. ADI1, PTGS2, DGKH, and POLR2B were identified as diagnostic feature biomarkers for DN via WGCNA, LASSO, SVM-RFE, and RFE algorithms. The result of CIBERSORT algorithm illustrated a remarkable difference of immune cells in HC and DN group, and the diagnostic feature biomarkers were closely associated with immune cells. CONCLUSION ADI1, PTGS2, DGKH, and POLR2B were identified as diagnostic feature biomarkers for DN, and associated with the immune infiltration landscape, providing a novel perspective for the future research and clinical management for DN.
Collapse
Affiliation(s)
- Huangjie Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jinguo Hu
- Department of Pharmacy, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfeng Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Qinglin Li, ; Luo Fang,
| | - Luo Fang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Qinglin Li, ; Luo Fang,
| |
Collapse
|
2
|
Yeo IC, Devarenne TP. Screening for potential nuclear substrates for the plant cell death suppressor kinase Adi3 using peptide microarrays. PLoS One 2020; 15:e0234011. [PMID: 32484825 PMCID: PMC7266335 DOI: 10.1371/journal.pone.0234011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The tomato AGC protein kinase Adi3 is a Ser/Thr kinase that functions as a negative regulator of programmed cell death through cell death suppression (CDS) activity in the nucleus. In this study, to understand the mechanism of Adi3 CDS, peptide microarrays containing random Ser- and Thr-peptide phosphorylation substrates were used to screen for downstream phosphorylation substrates. In the microarray phosphorylation assay, Adi3 showed promiscuous kinase activity more toward Ser-peptides compared to Thr-peptides, and a preference for aromatic and cyclic amino acids on both Ser- and Thr-peptides was seen. The 63 highest phosphorylated peptide sequences from the Ser-peptide microarray were selected as queries for a BLAST search against the tomato proteome. As a result, 294 candidate nuclear Adi3 substrates were selected and categorized based on their functions. Many of these proteins were classified as DNA/RNA polymerases or regulators involved in transcription and translation events. The list of potential Adi3 substrates was narrowed to eleven and four candidates were tested for phosphorylation by Adi3. Two of these candidates, RNA polymerase II 2nd largest subunit (RPB2) and the pathogen defense related transcription factor Pti5, were confirmed as Adi3 phosphorylation substrates by in vitro kinase assays. Using a mutational approach two residues, Thr675 and Thr676, were identified as Adi3 phosphorylation sites on RPB2. This study provides the foundation for understanding Adi3 CDS mechanisms in the nucleus as well as other cellular functions.
Collapse
Affiliation(s)
- In-Cheol Yeo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Timothy P. Devarenne
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
van Hemert FJ, Zaaijer HL, Berkhout B. In silico prediction of ebolavirus RNA polymerase inhibition by specific combinations of approved nucleotide analogues. J Clin Virol 2015; 73:89-94. [PMID: 26587786 DOI: 10.1016/j.jcv.2015.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/15/2015] [Accepted: 10/22/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The urgency of ebolavirus drug development is obvious in light of the current local epidemic in Western Africa with high morbidity and a risk of wider spread. We present an in silico study as a first step to identify inhibitors of ebolavirus polymerase activity based on approved antiviral nucleotide analogues. STUDY DESIGN Since a structure model of the ebolavirus polymerase is lacking, we performed combined homology and ab initio modeling and report a similarity to known polymerases of human enterovirus, bovine diarrhea virus and foot-and-mouth disease virus. This facilitated the localization of a nucleotide binding domain in the ebolavirus polymerase. We next performed molecular docking studies with nucleotides (ATP, CTP, GTP and UTP) and nucleotide analogues, including a variety of approved antiviral drugs. RESULTS AND CONCLUSIONS Specific combinations of nucleotide analogues significantly reduce the ligand-protein interaction energies of the ebolavirus polymerase for natural nucleotides. Any nucleotide analogue on its own did not reduce ligand-protein interaction energies. This prediction encourages specific drug testing efforts and guides future strategies to inhibit ebolavirus replication.
Collapse
Affiliation(s)
- Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Hans L Zaaijer
- Laboratory of Clinical Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Kireeva ML, Opron K, Seibold SA, Domecq C, Cukier RI, Coulombe B, Kashlev M, Burton ZF. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase. BMC BIOPHYSICS 2012; 5:11. [PMID: 22676913 PMCID: PMC3533926 DOI: 10.1186/2046-1682-5-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/07/2012] [Indexed: 11/10/2022]
Abstract
UNLABELLED BACKGROUND During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile "trigger loop" of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the "bridge helix" that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. RESULTS All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as "switch" residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. CONCLUSIONS Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation.
Collapse
Affiliation(s)
- Maria L Kireeva
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Kristopher Opron
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319, USA
| | - Steve A Seibold
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319, USA
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
- Department of Chemistry, University of Saint Mary, Leavenworth, KS, 66048, USA
| | - Céline Domecq
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, CANADA
| | - Robert I Cukier
- Department of Chemistry, Michigan State University, E. Lansing, MI, 48824, USA
| | - Benoit Coulombe
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), 110, Avenue des Pins Ouest, Montréal, Québec, H2W 1R7, CANADA
- Department of Biochemistry, Université de Montréal, Montréal, Québec, H3C 3J7, CANADA
| | - Mikhail Kashlev
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI, 48824-1319, USA
| |
Collapse
|
5
|
Ruprich-Robert G, Wery M, Després D, Boulard Y, Thuriaux P. Crucial role of a dicarboxylic motif in the catalytic center of yeast RNA polymerases. Curr Genet 2011; 57:327-34. [PMID: 21761155 DOI: 10.1007/s00294-011-0350-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 11/29/2022]
Abstract
The catalytic center of yeast RNA polymerase II and III contains an acidic loop borne by their second largest subunit (Rpb2-(832)GYNQED(837), Rpc128-(764)GYDIED(769)) and highly conserved in all cellular and viral DNA-dependent RNA polymerases. A site-directed mutagenesis of this dicarboxylic motif reveals its strictly essential character in RNA polymerase III, with a slightly less stringent pattern in RNA polymerase II, where rpb2-E836Q and other substitutions completely prevent growth, whereas rpb2-E836A combines a dominant growth defect with severe lethal sectoring. A mild but systematic increase in RNA polymerase occupancy and a strict dependency on the transcript cleavage factor TFIIS (Dst1) also suggest a slower rate of translocation or higher probability of transcriptional stalling in this mutation. A conserved nucleotide triphosphate funnel domain binds the Rpb2-(832)GYNQED(837) loop by an Rpb2-R(1020)/Rpb2-D(837) salt-bridge. Molecular dynamic simulations reveal a second bridge (Rpb1-K(752)/Rpb2-E(836)), which may account for the critical role of the invariant Rpb2-E(836). Rpb2-E(836) and the funnel domain are not found among the RNA-dependent eukaryotic RNA polymerases and may thus represent a specific adaptation to double-stranded DNA templates.
Collapse
Affiliation(s)
- Gwenaël Ruprich-Robert
- Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bâtiment 144, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
6
|
Kireeva ML, Domecq C, Coulombe B, Burton ZF, Kashlev M. Interaction of RNA polymerase II fork loop 2 with downstream non-template DNA regulates transcription elongation. J Biol Chem 2011; 286:30898-30910. [PMID: 21730074 DOI: 10.1074/jbc.m111.260844] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fork loop 2 is a small semiconservative segment of the larger fork domain in the second largest Rpb2 subunit of RNA polymerase II (Pol II). This flexible loop, juxtaposed at the leading edge of transcription bubble, has been proposed to participate in DNA strand separation, translocation along DNA, and NTP loading to Pol II during elongation. Here we show that the Rpb2 mutant carrying a deletion of the flexible part of the loop is not lethal in yeast. The mutation exhibits no defects in DNA melting and translocation in vitro but confers a moderate decrease of the catalytic activity of the enzyme caused by the impaired sequestration of the NTP substrate in the active center prior to catalysis. In the structural model of the Pol II elongation complex, fork loop 2 directly interacts with an unpaired DNA residue in the non-template DNA strand one nucleotide ahead from the active center (the i+2 position). We showed that elimination of this putative interaction by replacement of the i+2 residue with an abasic site inhibits Pol II activity to the same degree as the deletion of fork loop 2. This replacement has no detectable effect on the activity of the mutant enzyme. We provide direct evidence that interaction of fork loop 2 with the non-template DNA strand facilitates NTP sequestration through interaction with the adjacent segment of the fork domain involved in the active center of Pol II.
Collapse
Affiliation(s)
- Maria L Kireeva
- NCI-Frederick, National Institutes of Health, Center for Cancer Research, Frederick, Maryland 21702-1201
| | - Céline Domecq
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montréal, Québec, H2W 1R7 Canada
| | - Benoit Coulombe
- Gene Transcription and Proteomics Laboratory, Institut de Recherches Cliniques de Montréal and Department of Biochemistry, Université de Montréal, Montréal, Québec, H2W 1R7 Canada
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Mikhail Kashlev
- NCI-Frederick, National Institutes of Health, Center for Cancer Research, Frederick, Maryland 21702-1201.
| |
Collapse
|
7
|
The RPB2 flap loop of human RNA polymerase II is dispensable for transcription initiation and elongation. Mol Cell Biol 2011; 31:3312-25. [PMID: 21670157 DOI: 10.1128/mcb.05318-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The flap domain of multisubunit RNA polymerases (RNAPs), also called the wall, forms one side of the RNA exit channel. In bacterial RNAP, the mobile part of the flap is called the flap tip and makes essential contacts with initiation and elongation factors. Cocrystal structures suggest that the orthologous part of eukaryotic RNAPII, called the flap loop, contacts transcription factor IIB (TFIIB), but the function of the flap loop has not been assessed. We constructed and tested a deletion of the flap loop in human RNAPII (subunit RPB2 Δ873-884) that removes the flap loop interaction interface with TFIIB. Genome-wide analysis of the distribution of the RNAPII with the flap loop deletion expressed in a human embryonic kidney cell line (HEK 293) revealed no effect of the flap loop on global transcription initiation, RNAPII occupancy within genes, or the efficiency of promoter escape and productive elongation. In vitro, the flap loop deletion had no effect on promoter binding, abortive initiation or promoter escape, TFIIS-stimulated transcript cleavage, or inhibition of transcript elongation by the complex of negative elongation factor (NELF) and 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF). A modest effect on transcript elongation and pausing was suppressed by TFIIF. Although similar to the flap tip of bacterial RNAP, the RNAPII flap loop is not equivalently essential.
Collapse
|
8
|
Ruprich-Robert G, Thuriaux P. Non-canonical DNA transcription enzymes and the conservation of two-barrel RNA polymerases. Nucleic Acids Res 2010; 38:4559-69. [PMID: 20360047 PMCID: PMC2919709 DOI: 10.1093/nar/gkq201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/23/2022] Open
Abstract
DNA transcription depends on multimeric RNA polymerases that are exceptionally conserved in all cellular organisms, with an active site region of >500 amino acids mainly harboured by their Rpb1 and Rpb2 subunits. Together with the distantly related eukaryotic RNA-dependent polymerases involved in gene silencing, they form a monophyletic family of ribonucleotide polymerases with a similarly organized active site region based on two double-Psi barrels. Recent viral and phage genome sequencing have added a surprising variety of putative nucleotide polymerases to this protein family. These proteins have highly divergent subunit composition and amino acid sequences, but always contain eight invariant amino acids forming a universally conserved catalytic site shared by all members of the two-barrel protein family. Moreover, the highly conserved 'funnel' and 'switch 2' components of the active site region are shared by all putative DNA-dependent RNA polymerases and may thus determine their capacity to transcribe double-stranded DNA templates.
Collapse
Affiliation(s)
| | - Pierre Thuriaux
- CEA, iBiTec-S, Service de Biologie Intégrative et Génétique Moléculaire, Gif-sur-Yvette Cedex, F-91191, France
| |
Collapse
|
9
|
Domecq C, Kireeva M, Archambault J, Kashlev M, Coulombe B, Burton ZF. Site-directed mutagenesis, purification and assay of Saccharomyces cerevisiae RNA polymerase II. Protein Expr Purif 2009; 69:83-90. [PMID: 19567268 DOI: 10.1016/j.pep.2009.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
Abstract
In order to analyze the structure-function of multi-subunit RNA polymerases (RNAPs), it is necessary to make site-directed mutations in key residues. Because Saccharomyces cerevisiae RNAP II is isolated as a 12 subunit enzyme that has not been amenable to in vitro reconstitution, making site-directed mutations in a particular subunit presents technical issues. In this work, we demonstrate a method to generate and purify site-directed mutants in the second largest (Rpb2) RNAP II subunit from yeast, using a tandem affinity purification tag. Mutants are analyzed for growth defects in vivo and for defects in transcriptional elongation in vitro. We show that Rpb2 R512A/C located just C-terminal to fork loop 2 (Rpb2 500-511) has transcriptional defects that are distinct from surrounding fork loop 2 region mutants. Rpb2 E529A/D replacements are faster and E529Q is slower than wild type RNAP II in elongation. E529 appears to form an ion pair with K987, an essential active site residue. Mutations are also analyzed within the active site region indicating key residues for catalysis and the importance of a Rpb2 R983-E1028 ion pair. Rpb2 R983Q and E1028Q are defective in escape from a transcriptional stall.
Collapse
Affiliation(s)
- Céline Domecq
- Institut de Recherches Cliniques de Montréal, 110, Montréal, Que., Canada H2W 1R7
| | | | | | | | | | | |
Collapse
|
10
|
Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 2007; 448:163-8. [PMID: 17581591 DOI: 10.1038/nature05931] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/11/2007] [Indexed: 01/22/2023]
Abstract
The mechanism of substrate loading in multisubunit RNA polymerase is crucial for understanding the general principles of transcription yet remains hotly debated. Here we report the 3.0-A resolution structures of the Thermus thermophilus elongation complex (EC) with a non-hydrolysable substrate analogue, adenosine-5'-[(alpha,beta)-methyleno]-triphosphate (AMPcPP), and with AMPcPP plus the inhibitor streptolydigin. In the EC/AMPcPP structure, the substrate binds to the active ('insertion') site closed through refolding of the trigger loop (TL) into two alpha-helices. In contrast, the EC/AMPcPP/streptolydigin structure reveals an inactive ('preinsertion') substrate configuration stabilized by streptolydigin-induced displacement of the TL. Our structural and biochemical data suggest that refolding of the TL is vital for catalysis and have three main implications. First, despite differences in the details, the two-step preinsertion/insertion mechanism of substrate loading may be universal for all RNA polymerases. Second, freezing of the preinsertion state is an attractive target for the design of novel antibiotics. Last, the TL emerges as a prominent target whose refolding can be modulated by regulatory factors.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B Kaul Genetics Building, 720 20th Street South, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Schneider DA, Michel A, Sikes ML, Vu L, Dodd JA, Salgia S, Osheim YN, Beyer AL, Nomura M. Transcription elongation by RNA polymerase I is linked to efficient rRNA processing and ribosome assembly. Mol Cell 2007; 26:217-29. [PMID: 17466624 PMCID: PMC1927085 DOI: 10.1016/j.molcel.2007.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/26/2007] [Accepted: 04/09/2007] [Indexed: 02/07/2023]
Abstract
The synthesis of ribosomes in eukaryotic cells is a complex process involving many nonribosomal protein factors and snoRNAs. In general, the processes of rRNA transcription and ribosome assembly are treated as temporally or spatially distinct. Here, we describe the identification of a point mutation in the second largest subunit of RNA polymerase I near the active center of the enzyme that results in an elongation-defective enzyme in the yeast Saccharomyces cerevisiae. In vivo, this mutant shows significant defects in rRNA processing and ribosome assembly. Taken together, these data suggest that transcription of rRNA by RNA polymerase I is linked to rRNA processing and maturation. Thus, RNA polymerase I, elongation factors, and rRNA sequence elements appear to function together to optimize transcription elongation, coordinating cotranscriptional interactions of many factors/snoRNAs with pre-rRNA for correct rRNA processing and ribosome assembly.
Collapse
Affiliation(s)
- David A. Schneider
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Antje Michel
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Martha L. Sikes
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Loan Vu
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Jonathan A. Dodd
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Shilpa Salgia
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| | - Yvonne N. Osheim
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Ann L. Beyer
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | - Masayasu Nomura
- Department of Biological Chemistry, University of California, Irvine, 240-D Medical Sciences I, Irvine, CA 92697-1700, USA
| |
Collapse
|
12
|
Trinh V, Langelier MF, Archambault J, Coulombe B. Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol Mol Biol Rev 2006; 70:12-36. [PMID: 16524917 PMCID: PMC1393249 DOI: 10.1128/mmbr.70.1.12-36.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High-resolution crystallographic structures of multisubunit RNA polymerases (RNAPs) have increased our understanding of transcriptional mechanisms. Based on a thorough review of the literature, we have compiled the mutations affecting the function of multisubunit RNA polymerases, many of which having been generated and studied prior to the publication of the first high-resolution structure, and highlighted the positions of the altered amino acids in the structures of both the prokaryotic and eukaryotic enzymes. The observations support many previous hypotheses on the transcriptional process, including the implication of the bridge helix and the trigger loop in the processivity of RNAP, the importance of contacts between the RNAP jaw-lobe module and the downstream DNA in the establishment of a transcription bubble and selection of the transcription start site, the destabilizing effects of ppGpp on the open promoter complex, and the link between RNAP processivity and termination. This study also revealed novel, remarkable features of the RNA polymerase catalytic mechanisms that will require additional investigation, including the putative roles of fork loop 2 in the establishment of a transcription bubble, the trigger loop in start site selection, and the uncharacterized funnel domain in RNAP processivity.
Collapse
Affiliation(s)
- Vincent Trinh
- Gene Transcription Laboratory, Institut de Recherches Cliniques de Montréal, 110 Ave. des Pins Ouest, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
13
|
Coulombe B, Langelier MF. Functional dissection of the catalytic mechanism of mammalian RNA polymerase II. Biochem Cell Biol 2005; 83:497-504. [PMID: 16094453 PMCID: PMC4494827 DOI: 10.1139/o05-061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High resolution X-ray crystal structures of multisubunit RNA polymerases (RNAP) have contributed to our understanding of transcriptional mechanisms. They also provided a powerful guide for the design of experiments aimed at further characterizing the molecular stages of the transcription reaction. Our laboratory used tandem-affinity peptide purification in native conditions to isolate human RNAP II variants that had site-specific mutations in structural elements located strategically within the enzyme's catalytic center. Both in vitro and in vivo analyses of these mutants revealed novel features of the catalytic mechanisms involving this enzyme.
Collapse
Affiliation(s)
- Benoit Coulombe
- Gene Transcription Laboratory, Institute de recherche cliniques de Montréal, QC, Canada.
| | | |
Collapse
|