1
|
Lin M, Guo JT. New insights into protein-DNA binding specificity from hydrogen bond based comparative study. Nucleic Acids Res 2020; 47:11103-11113. [PMID: 31665426 PMCID: PMC6868434 DOI: 10.1093/nar/gkz963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/25/2022] Open
Abstract
Knowledge of protein-DNA binding specificity has important implications in understanding DNA metabolism, transcriptional regulation and developing therapeutic drugs. Previous studies demonstrated hydrogen bonds between amino acid side chains and DNA bases play major roles in specific protein-DNA interactions. In this paper, we investigated the roles of individual DNA strands and protein secondary structure types in specific protein-DNA recognition based on side chain-base hydrogen bonds. By comparing the contribution of each DNA strand to the overall binding specificity between DNA-binding proteins with different degrees of binding specificity, we found that highly specific DNA-binding proteins show balanced hydrogen bonding with each of the two DNA strands while multi-specific DNA binding proteins are generally biased towards one strand. Protein-base pair hydrogen bonds, in which both bases of a base pair are involved in forming hydrogen bonds with amino acid side chains, are more prevalent in the highly specific protein-DNA complexes than those in the multi-specific group. Amino acids involved in side chain-base hydrogen bonds favor strand and coil secondary structure types in highly specific DNA-binding proteins while multi-specific DNA-binding proteins prefer helices.
Collapse
Affiliation(s)
- Maoxuan Lin
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jun-Tao Guo
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
2
|
Afonin AV, Sterkhova IV, Vashchenko AV, Sigalov MV. Estimating the energy of intramolecular bifurcated (three-centered) hydrogen bond by X-ray, IR and 1 H NMR spectroscopy, and QTAIM calculations. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.02.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
3
|
Callicrate T, Dikow R, Thomas JW, Mullikin JC, Jarvis ED, Fleischer RC. Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics 2014; 15:1098. [PMID: 25496081 PMCID: PMC4300047 DOI: 10.1186/1471-2164-15-1098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/08/2014] [Indexed: 12/30/2022] Open
Abstract
Background The Hawaiian honeycreepers are an avian adaptive radiation containing many endangered and extinct species. They display a dramatic range of phenotypic variation and are a model system for studies of evolution, conservation, disease dynamics and population genetics. Development of a genome-scale resources for this group would augment the quality of research focusing on Hawaiian honeycreepers and facilitate comparative avian genomic research. Results We assembled the genome sequence of a Hawaii amakihi (Hemignathus virens),and identified ~3.9 million single nucleotide polymorphisms (SNPs) in the genome. Using the amakihi genome as a reference, we also identified ~156,000 SNPs in RAD tag (restriction site associated DNA) sequencing of five honeycreeper species (palila [Loxioides bailleui], Nihoa finch [Telespiza ultima], iiwi [Vestiaria coccinea], apapane [Himatione sanguinea], and amakihi). SNPs are distributed throughout the amakihi genome, and the individual sequenced shows several large regions of low heterozygosity on chromosomes 1, 5, 6, 8 and 11. SNPs from RAD tag sequencing were also found throughout the genome but were found to be more densely located on microchromosomes, apparently a result of differential distribution of the particular site recognized by restriction enzyme BseXI. Conclusions The amakihi genome sequence will be useful for comparative avian genomics research and provides a significant resource for studies in such areas as disease ecology, evolution, and conservation genetics. The genome sequences will enable mapping of transcriptome data for honeycreepers and comparison of gene sequences between avian taxa. Researchers will be able to use the large number of SNP markers to genotype honeycreepers in regions of interest or across the whole genome. There are enough markers to enable use of methods such as genome-wide association studies (GWAS) that will allow researchers to make connections between phenotypic diversity of honeycreepers and specific genetic variants. Genome-wide markers will also help resolve phylogenetic and population genetic questions in honeycreepers. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1098) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert C Fleischer
- Center for Conservation and Evolutionary Genetics, Smithsonian Conservation Biology Institute, Washington DC 20008, USA.
| | | |
Collapse
|
4
|
Pandya P, Gupta SP, Pandav K, Barthwal R, Jayaram B, Kumar S. DNA Binding Studies of Vinca Alkaloids: Experimental and Computational Evidence. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700308] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fluorescence studies on the indole alkaloids vinblastine sulfate, vincristine sulfate, vincamine and catharanthine have demonstrated the DNA binding ability of these molecules. The binding mode of these molecules in the minor groove of DNA is non-specific. A new parameter of the purine-pyrimidine base sequence specificty was observed in order to define the non-specific DNA binding of ligands. Catharanthine had shown ‘same’ pattern of ‘Pu-Py’ specificity while evaluating its DNA binding profile. The proton resonances of a DNA decamer duplex were assigned. The models of the drug:DNA complexes were analyzed for DNA binding features. The effect of temperature on the DNA binding was also evaluated.
Collapse
Affiliation(s)
- Prateek Pandya
- Department of Chemistry, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra-282 110 India
| | - Surendra P. Gupta
- Department of Chemistry, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra-282 110 India
| | - Kumud Pandav
- Department of Chemistry, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra-282 110 India
| | - Ritu Barthwal
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667 India
| | - B. Jayaram
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi - 110016, India
| | - Surat Kumar
- Department of Chemistry, Faculty of Engineering, Dayalbagh Educational Institute, Dayalbagh, Agra-282 110 India
| |
Collapse
|
5
|
Gao C, Xue Y, Ma Y. Protoplast transformation of recalcitrant alkaliphilic Bacillus sp. with methylated plasmid DNA and a developed hard agar regeneration medium. PLoS One 2011; 6:e28148. [PMID: 22132233 PMCID: PMC3223237 DOI: 10.1371/journal.pone.0028148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
Abstract
Among the diverse alkaliphilic Bacillus strains, only a little have been reported to be genetically transformed. In this study, an efficient protoplast transformation procedure was developed for recalcitrant alkaliphilic Bacillus sp. N16-5. The procedure involved polyethylene glycol-induced DNA uptake by the protoplasts and subsequent protoplast regeneration with a developed hard agar regeneration medium. An in vivo methylation strategy was introduced to methylate the exogenous plasmid DNA for improving the transformation efficiency. The transformation efficiency reached to 1.1×105 transformants per µg plasmid DNA with methylated plasmid pHCMC04 and the developed hard agar regeneration medium. This procedure might also be applicable to the genetic transformation of other Bacillus strains.
Collapse
Affiliation(s)
- Chenghua Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Nikolajewa S, Friedel M, Beyer A, Wilhelm T. THE NEW CLASSIFICATION SCHEME OF THE GENETIC CODE, ITS EARLY EVOLUTION, AND tRNA USAGE. J Bioinform Comput Biol 2011; 4:609-20. [PMID: 16819806 DOI: 10.1142/s0219720006001825] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 12/09/2005] [Accepted: 12/23/2005] [Indexed: 11/18/2022]
Abstract
We present a new classification scheme of the genetic code. In contrast to the standard form it clearly shows five codon symmetries: codon-anticodon, codon-reverse codon, and sense-antisense symmetry, as well as symmetries with respect to purine-pyrimidine (A versus G, U versus C) and keto-aminobase (G versus U, A versus C) exchanges. We study the number of tRNA genes of 16 archaea, 81 bacteria and 7 eucaryotes to analyze whether these symmetries are reflected in the corresponding tRNA usage patterns. Two features are especially striking: reverse stop codons do not have their own tRNAs (just one exception in human), and A** anticodons are significantly suppressed. Our classification scheme of the genetic code and the identified tRNA usage patterns support recent speculations about the early evolution of the genetic code. In particular, pre-tRNAs might have had the ability to bind their codons in two directions to the corresponding codons.
Collapse
Affiliation(s)
- Swetlana Nikolajewa
- Theoretical Systems Biology, Institute of Molecular Biotechnology Beutenbergstr, 11, Jena, D-07745, Germany
| | | | | | | |
Collapse
|
7
|
Disruption of a type II endonuclease (TDE0911) enables Treponema denticola ATCC 35405 to accept an unmethylated shuttle vector. Appl Environ Microbiol 2011; 77:4573-8. [PMID: 21602384 DOI: 10.1128/aem.00417-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral spirochete Treponema denticola is associated with human periodontal disease. T. denticola ATCC 35405 and ATCC 33520 are two routinely used laboratory strains. Compared to T. denticola ATCC 33520, ATCC 35405 is more virulent but less accessible to genetic manipulations. For instance, the shuttle vectors of ATCC 33520 cannot be transformed into strain ATCC 35405. The lack of a shuttle vector has been a barrier to study the biology and virulence of T. denticola ATCC 35405. In this report, we hypothesize that T. denticola ATCC 35405 may have a unique DNA restriction-modification (R-M) system that prevents it from accepting the shuttle vectors of ATCC 33520 (e.g., the shuttle plasmid pBFC). To test this hypothesis, DNA restriction digestion, PCR, and Southern blot analyses were conducted to identify the differences between the R-M systems of these two strains. DNA restriction digestion analysis of these strains showed that only the cell extract from ATCC 35405 was able to digest pBFC. Consistently, PCR and Southern blot analyses revealed that the genome of T. denticola ATCC 35405 encodes three type II endonucleases that are absent in ATCC 33520. Among these three endonucleases, TDE0911 was predicted to cleave unmethylated double-stranded DNA and to be most likely responsible for the cleavage of unmethylated pBFC. In agreement with this prediction, the mutant of TDE0911 failed to cleave unmethylated pBFC plasmid, and it could accept the unmethylated shuttle vector. The study described here provides us with a new tool and strategy to genetically manipulate T. denticola, in particular ATCC 35405, and other strains that may carry similar endonucleases.
Collapse
|
8
|
Dong H, Zhang Y, Dai Z, Li Y. Engineering clostridium strain to accept unmethylated DNA. PLoS One 2010; 5:e9038. [PMID: 20161730 PMCID: PMC2817722 DOI: 10.1371/journal.pone.0009038] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 01/17/2010] [Indexed: 11/18/2022] Open
Abstract
It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively encoding the type II restriction endonuclease Cac824I was identified from the genome of C. acetobutylicum DSM1731, and disrupted using the ClosTron system based on group II intron insertion. The resulting strain SMB009 lost the type II restriction endonuclease activity, and can be transformed with unmethylated DNA as efficiently as with methylated DNA. The strategy reported here makes it easy to genetically modify the clostridial species using unmethylated DNA, which will help to advance the understanding of the clostridial physiology from the molecular level.
Collapse
Affiliation(s)
- Hongjun Dong
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Yanping Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zongjie Dai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei, China
| | - Yin Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
9
|
Porwal S, Lal S, Cheema S, Kalia VC. Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PLoS One 2009; 4:e4438. [PMID: 19212464 PMCID: PMC2639701 DOI: 10.1371/journal.pone.0004438] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022] Open
Abstract
Bacillus represents microbes of high economic, medical and biodefense importance. Bacillus strain identification based on 16S rRNA sequence analyses is invariably limited to species level. Secondly, certain discrepancies exist in the segregation of Bacillus subtilis strains. In the RDP/NCBI databases, out of a total of 2611 individual 16S rDNA sequences belonging to the 175 different species of the genus Bacillus, only 1586 have been identified up to species level. 16S rRNA sequences of Bacillus anthracis (153 strains), B. cereus (211 strains), B. thuringiensis (108 strains), B. subtilis (271 strains), B. licheniformis (131 strains), B. pumilus (83 strains), B. megaterium (47 strains), B. sphaericus (42 strains), B. clausii (39 strains) and B. halodurans (36 strains) were considered for generating species-specific framework and probes as tools for their rapid identification. Phylogenetic segregation of 1121, 16S rDNA sequences of 10 different Bacillus species in to 89 clusters enabled us to develop a phylogenetic frame work of 34 representative sequences. Using this phylogenetic framework, 305 out of 1025, 16S rDNA sequences presently classified as Bacillus sp. could be identified up to species level. This identification was supported by 20 to 30 nucleotides long signature sequences and in silico restriction enzyme analysis specific to the 10 Bacillus species. This integrated approach resulted in identifying around 30% of Bacillus sp. up to species level and revealed that B. subtilis strains can be segregated into two phylogenetically distinct groups, such that one of them may be renamed.
Collapse
Affiliation(s)
- Shalini Porwal
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
- Department of Biotechnology, University of Pune, Pune, India
| | - Sadhana Lal
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
| | - Simrita Cheema
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, Institute of Genomics and Integrative Biology (IGIB), CSIR, Delhi University Campus, Delhi, India
| |
Collapse
|
10
|
Friedel M, Nikolajewa S, Sühnel J, Wilhelm T. DiProDB: a database for dinucleotide properties. Nucleic Acids Res 2008; 37:D37-40. [PMID: 18805906 PMCID: PMC2686603 DOI: 10.1093/nar/gkn597] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
DiProDB (http://diprodb.fli-leibniz.de) is a database of conformational and thermodynamic dinucleotide properties. It includes datasets both for DNA and RNA, as well as for single and double strands. The data have been shown to be important for understanding different aspects of nucleic acid structure and function, and they can also be used for encoding nucleic acid sequences. The database is intended to facilitate further applications of dinucleotide properties. A number of property datasets is highly correlated. Therefore, the database comes with a correlation analysis facility. Authors having determined new sets of dinucleotide property values are invited to submit these data to DiProDB.
Collapse
Affiliation(s)
- Maik Friedel
- Biocomputing Group, Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | |
Collapse
|