1
|
Wang YC, Chang CP, Lai YC, Chan CH, Ou SC, Wang SH, Li C. The conservation and diversity of the exons encoding the glycine and arginine rich domain of the fibrillarin gene in vertebrates, with special focus on reptiles and birds. Gene 2023; 866:147345. [PMID: 36893875 DOI: 10.1016/j.gene.2023.147345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The nucleolar rRNA 2'-O-methyltransferase fibrillarin (FBL) contains a highly conserved methyltransferase domain at the C-terminus and a diverse glycine arginine-rich (GAR) domain at the N-terminus in eukaryotes. We found that a nine-exon configuration of fbl and exon 2-3 encoded GAR domain are conserved and specific in vertebrates. All internal exons except exon 2 and 3 are of the same lengths in different vertebrate lineages. The lengths of exon 2 and 3 vary in different vertebrate species but the ones with longer exon 2 usually have shorter exon 3 complementarily, limiting lengths of the GAR domain within a certain range. In tetrapods except for reptiles, exon 2 appears to be longer than exon 3. We specifically analyzed different lineages of reptiles for their GAR sequences and exon lengths. The lengths of exon 2 in reptiles are around 80-130-nt shorter and the lengths of exon 3 in reptiles are around 50-90 nt longer than those in other tetrapods, all in the GAR-coding regions. An FSPR sequence is present at the beginning of the GAR domain encoded by exon 2 in all vertebrates, and a specific FXSP/G element (X can be K, R, Q, N, and H) exist in the middle of GAR with phenylalanine as the 3rd exon 3-encoded amino acid residue starting from jawfish. Snakes, turtles, and songbirds contain shorter exon 2 compared with lizards, indicating continuous deletions in exon 2 and insertions/duplications in exon 3 in these lineages. Specifically, we confirmed the presence the fbl gene in chicken and validated the RNA expression. Our analyses of the GAR-encoding exons of fbl in vertebrates and reptiles should provide the basis for further evolutionary analyses of more GAR domain encoding proteins.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ping Chang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Chuan Lai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chi-Ho Chan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Shan-Chia Ou
- Department of Veterinary Medicine, Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
2
|
Paramanantham A, Asfiya R, Das S, McCully G, Srivastava A. Extracellular Vesicle (EVs) Associated Non-Coding RNAs in Lung Cancer and Therapeutics. Int J Mol Sci 2022; 23:13637. [PMID: 36362424 PMCID: PMC9655370 DOI: 10.3390/ijms232113637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is one of the most lethal forms of cancer, with a very high mortality rate. The precise pathophysiology of lung cancer is not well understood, and pertinent information regarding the initiation and progression of lung cancer is currently a crucial area of scientific investigation. Enhanced knowledge about the disease will lead to the development of potent therapeutic interventions. Extracellular vesicles (EVs) are membrane-bound heterogeneous populations of cellular entities that are abundantly produced by all cells in the human body, including the tumor cells. A defined class of EVs called small Extracellular Vesicles (sEVs or exosomes) carries key biomolecules such as RNA, DNA, Proteins and Lipids. Exosomes, therefore, mediate physiological activities and intracellular communication between various cells, including constituent cells of the tumor microenvironment, namely stromal cells, immunological cells, and tumor cells. In recent years, a surge in studying tumor-associated non-coding RNAs (ncRNAs) has been observed. Subsequently, studies have also reported that exosomes abundantly carry different species of ncRNAs and these exosomal ncRNAs are functionally involved in cancer initiation and progression. Here, we discuss the function of exosomal ncRNAs, such as miRNAs and long non-coding RNAs, in the pathophysiology of lung tumors. Further, the future application of exosomal-ncRNAs in clinics as biomarkers and therapeutic targets in lung cancer is also discussed due to the multifaceted influence of exosomes on cellular physiology.
Collapse
Affiliation(s)
- Anjugam Paramanantham
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Rahmat Asfiya
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Siddharth Das
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Grace McCully
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Akhil Srivastava
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Heterotrophic euglenid Rhabdomonas costata resembles its phototrophic relatives in many aspects of molecular and cell biology. Sci Rep 2021; 11:13070. [PMID: 34158556 PMCID: PMC8219788 DOI: 10.1038/s41598-021-92174-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Euglenids represent a group of protists with diverse modes of feeding. To date, only a partial genomic sequence of Euglena gracilis and transcriptomes of several phototrophic and secondarily osmotrophic species are available, while primarily heterotrophic euglenids are seriously undersampled. In this work, we begin to fill this gap by presenting genomic and transcriptomic drafts of a primary osmotroph, Rhabdomonas costata. The current genomic assembly length of 100 Mbp is 14× smaller than that of E. gracilis. Despite being too fragmented for comprehensive gene prediction it provided fragments of the mitochondrial genome and comparison of the transcriptomic and genomic data revealed features of its introns, including several candidates for nonconventional types. A set of 39,456 putative R. costata proteins was predicted from the transcriptome. Annotation of the mitochondrial core metabolism provides the first data on the facultatively anaerobic mitochondrion of R. costata, which in most respects resembles the mitochondrion of E. gracilis with a certain level of streamlining. R. costata can synthetise thiamine by enzymes of heterogenous provenances and haem by a mitochondrial-cytoplasmic C4 pathway with enzymes orthologous to those found in E. gracilis. The low percentage of green algae-affiliated genes supports the ancestrally osmotrophic status of this species.
Collapse
|
4
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
5
|
The Function of Non-Coding RNAs in Lung Cancer Tumorigenesis. Cancers (Basel) 2019; 11:cancers11050605. [PMID: 31052265 PMCID: PMC6563001 DOI: 10.3390/cancers11050605] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is the most prevalent and deadliest cancer worldwide. A significant part of lung cancer studies is dedicated to the expression alterations of non-coding RNAs. The non-coding RNAs are transcripts that cannot be translated into proteins. While the study of microRNAs and siRNAs in lung cancer received a lot of attention over the last decade, highly efficient therapeutic option or the diagnostic methods based on non-coding RNAs are still lacking. Because of this, it is of utmost importance to direct future research on lung cancer towards analyzing other RNA types for which the currently available data indicates that are essential at modulating lung tumorigenesis. Through our review of studies on this subject, we identify the following non-coding RNAs as tumor suppressors: ts-46, ts-47, ts-101, ts-53, ts-3676, ts-4521 (tRNA fragments), SNORD116-26, HBII-420, SNORD15A, SNORA42 (snoRNAs), piRNA-like-163, piR-35127, the piR-46545 (piRNAs), CHIAP2, LOC100420907, RPL13AP17 (pseudogenes), and uc.454 (T-UCR). We also found non-coding RNAs with tumor-promoting function: tRF-Leu-CAG, tRNA-Leu, tRNA-Val (tRNA fragments), circ-RAD23B, circRNA 100146, circPVT1, circFGFR3, circ_0004015, circPUM1, circFLI1, circABCB10, circHIPK3 (circRNAs), SNORA42, SNORA3, SNORD46, SNORA21, SNORD28, SNORA47, SNORD66, SNORA68, SNORA78 (snoRNAs), piR-65, piR-34871, piR-52200, piR651 (piRNAs), hY4 5’ fragments (YRNAs), FAM83A-AS1, WRAP53, NKX2-1-AS1 (NATs), DUXAP8, SFTA1P (pseudogene transcripts), uc.338, uc.339 (T-UCRs), and hTERC.
Collapse
|
6
|
Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 2018; 8:17012. [PMID: 30451959 PMCID: PMC6242988 DOI: 10.1038/s41598-018-35389-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.
Collapse
|
7
|
Order of removal of conventional and nonconventional introns from nuclear transcripts of Euglena gracilis. PLoS Genet 2018; 14:e1007761. [PMID: 30365503 PMCID: PMC6221363 DOI: 10.1371/journal.pgen.1007761] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 10/12/2018] [Indexed: 11/27/2022] Open
Abstract
Nuclear genes of euglenids and marine diplonemids harbor atypical, nonconventional introns which are not observed in the genomes of other eukaryotes. Nonconventional introns do not have the conserved borders characteristic for spliceosomal introns or the sequence complementary to U1 snRNA at the 5' end. They form a stable secondary structure bringing together both exon/intron junctions, nevertheless, this conformation does not resemble the form of self-splicing or tRNA introns. In the genes studied so far, frequent nonconventional introns insertions at new positions have been observed, whereas conventional introns have been either found at the conserved positions, or simply lost. In this work, we examined the order of intron removal from Euglena gracilis transcripts of the tubA and gapC genes, which contain two types of introns: nonconventional and spliceosomal. The relative order of intron excision was compared for pairs of introns belonging to different types. Furthermore, intermediate products of splicing were analyzed using the PacBio Next Generation Sequencing system. The analysis led to the main conclusion that nonconventional introns are removed in a rapid way but later than spliceosomal introns. Moreover, the observed accumulation of transcripts with conventional introns removed and nonconventional present may suggest the existence of a time gap between the two types of splicing. The existence of conventional spliceosomal introns in genes of eukaryotic organisms is a well-known theorem. However, genes of the unicellular algae group, euglenids, contain also another type of introns, so-called nonconventional ones. They lack canonical borders, a feature most characteristic for conventional introns and form a stable secondary structure bringing together their ends. Along with the increasing popularity of whole genome studies, nonconventional introns were also disclosed in the genes of other protists, diplonemids. In this study we were particularly interested which introns–conventional or nonconventional–are removed earlier from euglenids’ pre-mRNA. To track this process we analyzed transcripts of the two Euglena gracilis genes. The relative order of intron excision was compared for pairs of introns belonging to different types. We also surveyed thousands of intermediate products of splicing using the Next-Generation Sequencing system. Summarizing the results of both experiments, we proved that spliceosomal introns are removed at an earlier stage of pre-mRNA maturation than nonconventional ones.
Collapse
|
8
|
Shubina MY, Musinova YR, Sheval EV. Nucleolar methyltransferase fibrillarin: Evolution of structure and functions. BIOCHEMISTRY (MOSCOW) 2016; 81:941-50. [DOI: 10.1134/s0006297916090030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Milanowski R, Gumińska N, Karnkowska A, Ishikawa T, Zakryś B. Intermediate introns in nuclear genes of euglenids - are they a distinct type? BMC Evol Biol 2016; 16:49. [PMID: 26923034 PMCID: PMC4770533 DOI: 10.1186/s12862-016-0620-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/15/2016] [Indexed: 02/05/2023] Open
Abstract
Background Nuclear genes of euglenids contain two major types of introns: conventional spliceosomal and nonconventional introns. The latter are characterized by variable non-canonical borders, RNA secondary structure that brings intron ends together, and an unknown mechanism of removal. Some researchers also distinguish intermediate introns, which combine features of both types. They form a stable RNA secondary structure and are classified into two subtypes depending on whether they contain one (intermediate/nonconventional subtype) or both (conventional/intermediate subtype) canonical spliceosomal borders. However, it has been also postulated that most introns classified as intermediate could simply be special cases of conventional or nonconventional introns. Results Sequences of tubB, hsp90 and gapC genes from six strains of Euglena agilis were obtained. They contain four, six, and two or three introns, respectively (the third intron in the gapC gene is unique for just one strain). Conventional introns were present at three positions: two in the tubB gene (at one position conventional/intermediate introns were also found) and one in the gapC gene. Nonconventional introns are present at ten positions: two in the tubB gene (at one position intermediate/nonconventional introns were also found), six in hsp90 (at four positions intermediate/nonconventional introns were also found), and two in the gapC gene. Conclusions Sequence and RNA secondary structure analyses of nonconventional introns confirmed that their most strongly conserved elements are base pairing nucleotides at positions +4, +5 and +6/ -8, −7 and −6 (in most introns CAG/CTG nucleotides were observed). It was also confirmed that the presence of the 5' GT/C end in intermediate/nonconventional introns is not the result of kinship with conventional introns, but is due to evolutionary pressure to preserve the purine at the 5' end. However, an example of a nonconventional intron with GC-AG ends was shown, suggesting the possibility of intron type conversion between nonconventional and conventional. Furthermore, an analysis of conventional introns revealed that the ability to form a stable RNA secondary structure by some introns is probably not a result of their relationship with nonconventional introns. It was also shown that acquisition of new nonconventional introns is an ongoing process and can be observed at the level of a single species. In the recently acquired intron in the gapC gene an extended direct repeats at the intron-exon junctions are present, suggesting that double-strand break repair process could be the source of new nonconventional introns. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0620-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafał Milanowski
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Natalia Gumińska
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Anna Karnkowska
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland. .,Department of Botany, University of British Columbia, Vancouver, Canada.
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Bożena Zakryś
- Department of Molecular Phylogenetics and Evolution, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
10
|
Jiang Y, Chen Y, Alrashdi M, Luo W, Tang BZ, Zhang J, Qin J, Tang Y. Monitoring and quantification of the complex bioaccumulation process of mercury ion in algae by a novel aggregation-induced emission fluorogen. RSC Adv 2016. [DOI: 10.1039/c6ra22190d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, a novel methodology was developed using a specified aggregation-induced emission fluorogen (AIEgen) to monitor and quantify the complex bioaccumulation process in a microcosm aquatic ecosystem.
Collapse
Affiliation(s)
- Yusheng Jiang
- College of Aquaculture and Life Sciences
- Dalian Ocean University
- China
- School of Biological Sciences
- Flinders University
| | - Yuncong Chen
- Department of Chemistry
- The Hong Kong University of Science and Technology
- China
| | - Maha Alrashdi
- Centre for Nanoscale Science and Technology
- Flinders University
- Australia
| | - Wen Luo
- School of Biological Sciences
- Flinders University
- Australia
- School of Life Sciences
- Shaoxing University
| | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- China
| | - Jihong Zhang
- College of Food Science and Engineering
- Dalian Ocean University
- China
| | - Jianguang Qin
- School of Biological Sciences
- Flinders University
- Australia
| | - Youhong Tang
- Centre for Nanoscale Science and Technology
- Flinders University
- Australia
| |
Collapse
|
11
|
Li Y, Tang X, Song W, Zhu L, Liu X, Yan X, Jin C, Ren Q. Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract. IET Nanobiotechnol 2015; 9:19-26. [PMID: 25650322 DOI: 10.1049/iet-nbt.2013.0062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Extracellular and intracellular biosynthesis of silver nanoparticles (AgNPs) by Euglena gracilis (EG) strain and Euglena intermedia (EI) strain are reported in this study. The obtained nanoparticles showed an absorption peak approximates 420 nm in the UV-visible spectrum, corresponding to the plasmon resonance of AgNPs. According to the result of inductively coupled plasma-atomic emission spectrometer, the intakes of silver ions by EI and EG are roughly equal. The transmission electron microscope (TEM) analysis of the successful in vivo and in vitro synthesised AgNPs indicated the sizes, ranging from 6 to 24 nm and 15 to 60 nm in diameter, respectively, and a spherical-shaped polydispersal of the particles. The successful formation of AgNPs has been confirmed by energy dispersive X-ray analysis connected to the TEM. The Fourier transform infrared spectroscopy measurements reveal the presence of bioactive functional groups such as amines are found to be the capping and stabilising agents of nanoparticles. To our knowledge, this is the first report where two kinds of Euglena microalga were used as the potential source for in vivo and in vitro biosynthesis of AgNPs.
Collapse
Affiliation(s)
- Yong Li
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiaoling Tang
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Wenshuang Song
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Lina Zhu
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Xingang Liu
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiaomin Yan
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Chengzhi Jin
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China
| | - Qingguang Ren
- Center of Analysis and Measurement, Fudan University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
12
|
A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett 2014; 588:783-8. [PMID: 24492004 DOI: 10.1016/j.febslet.2014.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/21/2022]
Abstract
Euglena gracilis possesses secondary plastids of green algal origin. In this study, E. gracilis expressed sequence tags (ESTs) derived from polyA-selected mRNA were searched and several ESTs corresponding to plastid genes were found. PCR experiments failed to detect SL sequence at the 5'-end of any of these transcripts, suggesting plastid origin of these polyadenylated molecules. Quantitative PCR experiments confirmed that polyadenylation of transcripts occurs in the Euglena plastids. Such transcripts have been previously observed in primary plastids of plants and algae as low-abundance intermediates of transcript degradation. Our results suggest that a similar mechanism exists in secondary plastids.
Collapse
|
13
|
Milanowski R, Karnkowska A, Ishikawa T, Zakryś B. Distribution of conventional and nonconventional introns in tubulin (α and β) genes of euglenids. Mol Biol Evol 2013; 31:584-93. [PMID: 24296662 PMCID: PMC3935182 DOI: 10.1093/molbev/mst227] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear genomes of euglenids contain three types of introns: conventional spliceosomal introns, nonconventional introns for which a splicing mechanism is unknown (variable noncanonical borders, RNA secondary structure bringing together intron ends), and so-called intermediate introns, which combine features of conventional and nonconventional introns. Analysis of two genes, tubA and tubB, from 20 species of euglenids reveals contrasting distribution patterns of conventional and nonconventional introns--positions of conventional introns are conserved, whereas those of the nonconventional ones are unique to individual species or small groups of closely related taxa. Moreover, in the group of phototrophic euglenids, 11 events of conventional intron loss versus 15 events of nonconventional intron gain were identified. A comparison of all nonconventional intron sequences highlighted the most conserved elements in their sequence and secondary structure. Our results led us to put forward two hypotheses. 1) The first one posits that mutational changes in intron sequence could lead to a change in their excision mechanism--intermediate introns would then be a transitional form between the conventional and nonconventional introns. 2) The second hypothesis concerns the origin of nonconventional introns--because of the presence of inverted repeats near their ends, insertion of MITE-like transposon elements is proposed as a possible source of new introns.
Collapse
Affiliation(s)
- Rafał Milanowski
- Department of Plant Systematics and Geography, Institute of Botany, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
14
|
Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 2012; 49:115-78. [PMID: 23085100 DOI: 10.1016/j.ejop.2012.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.
Collapse
|
15
|
Hudson AJ, Moore AN, Elniski D, Joseph J, Yee J, Russell AG. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia. Nucleic Acids Res 2012; 40:10995-1008. [PMID: 23019220 PMCID: PMC3510501 DOI: 10.1093/nar/gks887] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3' end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3' end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA-snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs.
Collapse
Affiliation(s)
- Andrew J Hudson
- Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Vesteg M, Vacula R, Steiner JM, Mateásiková B, Löffelhardt W, Brejová B, Krajcovic J. A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 2010; 17:223-31. [PMID: 20587589 PMCID: PMC2920757 DOI: 10.1093/dnares/dsq015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41–93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45–50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5′-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids.
Collapse
Affiliation(s)
- Matej Vesteg
- Institute of Cell Biology and Biotechnology, Faculty of Natural Sciences, Comenius University, Mlynská dolina, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
17
|
Charette JM, Gray MW. U3 snoRNA genes are multi-copy and frequently linked to U5 snRNA genes in Euglena gracilis. BMC Genomics 2009; 10:528. [PMID: 19917113 PMCID: PMC2784804 DOI: 10.1186/1471-2164-10-528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022] Open
Abstract
Background U3 snoRNA is a box C/D small nucleolar RNA (snoRNA) involved in the processing events that liberate 18S rRNA from the ribosomal RNA precursor (pre-rRNA). Although U3 snoRNA is present in all eukaryotic organisms, most investigations of it have focused on fungi (particularly yeasts), animals and plants. Relatively little is known about U3 snoRNA and its gene(s) in the phylogenetically broad assemblage of protists (mostly unicellular eukaryotes). In the euglenozoon Euglena gracilis, a distant relative of the kinetoplastid protozoa, Southern analysis had previously revealed at least 13 bands hybridizing with U3 snoRNA, suggesting the existence of multiple copies of U3 snoRNA genes. Results Through screening of a λ genomic library and PCR amplification, we recovered 14 U3 snoRNA gene variants, defined by sequence heterogeneities that are mostly located in the U3 3'-stem-loop domain. We identified three different genomic arrangements of Euglena U3 snoRNA genes: i) stand-alone, ii) linked to tRNAArg genes, and iii) linked to a U5 snRNA gene. In arrangement ii), the U3 snoRNA gene is positioned upstream of two identical tRNAArg genes that are convergently transcribed relative to the U3 gene. This scenario is reminiscent of a U3 snoRNA-tRNA gene linkage previously described in trypanosomatids. We document here twelve different U3 snoRNA-U5 snRNA gene arrangements in Euglena; in each case, the U3 gene is linked to a downstream and convergently oriented U5 gene, with the intergenic region differing in length and sequence among the variants. Conclusion The multiple U3 snoRNA-U5 snRNA gene linkages, which cluster into distinct families based on sequence similarities within the intergenic spacer, presumably arose by genome, chromosome, and/or locus duplications. We discuss possible reasons for the existence of the unusually large number of U3 snoRNA genes in the Euglena genome. Variability in the signal intensities of the multiple Southern hybridization bands raises the possibility that Euglena contains a naturally aneuploid chromosome complement.
Collapse
Affiliation(s)
- J Michael Charette
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
18
|
Breglia SA, Slamovits CH, Leander BS. Phylogeny of Phagotrophic Euglenids (Euglenozoa) as Inferred from Hsp90 Gene Sequences. J Eukaryot Microbiol 2007; 54:86-92. [PMID: 17300525 DOI: 10.1111/j.1550-7408.2006.00233.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Molecular phylogenies of euglenids are usually based on ribosomal RNA genes that do not resolve the branching order among the deeper lineages. We addressed deep euglenid phylogeny using the cytosolic form of the heat-shock protein 90 gene (hsp90), which has already been employed with some success in other groups of euglenozoans and eukaryotes in general. Hsp90 sequences were generated from three taxa of euglenids representing different degrees of ultrastructural complexity, namely Petalomonas cantuscygni and wild isolates of Entosiphon sulcatum, and Peranema trichophorum. The hsp90 gene sequence of P. trichophorum contained three short introns (ranging from 27 to 31 bp), two of which had non-canonical borders GG-GG and GG-TG and two 10-bp inverted repeats, suggesting a structure similar to that of the non-canonical introns described in Euglena gracilis. Phylogenetic analyses confirmed a closer relationship between kinetoplastids and diplonemids than to euglenids, and supported previous views regarding the branching order among primarily bacteriovorous, primarily eukaryovorous, and photosynthetic euglenids. The position of P. cantuscygni within Euglenozoa, as well as the relative support for the nodes including it were strongly dependent on outgroup selection. The results were most consistent when the jakobid Reclinomonas americana was used as the outgroup. The most robust phylogenies place P. cantuscygni as the most basal branch within the euglenid clade. However, the presence of a kinetoplast-like mitochondrial inclusion in P. cantuscygni deviates from the currently accepted apomorphy-based definition of the kinetoplastid clade and highlights the necessity of detailed studies addressing the molecular nature of the euglenid and diplonemid mitochondrial genome.
Collapse
Affiliation(s)
- Susana A Breglia
- Program in Evolutionary Biology, Department of Botany, Canadian Institute for Advanced Research, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | | | |
Collapse
|
19
|
Dos Santos Ferreira V, Rocchetta I, Conforti V, Bench S, Feldman R, Levin MJ. Gene expression patterns in Euglena gracilis: insights into the cellular response to environmental stress. Gene 2006; 389:136-45. [PMID: 17197134 DOI: 10.1016/j.gene.2006.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 10/13/2006] [Accepted: 10/27/2006] [Indexed: 11/19/2022]
Abstract
To better understand Euglena gracilis gene expression under different stress conditions (Chromium, Streptomycin or darkness), we undertook a survey of the E. gracilis transcriptome by cDNA sequencing and microarray analysis. First, we constructed a non-normalized cDNA library from the E. gracilis UTEX strain and sequenced a total of 1000 cDNAs. Six hundred and ten of these ESTs were similar to either Plantae or Protistae genes (e-value<e(-10)). Second, microarrays were built by spotting all the ESTs onto mirror slides. Microarray expression analysis indicated that 90 out of those 610 ESTs changed their expression level in response to different stress treatments (p<0.05). In addition, we detected 10 ESTs that changed expression levels irrespective of the tested stress. These may be considered as part of a larger set of stress-related genes in E. gracilis. Finally, we identified 23 unknown ESTs (U-ESTs) following the expression profiles of these putative stress-related genes suggesting that they could be related to the cellular mechanism of stress response.
Collapse
Affiliation(s)
- Verónica Dos Santos Ferreira
- Laboratorio de Biología Molecular de la Enfermedad de Chagas INGEBI, National Research Council, Centro de Genómica Aplicada, University of Buenos Aires, Vuelta de Obligado 2490 2P, 1428, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
20
|
Russell AG, Schnare MN, Gray MW. A Large Collection of Compact Box C/D snoRNAs and their Isoforms in Euglena gracilis: Structural, Functional and Evolutionary Insights. J Mol Biol 2006; 357:1548-65. [PMID: 16497322 DOI: 10.1016/j.jmb.2006.01.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 01/10/2006] [Accepted: 01/17/2006] [Indexed: 11/27/2022]
Abstract
In the domains Eucarya and Archaea, box C/D RNAs guide methylation at the 2'-position of selected ribose residues in ribosomal RNA (rRNA). Those eukaryotic box C/D RNAs that have been identified to date are larger and more variable in size than their archaeal counterparts. Here, we report the first extensive identification and characterization of box C/D small nucleolar (sno) RNAs from the protist Euglena gracilis. Among several unexpected findings, this organism contains a large assortment of methylation-guide RNAs that are smaller and more uniformly sized than those of other eukaryotes, and that consist of surprisingly few double-guide RNAs targeting sites of rRNA modification. Our comprehensive examination of the modification status of E.gracilis rRNA indicates that many of these box C/D snoRNAs target clustered methylation sites requiring extensive, overlapping guide RNA/rRNA pairings. An examination of the structure of the RNAs, in particular the location of the functional guide elements, suggests that the distances between adjacent box elements are an important factor in determining which of the potential guide elements is used to target a site of O(2')-methylation.
Collapse
Affiliation(s)
- Anthony G Russell
- Department of Biochemistry and Molecular Biology Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5.
| | | | | |
Collapse
|
21
|
Russell AG, Shutt TE, Watkins RF, Gray MW. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia. BMC Evol Biol 2005; 5:45. [PMID: 16109161 PMCID: PMC1201135 DOI: 10.1186/1471-2148-5-45] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 08/18/2005] [Indexed: 11/16/2022] Open
Abstract
Background Only one spliceosomal-type intron has previously been identified in the unicellular eukaryotic parasite, Giardia lamblia (a diplomonad). This intron is only 35 nucleotides in length and is unusual in possessing a non-canonical 5' intron boundary sequence, CT, instead of GT. Results We have identified a second spliceosomal-type intron in G. lamblia, in the ribosomal protein L7a gene (Rpl7a), that possesses a canonical GT 5' intron boundary sequence. A comparison of the two known Giardia intron sequences revealed extensive nucleotide identity at both the 5' and 3' intron boundaries, similar to the conserved sequence motifs recently identified at the boundaries of spliceosomal-type introns in Trichomonas vaginalis (a parabasalid). Based on these observations, we searched the partial G. lamblia genome sequence for these conserved features and identified a third spliceosomal intron, in an unassigned open reading frame. Our comprehensive analysis of the Rpl7a intron in other eukaryotic taxa demonstrates that it is evolutionarily conserved and is an ancient eukaryotic intron. Conclusion An analysis of the phylogenetic distribution and properties of the Rpl7a intron suggests its utility as a phylogenetic marker to evaluate particular eukaryotic groupings. Additionally, analysis of the G. lamblia introns has provided further insight into some of the conserved and unique features possessed by the recently identified spliceosomal introns in related organisms such as T. vaginalis and Carpediemonas membranifera.
Collapse
Affiliation(s)
- Anthony G Russell
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Timothy E Shutt
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Russell F Watkins
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Michael W Gray
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|