1
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Genome integrity sensing by the broad-spectrum Hachiman antiphage defense complex. Cell 2024:S0092-8674(24)01068-7. [PMID: 39395413 DOI: 10.1016/j.cell.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating "phantom" cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eukaryotes and archaea suggest deep functional symmetries with other important helicases across domains of life.
Collapse
Affiliation(s)
- Owen T Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin A Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emily G Armbruster
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jason J Hu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joe Pogliano
- School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institutes, University of California, San Francisco, San Francisco, CA 94720, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Zhao Y, Hou K, Liu Y, Na Y, Li C, Luo H, Wang H. Helicase HELQ: Molecular Characters Fit for DSB Repair Function. Int J Mol Sci 2024; 25:8634. [PMID: 39201320 PMCID: PMC11355030 DOI: 10.3390/ijms25168634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The protein sequence and spatial structure of DNA helicase HELQ are highly conserved, spanning from archaea to humans. Aside from its helicase activity, which is based on DNA binding and translocation, it has also been recently reconfirmed that human HELQ possesses DNA-strand-annealing activity, similar to that of the archaeal HELQ homolog StoHjm. These biochemical functions play an important role in regulating various double-strand break (DSB) repair pathways, as well as multiple steps in different DSB repair processes. HELQ primarily facilitates repair in end-resection-dependent DSB repair pathways, such as homologous recombination (HR), single-strand annealing (SSA), microhomology-mediated end joining (MMEJ), as well as the sub-pathways' synthesis-dependent strand annealing (SDSA) and break-induced replication (BIR) within HR. The biochemical functions of HELQ are significant in end resection and its downstream pathways, such as strand invasion, DNA synthesis, and gene conversion. Different biochemical activities are required to support DSB repair at various stages. This review focuses on the functional studies of the biochemical roles of HELQ during different stages of diverse DSB repair pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hailong Wang
- Beijing Key Laboratory of DNA Damage Response, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
3
|
Dai J, Liu R, He S, Li T, Hu Y, Huang H, Li Y, Guo X. The Role of SF1 and SF2 Helicases in Biotechnological Applications. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05027-w. [PMID: 39093351 DOI: 10.1007/s12010-024-05027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Helicases, which utilize ATP hydrolysis to separate nucleic acid duplexes, play crucial roles in DNA and RNA replication, repair, recombination, and transcription. Categorized into the major groups superfamily 1 (SF1) and superfamily 2 (SF2), alongside four minor groups, these proteins exhibit a conserved catalytic core indicative of a shared evolutionary origin while displaying functional diversity through interactions with various substrates. This review summarizes the structures, functions and mechanisms of SF1 and SF2 helicases, with an emphasis on conserved ATPase sites and RecA-like domains essential for their enzymatic and nucleic acid binding capabilities. It highlights the unique 1B and 2B domains in SF1 helicases and their impact on enzymatic activity. The DNA unwinding process is detailed, covering substrate recognition, ATP hydrolysis, and conformational changes, while addressing debates over the active form of UvrD helicase and post-unwinding dissociation. More importantly, this review discusses the biotechnological potential of helicases in emerging technologies such as nanopore sequencing, protein sequencing, and isothermal amplification, focusing on their use in pathogen detection, biosensor enhancement, and cancer treatment. As understanding deepens, innovative applications in genome editing, DNA sequencing, and synthetic biology are anticipated.
Collapse
Affiliation(s)
- Jing Dai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Ronghui Liu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Tie Li
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Yuhang Hu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Huiqun Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Yi Li
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
4
|
Batista M, Langendijk-Genevaux P, Kwapisz M, Canal I, Phung DK, Plassart L, Capeyrou R, Moalic Y, Jebbar M, Flament D, Fichant G, Bouvier M, Clouet-d'Orval B. Evolutionary and functional insights into the Ski2-like helicase family in Archaea: a comparison of Thermococcales ASH-Ski2 and Hel308 activities. NAR Genom Bioinform 2024; 6:lqae026. [PMID: 38500564 PMCID: PMC10946056 DOI: 10.1093/nargab/lqae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
RNA helicases perform essential housekeeping and regulatory functions in all domains of life by binding and unwinding RNA molecules. The Ski2-like proteins are primordial helicases that play an active role in eukaryotic RNA homeostasis pathways, with multiple homologs having specialized functions. The significance of the expansion and diversity of Ski2-like proteins in Archaea, the third domain of life, has not yet been established. Here, by studying the phylogenetic diversity of Ski2-like helicases among archaeal genomes and the enzymatic activities of those in Thermococcales, we provide further evidence of the function of this protein family in archaeal metabolism of nucleic acids. We show that, in the course of evolution, ASH-Ski2 and Hel308-Ski2, the two main groups of Ski2-like proteins, have diverged in their biological functions. Whereas Hel308 has been shown to mainly act on DNA, we show that ASH-Ski2, previously described to be associated with the 5'-3' aRNase J exonuclease, acts on RNA by supporting an efficient annealing activity, but also an RNA unwinding with a 3'-5' polarity. To gain insights into the function of Ski2, we also analyse the transcriptome of Thermococcus barophilus ΔASH-Ski2 mutant strain and provide evidence of the importance of ASH-Ski2 in cellular metabolism pathways related to translation.
Collapse
Affiliation(s)
- Manon Batista
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | | | - Marta Kwapisz
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Isabelle Canal
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Duy Khanh Phung
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Laura Plassart
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Régine Capeyrou
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Yann Moalic
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Mohamed Jebbar
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Didier Flament
- Univ Brest, CNRS, Ifremer, UMR6197 Biologie et Ecologie des Ecosystèmes marins Profonds, F-29280 Plouzané, France
| | - Gwennaele Fichant
- LMGM, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Marie Bouvier
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Béatrice Clouet-d'Orval
- MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| |
Collapse
|
5
|
Tuck OT, Adler BA, Armbruster EG, Lahiri A, Hu JJ, Zhou J, Pogliano J, Doudna JA. Hachiman is a genome integrity sensor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582594. [PMID: 38464307 PMCID: PMC10925250 DOI: 10.1101/2024.02.29.582594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman comprises a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact dsDNA. When the HamAB complex detects DNA damage, HamB helicase activity liberates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating 'phantom' cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and eukaryotic enzymes suggest this bacterial immune system has been repurposed for diverse functions across all domains of life.
Collapse
Affiliation(s)
- Owen T. Tuck
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
| | - Benjamin A. Adler
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
| | - Emily G. Armbruster
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Arushi Lahiri
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Jason J. Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Julia Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
| | - Joe Pogliano
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Jennifer A. Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA USA
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA USA
| |
Collapse
|
6
|
Tang N, Wen W, Liu Z, Xiong X, Wu Y. HELQ as a DNA helicase: Its novel role in normal cell function and tumorigenesis (Review). Oncol Rep 2023; 50:220. [PMID: 37921071 PMCID: PMC10652244 DOI: 10.3892/or.2023.8657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/08/2023] [Indexed: 11/04/2023] Open
Abstract
Helicase POLQ‑like (HELQ or Hel308), is a highly conserved, 3'‑5' superfamily II DNA helicase that contributes to diverse DNA processes, including DNA repair, unwinding, and strand annealing. HELQ deficiency leads to subfertility, due to its critical role in germ cell stability. In addition, the abnormal expression of HELQ has been observed in multiple tumors and a number of molecular pathways, including the nucleotide excision repair, checkpoint kinase 1‑DNA repair protein RAD51 homolog 1 and ATM/ATR pathways, have been shown to be involved in HELQ. In the present review, the structure and characteristics of HELQ, as well as its major functions in DNA processing, were described. Molecular mechanisms involving HELQ in the context of tumorigenesis were also described. It was deduced that HELQ biology warrants investigation, and that its critical roles in the regulation of various DNA processes and participation in tumorigenesis are clinically relevant.
Collapse
Affiliation(s)
- Nan Tang
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Weilun Wen
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Xifeng Xiong
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong 510220, P.R. China
| |
Collapse
|
7
|
Lever R, Simmons E, Gamble-Milner R, Buckley R, Harrison C, Parkes A, Mitchell L, Gausden J, Škulj S, Bertoša B, Bolt E, Allers T. Archaeal Hel308 suppresses recombination through a catalytic switch that controls DNA annealing. Nucleic Acids Res 2023; 51:8563-8574. [PMID: 37409572 PMCID: PMC10484726 DOI: 10.1093/nar/gkad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Hel308 helicases promote genome stability in archaea and are conserved in metazoans, where they are known as HELQ. Their helicase mechanism is well characterised, but it is unclear how they specifically contribute to genome stability in archaea. We show here that a highly conserved motif of Hel308/HELQ helicases (motif IVa, F/YHHAGL) modulates both DNA unwinding and a newly identified strand annealing function of archaeal Hel308. A single amino acid substitution in motif IVa results in hyper-active DNA helicase and annealase activities of purified Hel308 in vitro. All-atom molecular dynamics simulations using Hel308 crystal structures provided a molecular basis for these differences between mutant and wild type Hel308. In archaeal cells, the same mutation results in 160000-fold increased recombination, exclusively as gene conversion (non-crossover) events. However, crossover recombination is unaffected by the motif IVa mutation, as is cell viability or DNA damage sensitivity. By contrast, cells lacking Hel308 show impaired growth, increased sensitivity to DNA cross-linking agents, and only moderately increased recombination. Our data reveal that archaeal Hel308 suppresses recombination and promotes DNA repair, and that motif IVa in the RecA2 domain acts as a catalytic switch to modulate the separable recombination and repair activities of Hel308.
Collapse
Affiliation(s)
- Rebecca J Lever
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Emily Simmons
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | | | - Ryan J Buckley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Catherine Harrison
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ashley J Parkes
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Laura Mitchell
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Jacob A Gausden
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sanja Škulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Edward L Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
8
|
Enders M, Ficner R, Adio S. Conformational dynamics of the RNA binding channel regulates loading and translocation of the DEAH-box helicase Prp43. Nucleic Acids Res 2023; 51:6430-6442. [PMID: 37167006 PMCID: PMC10325901 DOI: 10.1093/nar/gkad362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
The DEAH-box helicase Prp43 has essential functions in pre-mRNA splicing and ribosome biogenesis, remodeling structured RNAs. To initiate unwinding, Prp43 must first accommodate a single-stranded RNA segment into its RNA binding channel. This allows translocation of the helicase on the RNA. G-patch (gp) factors activate Prp43 in its cellular context enhancing the intrinsically low ATPase and RNA unwinding activity. It is unclear how the RNA loading process is accomplished by Prp43 and how it is regulated by its substrates, ATP and RNA, and the G-patch partners. We developed single-molecule (sm) FRET reporters on Prp43 from Chaetomium thermophilum to monitor the conformational dynamics of the RNA binding channel in Prp43 in real-time. We show that the channel can alternate between open and closed conformations. Binding of Pfa1(gp) and ATP shifts the distribution of states towards channel opening, facilitating the accommodation of RNA. After completion of the loading process, the channel remains firmly closed during successive cycles of ATP hydrolysis, ensuring stable interaction with the RNA and processive translocation. Without Pfa1(gp), it remains predominantly closed preventing efficient RNA loading. Our data reveal how the ligands of Prp43 regulate the structural dynamics of the RNA binding channel controlling the initial binding of RNA.
Collapse
Affiliation(s)
- Marieke Enders
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg- August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
9
|
Gautam S, Mahapa A, Yeramala L, Gandhi A, Krishnan S, Kutti R. V, Chatterji D. Regulatory mechanisms of c-di-AMP synthase from Mycobacterium smegmatis revealed by a structure: Function analysis. Protein Sci 2023; 32:e4568. [PMID: 36660887 PMCID: PMC9926474 DOI: 10.1002/pro.4568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Cyclic-di-nucleotide-based secondary messengers regulate various physiological functions, including stress responses in bacteria. Cyclic diadenosine monophosphate (c-di-AMP) has recently emerged as a crucial second messenger with implications in processes including osmoregulation, antibiotic resistance, biofilm formation, virulence, DNA repair, ion homeostasis, and sporulation, and has potential therapeutic applications. The contrasting activities of the enzymes diadenylate cyclase (DAC) and phosphodiesterase (PDE) determine the equilibrium levels of c-di-AMP. Although c-di-AMP is suspected of playing an essential role in the pathophysiology of bacterial infections and in regulating host-pathogen interactions, the mechanisms of its regulation remain relatively unexplored in mycobacteria. In this report, we biochemically and structurally characterize the c-di-AMP synthase (MsDisA) from Mycobacterium smegmatis. The enzyme activity is regulated by pH and substrate concentration; conditions of significance in the homoeostasis of c-di-AMP levels. Substrate binding stimulates conformational changes in the protein, and pApA and ppApA are synthetic intermediates detectable when enzyme efficiency is low. Unlike the orthologous Bacillus subtilis enzyme, MsDisA does not bind to, and its activity is not influenced in the presence of DNA. Furthermore, we have determined the cryo-EM structure of MsDisA, revealing asymmetry in its structure in contrast to the symmetric crystal structure of Thermotoga maritima DisA. We also demonstrate that the N-terminal minimal region alone is sufficient and essential for oligomerization and catalytic activity. Our data shed light on the regulation of mycobacterial DisA and possible future directions to pursue.
Collapse
Affiliation(s)
- Sudhanshu Gautam
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Avisek Mahapa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Lahari Yeramala
- National Center for Biological SciencesTata Institute of Fundamental Research, GKVK PostBengaluruIndia
| | - Apoorv Gandhi
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Sushma Krishnan
- Electron Microscopy Facility, Division of Biological SciencesIndian Institute of ScienceBangaloreIndia
| | - Vinothkumar Kutti R.
- National Center for Biological SciencesTata Institute of Fundamental Research, GKVK PostBengaluruIndia
| | | |
Collapse
|
10
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
11
|
Vanson S, Li Y, Wood RD, Doublié S. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair (Amst) 2022; 116:103358. [PMID: 35753097 PMCID: PMC10329254 DOI: 10.1016/j.dnarep.2022.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
DNA Polymerase θ is the key actuator of the recently identified double-strand break repair pathway, theta-mediated end joining (TMEJ). It is the only known polymerase to have a 3-domain architecture containing an independently functional family A DNA polymerase tethered by a long central region to an N-terminal helicase-like domain (HLD). Full-length polymerase θ and the isolated HLD hydrolyze ATP in the presence of DNA, but no processive DNA duplex unwinding has been observed. Based on sequence and structure conservation, the HLD is classified as a member of helicase superfamily II and, more specifically, the Ski2-like family. The specific subdomain composition and organization most closely resemble that of archaeal DNA repair helicases Hel308 and Hjm. The underlying structural basis as to why the HLD is not able to processively unwind duplex DNA, despite its similarity to bona fide helicases, remains elusive. Activities of the HLD include ATP hydrolysis, protein displacement, and annealing of complementary DNA. These observations have led to speculation about the role of the HLD within the context of double-strand break repair via TMEJ, such as removal of single-stranded DNA binding proteins like RPA and RAD51 and microhomology alignment. This review summarizes the structural classification and organization of the polymerase θ HLD and its homologs and explores emerging data on its biochemical activities. We conclude with a simple, speculative model for the HLD's role in TMEJ.
Collapse
Affiliation(s)
- Scott Vanson
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | - Yuzhen Li
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|
12
|
Matsuda R, Suzuki S, Kurosawa N. Genetic Study of Four Candidate Holliday Junction Processing Proteins in the Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Int J Mol Sci 2022; 23:ijms23020707. [PMID: 35054893 PMCID: PMC8775617 DOI: 10.3390/ijms23020707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 02/01/2023] Open
Abstract
Homologous recombination (HR) is thought to be important for the repair of stalled replication forks in hyperthermophilic archaea. Previous biochemical studies identified two branch migration helicases (Hjm and PINA) and two Holliday junction (HJ) resolvases (Hjc and Hje) as HJ-processing proteins; however, due to the lack of genetic evidence, it is still unclear whether these proteins are actually involved in HR in vivo and how their functional relation is associated with the process. To address the above questions, we constructed hjc-, hje-, hjm-, and pina single-knockout strains and double-knockout strains of the thermophilic crenarchaeon Sulfolobus acidocaldarius and characterized the mutant phenotypes. Notably, we succeeded in isolating the hjm- and/or pina-deleted strains, suggesting that the functions of Hjm and PINA are not essential for cellular growth in this archaeon, as they were previously thought to be essential. Growth retardation in Δpina was observed at low temperatures (cold sensitivity). When deletion of the HJ resolvase genes was combined, Δpina Δhjc and Δpina Δhje exhibited severe cold sensitivity. Δhjm exhibited severe sensitivity to interstrand crosslinkers, suggesting that Hjm is involved in repairing stalled replication forks, as previously demonstrated in euryarchaea. Our findings suggest that the function of PINA and HJ resolvases is functionally related at lower temperatures to support robust cellular growth, and Hjm is important for the repair of stalled replication forks in vivo.
Collapse
|
13
|
Rajapaksha P, Simmons RH, Gray SJ, Sun DJ, Nguyen P, Nickens DG, Bochman ML. Bulk phase biochemistry of PIF1 and RecQ4 family helicases. Methods Enzymol 2022; 673:169-190. [DOI: 10.1016/bs.mie.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Genetic and Biochemical Characterizations of aLhr1 Helicase in the Thermophilic Crenarchaeon Sulfolobus acidocaldarius. Catalysts 2021. [DOI: 10.3390/catal12010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination (HR) refers to the process of information exchange between homologous DNA duplexes and is composed of four main steps: end resection, strand invasion and formation of a Holliday junction (HJ), branch migration, and resolution of the HJ. Within each step of HR in Archaea, the helicase-promoting branch migration is not fully understood. Previous biochemical studies identified three candidates for archaeal helicase promoting branch migration in vitro: Hjm/Hel308, PINA, and archaeal long helicase related (aLhr) 2. However, there is no direct evidence of their involvement in HR in vivo. Here, we identified a novel helicase encoded by Saci_0814, isolated from the thermophilic crenarchaeon Sulfolobus acidocaldarius; the helicase dissociated a synthetic HJ. Notably, HR frequency in the Saci_0814-deleted strain was lower than that of the parent strain (5-fold decrease), indicating that Saci_0814 may be involved in HR in vivo. Saci_0814 is classified as an aLhr1 under superfamily 2 helicases; its homologs are conserved among Archaea. Purified protein produced in Escherichia coli showed branch migration activity in vitro. Based on both genetic and biochemical evidence, we suggest that aLhr1 is involved in HR and may function as a branch migration helicase in S. acidocaldarius.
Collapse
|
15
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
16
|
Phylogenetic Diversity of Lhr Proteins and Biochemical Activities of the Thermococcales aLhr2 DNA/RNA Helicase. Biomolecules 2021; 11:biom11070950. [PMID: 34206878 PMCID: PMC8301817 DOI: 10.3390/biom11070950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Helicase proteins are known to use the energy of ATP to unwind nucleic acids and to remodel protein-nucleic acid complexes. They are involved in almost every aspect of DNA and RNA metabolisms and participate in numerous repair mechanisms that maintain cellular integrity. The archaeal Lhr-type proteins are SF2 helicases that are mostly uncharacterized. They have been proposed to be DNA helicases that act in DNA recombination and repair processes in Sulfolobales and Methanothermobacter. In Thermococcales, a protein annotated as an Lhr2 protein was found in the network of proteins involved in RNA metabolism. To investigate this, we performed in-depth phylogenomic analyses to report the classification and taxonomic distribution of Lhr-type proteins in Archaea, and to better understand their relationship with bacterial Lhr. Furthermore, with the goal of envisioning the role(s) of aLhr2 in Thermococcales cells, we deciphered the enzymatic activities of aLhr2 from Thermococcus barophilus (Tbar). We showed that Tbar-aLhr2 is a DNA/RNA helicase with a significant annealing activity that is involved in processes dependent on DNA and RNA transactions.
Collapse
|
17
|
Absmeier E, Vester K, Ghane T, Burakovskiy D, Milon P, Imhof P, Rodnina MV, Santos KF, Wahl MC. Long-range allostery mediates cooperative adenine nucleotide binding by the Ski2-like RNA helicase Brr2. J Biol Chem 2021; 297:100829. [PMID: 34048711 PMCID: PMC8220420 DOI: 10.1016/j.jbc.2021.100829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Brr2 is an essential Ski2-like RNA helicase that exhibits a unique structure among the spliceosomal helicases. Brr2 harbors a catalytically active N-terminal helicase cassette and a structurally similar but enzymatically inactive C-terminal helicase cassette connected by a linker region. Both cassettes contain a nucleotide-binding pocket, but it is unclear whether nucleotide binding in these two pockets is related. Here we use biophysical and computational methods to delineate the functional connectivity between the cassettes and determine whether occupancy of one nucleotide-binding site may influence nucleotide binding at the other cassette. Our results show that Brr2 exhibits high specificity for adenine nucleotides, with both cassettes binding ADP tighter than ATP. Adenine nucleotide affinity for the inactive C-terminal cassette is more than two orders of magnitude higher than that of the active N-terminal cassette, as determined by slow nucleotide release. Mutations at the intercassette surfaces and in the connecting linker diminish the affinity of adenine nucleotides for both cassettes. Moreover, we found that abrogation of nucleotide binding at the C-terminal cassette reduces nucleotide binding at the N-terminal cassette 70 Å away. Molecular dynamics simulations identified structural communication lines that likely mediate these long-range allosteric effects, predominantly across the intercassette interface. Together, our results reveal intricate networks of intramolecular interactions in the complex Brr2 RNA helicase, which fine-tune its nucleotide affinities and which could be exploited to regulate enzymatic activity during splicing.
Collapse
Affiliation(s)
- Eva Absmeier
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Karen Vester
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tahereh Ghane
- Computational Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Dmitry Burakovskiy
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Pohl Milon
- Centre for Research and Innovation, Health Sciences Faculty, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Petra Imhof
- Computational Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Karine F Santos
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.
| | - Markus C Wahl
- Structural Biochemistry, Freie Universität Berlin, Berlin, Germany; Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
| |
Collapse
|
18
|
Modelling single-molecule kinetics of helicase translocation using high-resolution nanopore tweezers (SPRNT). Essays Biochem 2021; 65:109-127. [PMID: 33491732 DOI: 10.1042/ebc20200027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Single-molecule picometer resolution nanopore tweezers (SPRNT) is a technique for monitoring the motion of individual enzymes along a nucleic acid template at unprecedented spatiotemporal resolution. We review the development of SPRNT and the application of single-molecule kinetics theory to SPRNT data to develop a detailed model of helicase motion along a single-stranded DNA substrate. In this review, we present three examples of questions SPRNT can answer in the context of the Superfamily 2 helicase Hel308. With Hel308, SPRNT's spatiotemporal resolution enables resolution of two distinct enzymatic substates, one which is dependent upon ATP concentration and one which is ATP independent. By analyzing dwell-time distributions and helicase back-stepping, we show, in detail, how SPRNT can be used to determine the nature of these observed steps. We use dwell-time distributions to discern between three different possible models of helicase backstepping. We conclude by using SPRNT's ability to discern an enzyme's nucleotide-specific location along a DNA strand to understand the nature of sequence-specific enzyme kinetics and show that the sequence within the helicase itself affects both step dwell-time and backstepping probability while translocating on single-stranded DNA.
Collapse
|
19
|
Mechanistic insights into Lhr helicase function in DNA repair. Biochem J 2021; 477:2935-2947. [PMID: 32706021 PMCID: PMC7437997 DOI: 10.1042/bcj20200379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
The DNA helicase Large helicase-related (Lhr) is present throughout archaea, including in the Asgard and Nanoarchaea, and has homologues in bacteria and eukaryotes. It is thought to function in DNA repair but in a context that is not known. Our data show that archaeal Lhr preferentially targets DNA replication fork structures. In a genetic assay, expression of archaeal Lhr gave a phenotype identical to the replication-coupled DNA repair enzymes Hel308 and RecQ. Purified archaeal Lhr preferentially unwound model forked DNA substrates compared with DNA duplexes, flaps and Holliday junctions, and unwound them with directionality. Single-molecule FRET measurements showed that binding of Lhr to a DNA fork causes ATP-independent distortion and base-pair melting at, or close to, the fork branchpoint. ATP-dependent directional translocation of Lhr resulted in fork DNA unwinding through the ‘parental’ DNA strands. Interaction of Lhr with replication forks in vivo and in vitro suggests that it contributes to DNA repair at stalled or broken DNA replication.
Collapse
|
20
|
Pérez-Arnaiz P, Dattani A, Smith V, Allers T. Haloferax volcanii-a model archaeon for studying DNA replication and repair. Open Biol 2020; 10:200293. [PMID: 33259746 PMCID: PMC7776575 DOI: 10.1098/rsob.200293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tree of life shows the relationship between all organisms based on their common ancestry. Until 1977, it comprised two major branches: prokaryotes and eukaryotes. Work by Carl Woese and other microbiologists led to the recategorization of prokaryotes and the proposal of three primary domains: Eukarya, Bacteria and Archaea. Microbiological, genetic and biochemical techniques were then needed to study the third domain of life. Haloferax volcanii, a halophilic species belonging to the phylum Euryarchaeota, has provided many useful tools to study Archaea, including easy culturing methods, genetic manipulation and phenotypic screening. This review will focus on DNA replication and DNA repair pathways in H. volcanii, how this work has advanced our knowledge of archaeal cellular biology, and how it may deepen our understanding of bacterial and eukaryotic processes.
Collapse
Affiliation(s)
| | | | | | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
21
|
Marshall CJ, Santangelo TJ. Archaeal DNA Repair Mechanisms. Biomolecules 2020; 10:E1472. [PMID: 33113933 PMCID: PMC7690668 DOI: 10.3390/biom10111472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Archaea often thrive in environmental extremes, enduring levels of heat, pressure, salinity, pH, and radiation that prove intolerable to most life. Many environmental extremes raise the propensity for DNA damaging events and thus, impact DNA stability, placing greater reliance on molecular mechanisms that recognize DNA damage and initiate accurate repair. Archaea can presumably prosper in harsh and DNA-damaging environments in part due to robust DNA repair pathways but surprisingly, no DNA repair pathways unique to Archaea have been described. Here, we review the most recent advances in our understanding of archaeal DNA repair. We summarize DNA damage types and their consequences, their recognition by host enzymes, and how the collective activities of many DNA repair pathways maintain archaeal genomic integrity.
Collapse
Affiliation(s)
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
22
|
Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H, Lemgruber L, Luko K, Wilkes J, Butter F, McCulloch R, Janzen CJ. Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Nucleic Acids Res 2020; 48:9660-9680. [PMID: 32890403 PMCID: PMC7515707 DOI: 10.1093/nar/gkaa686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.
Collapse
Affiliation(s)
- Andrea Zurita Leal
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nadine Weisert
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Helena Reis
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Katarina Luko
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jonathan Wilkes
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Phung DK, Etienne C, Batista M, Langendijk-Genevaux P, Moalic Y, Laurent S, Liuu S, Morales V, Jebbar M, Fichant G, Bouvier M, Flament D, Clouet-d’Orval B. RNA processing machineries in Archaea: the 5'-3' exoribonuclease aRNase J of the β-CASP family is engaged specifically with the helicase ASH-Ski2 and the 3'-5' exoribonucleolytic RNA exosome machinery. Nucleic Acids Res 2020; 48:3832-3847. [PMID: 32030412 PMCID: PMC7144898 DOI: 10.1093/nar/gkaa052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 01/22/2023] Open
Abstract
A network of RNA helicases, endoribonucleases and exoribonucleases regulates the quantity and quality of cellular RNAs. To date, mechanistic studies focussed on bacterial and eukaryal systems due to the challenge of identifying the main drivers of RNA decay and processing in Archaea. Here, our data support that aRNase J, a 5'-3' exoribonuclease of the β-CASP family conserved in Euryarchaeota, engages specifically with a Ski2-like helicase and the RNA exosome to potentially exert control over RNA surveillance, at the vicinity of the ribosome. Proteomic landscapes and direct protein-protein interaction analyses, strengthened by comprehensive phylogenomic studies demonstrated that aRNase J interplay with ASH-Ski2 and a cap exosome subunit. Finally, Thermococcus barophilus whole-cell extract fractionation experiments provide evidences that an aRNase J/ASH-Ski2 complex might exist in vivo and hint at an association of aRNase J with the ribosome that is emphasised in absence of ASH-Ski2. Whilst aRNase J homologues are found among bacteria, the RNA exosome and the Ski2-like RNA helicase have eukaryotic homologues, underlining the mosaic aspect of archaeal RNA machines. Altogether, these results suggest a fundamental role of β-CASP RNase/helicase complex in archaeal RNA metabolism.
Collapse
Affiliation(s)
- Duy Khanh Phung
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Clarisse Etienne
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Manon Batista
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Petra Langendijk-Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Yann Moalic
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sophie Liuu
- Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Violette Morales
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Mohamed Jebbar
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Gwennaele Fichant
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Marie Bouvier
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
| | - Didier Flament
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Béatrice Clouet-d’Orval
- Laboratoire de Microbiologie et de Génétique Moléculaires, UMR5100, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Paul Sabatier, F-31062 Toulouse, France
- To whom correspondence should be addressed. Tel: +33 561 335 875; Fax: +33 561 335 886;
| |
Collapse
|
24
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
25
|
Craig JM, Laszlo AH, Nova IC, Brinkerhoff H, Noakes MT, Baker KS, Bowman JL, Higinbotham HR, Mount JW, Gundlach JH. Determining the effects of DNA sequence on Hel308 helicase translocation along single-stranded DNA using nanopore tweezers. Nucleic Acids Res 2019; 47:2506-2513. [PMID: 30649515 PMCID: PMC6412116 DOI: 10.1093/nar/gkz004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022] Open
Abstract
Motor enzymes that process nucleic-acid substrates play vital roles in all aspects of genome replication, expression, and repair. The DNA and RNA nucleobases are known to affect the kinetics of these systems in biologically meaningful ways. Recently, it was shown that DNA bases control the translocation speed of helicases on single-stranded DNA, however the cause of these effects remains unclear. We use single-molecule picometer-resolution nanopore tweezers (SPRNT) to measure the kinetics of translocation along single-stranded DNA by the helicase Hel308 from Thermococcus gammatolerans. SPRNT can measure enzyme steps with subangstrom resolution on millisecond timescales while simultaneously measuring the absolute position of the enzyme along the DNA substrate. Previous experiments with SPRNT revealed the presence of two distinct substates within the Hel308 ATP hydrolysis cycle, one [ATP]-dependent and the other [ATP]-independent. Here, we analyze in-depth the apparent sequence dependent behavior of the [ATP]-independent step. We find that DNA bases at two sites within Hel308 control sequence-specific kinetics of the [ATP]-independent step. We suggest mechanisms for the observed sequence-specific translocation kinetics. Similar SPRNT measurements and methods can be applied to other nucleic-acid-processing motor enzymes.
Collapse
Affiliation(s)
- Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | - Andrew H Laszlo
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | - Ian C Nova
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | - Henry Brinkerhoff
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | - Matthew T Noakes
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | - Katherine S Baker
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | - Jasmine L Bowman
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | | | - Jonathan W Mount
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
26
|
Hogrel G, Lu Y, Laurent S, Henry E, Etienne C, Phung DK, Dulermo R, Bossé A, Pluchon PF, Clouet-d'Orval B, Flament D. Physical and functional interplay between PCNA DNA clamp and Mre11-Rad50 complex from the archaeon Pyrococcus furiosus. Nucleic Acids Res 2019; 46:5651-5663. [PMID: 29741662 PMCID: PMC6009593 DOI: 10.1093/nar/gky322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
Several archaeal species prevalent in extreme environments are particularly exposed to factors likely to cause DNA damages. These include hyperthermophilic archaea (HA), living at temperatures >70°C, which arguably have efficient strategies and robust genome guardians to repair DNA damage threatening their genome integrity. In contrast to Eukarya and other archaea, homologous recombination appears to be a vital pathway in HA, and the Mre11–Rad50 complex exerts a broad influence on the initiation of this DNA damage response process. In a previous study, we identified a physical association between the Proliferating Cell Nuclear Antigen (PCNA) and the Mre11–Rad50 (MR) complex. Here, by performing co-immunoprecipitation and SPR analyses, we identified a short motif in the C- terminal portion of Pyrococcus furiosus Mre11 involved in the interaction with PCNA. Through this work, we revealed a PCNA-interaction motif corresponding to a variation on the PIP motif theme which is conserved among Mre11 sequences of Thermococcale species. Additionally, we demonstrated functional interplay in vitro between P. furiosus PCNA and MR enzymatic functions in the DNA end resection process. At physiological ionic strength, PCNA stimulates MR nuclease activities for DNA end resection and promotes an endonucleolytic incision proximal to the 5′ strand of double strand DNA break.
Collapse
Affiliation(s)
- Gaëlle Hogrel
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Yang Lu
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Etienne Henry
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Clarisse Etienne
- Université de Toulouse; UPS, 118 Route de Narbonne, F-31062 Toulouse, France; CNRS; LMGM; F-31062 Toulouse, France
| | - Duy Khanh Phung
- Université de Toulouse; UPS, 118 Route de Narbonne, F-31062 Toulouse, France; CNRS; LMGM; F-31062 Toulouse, France
| | - Rémi Dulermo
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Audrey Bossé
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Pierre-François Pluchon
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Béatrice Clouet-d'Orval
- Université de Toulouse; UPS, 118 Route de Narbonne, F-31062 Toulouse, France; CNRS; LMGM; F-31062 Toulouse, France
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| |
Collapse
|
27
|
Proteomic Response of Three Marine Ammonia-Oxidizing Archaea to Hydrogen Peroxide and Their Metabolic Interactions with a Heterotrophic Alphaproteobacterium. mSystems 2019; 4:4/4/e00181-19. [PMID: 31239395 PMCID: PMC6593220 DOI: 10.1128/msystems.00181-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ammonia-oxidizing archaea (AOA) are the most abundant chemolithoautotrophic microorganisms in the oxygenated water column of the global ocean. Although H2O2 appears to be a universal by-product of aerobic metabolism, genes encoding the hydrogen peroxide (H2O2)-detoxifying enzyme catalase are largely absent in genomes of marine AOA. Here, we provide evidence that closely related marine AOA have different degrees of sensitivity to H2O2, which may contribute to niche differentiation between these organisms. Furthermore, our results suggest that marine AOA rely on H2O2 detoxification during periods of high metabolic activity and release organic compounds, thereby potentially attracting heterotrophic prokaryotes that provide this missing function. In summary, this report provides insights into the metabolic interactions between AOA and heterotrophic bacteria in marine environments and suggests that AOA play an important role in the biogeochemical carbon cycle by making organic carbon available for heterotrophic microorganisms. Ammonia-oxidizing archaea (AOA) play an important role in the nitrogen cycle and account for a considerable fraction of the prokaryotic plankton in the ocean. Most AOA lack the hydrogen peroxide (H2O2)-detoxifying enzyme catalase, and some AOA have been shown to grow poorly under conditions of exposure to H2O2. However, differences in the degrees of H2O2 sensitivity of different AOA strains, the physiological status of AOA cells exposed to H2O2, and their molecular response to H2O2 remain poorly characterized. Further, AOA might rely on heterotrophic bacteria to detoxify H2O2, and yet the extent and variety of costs and benefits involved in these interactions remain unclear. Here, we used a proteomics approach to compare the protein profiles of three Nitrosopumilus strains grown in the presence and absence of catalase and in coculture with the heterotrophic alphaproteobacterium Oceanicaulis alexandrii. We observed that most proteins detected at a higher relative abundance in H2O2-exposed Nitrosopumilus cells had no known function in oxidative stress defense. Instead, these proteins were putatively involved in the remodeling of the extracellular matrix, which we hypothesize to be a strategy limiting the influx of H2O2 into the cells. Using RNA-stable isotope probing, we confirmed that O. alexandrii cells growing in coculture with the Nitrosopumilus strains assimilated Nitrosopumilus-derived organic carbon, suggesting that AOA could recruit H2O2-detoxifying bacteria through the release of labile organic matter. Our results contribute new insights into the response of AOA to H2O2 and highlight the potential ecological importance of their interactions with heterotrophic free-living bacteria in marine environments. IMPORTANCE Ammonia-oxidizing archaea (AOA) are the most abundant chemolithoautotrophic microorganisms in the oxygenated water column of the global ocean. Although H2O2 appears to be a universal by-product of aerobic metabolism, genes encoding the hydrogen peroxide (H2O2)-detoxifying enzyme catalase are largely absent in genomes of marine AOA. Here, we provide evidence that closely related marine AOA have different degrees of sensitivity to H2O2, which may contribute to niche differentiation between these organisms. Furthermore, our results suggest that marine AOA rely on H2O2 detoxification during periods of high metabolic activity and release organic compounds, thereby potentially attracting heterotrophic prokaryotes that provide this missing function. In summary, this report provides insights into the metabolic interactions between AOA and heterotrophic bacteria in marine environments and suggests that AOA play an important role in the biogeochemical carbon cycle by making organic carbon available for heterotrophic microorganisms.
Collapse
|
28
|
Zhai B, DuPrez K, Han X, Yuan Z, Ahmad S, Xu C, Gu L, Ni J, Fan L, Shen Y. The archaeal ATPase PINA interacts with the helicase Hjm via its carboxyl terminal KH domain remodeling and processing replication fork and Holliday junction. Nucleic Acids Res 2018; 46:6627-6641. [PMID: 29846688 PMCID: PMC6061704 DOI: 10.1093/nar/gky451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 11/27/2022] Open
Abstract
PINA is a novel ATPase and DNA helicase highly conserved in Archaea, the third domain of life. The PINA from Sulfolobus islandicus (SisPINA) forms a hexameric ring in crystal and solution. The protein is able to promote Holliday junction (HJ) migration and physically and functionally interacts with Hjc, the HJ specific endonuclease. Here, we show that SisPINA has direct physical interaction with Hjm (Hel308a), a helicase presumably targeting replication forks. In vitro biochemical analysis revealed that Hjm, Hjc, and SisPINA are able to coordinate HJ migration and cleavage in a concerted way. Deletion of the carboxyl 13 amino acid residues impaired the interaction between SisPINA and Hjm. Crystal structure analysis showed that the carboxyl 70 amino acid residues fold into a type II KH domain which, in other proteins, functions in binding RNA or ssDNA. The KH domain not only mediates the interactions of PINA with Hjm and Hjc but also regulates the hexameric assembly of PINA. Our results collectively suggest that SisPINA, Hjm and Hjc work together to function in replication fork regression, HJ formation and HJ cleavage.
Collapse
Affiliation(s)
- Binyuan Zhai
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Kevin DuPrez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Xiaoyun Han
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Sohail Ahmad
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Cheng Xu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Microbiology and Biotechnology Institute, Shandong University, 72 Binhai Road, Jimo, Qingdao, Shandong, 266237, P.R. China
| |
Collapse
|
29
|
Liew LP, Lim ZY, Cohen M, Kong Z, Marjavaara L, Chabes A, Bell SD. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase. Cell Rep 2017; 17:1657-1670. [PMID: 27806303 PMCID: PMC5134839 DOI: 10.1016/j.celrep.2016.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/29/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022] Open
Abstract
In many organisms, hydroxyurea (HU) inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment. Sulfolobus has a HU-insensitive class II ribonucleotide reductase HU impairs DNA replication and is toxic to Sulfolobus cells HU treatment leads to selective loss of the regulatory subunit of DNA primase
Collapse
Affiliation(s)
- Li Phing Liew
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Zun Yi Lim
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Matan Cohen
- Department of Biology, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA
| | - Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197 Umeå, Sweden
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE 90197 Umeå, Sweden; Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE 90197 Umeå, Sweden
| | - Stephen D Bell
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA; Department of Biology, Indiana University, Simon Hall MSB, 212 South Hawthorne Drive, Bloomington, IN 47405, USA.
| |
Collapse
|
30
|
Revealing dynamics of helicase translocation on single-stranded DNA using high-resolution nanopore tweezers. Proc Natl Acad Sci U S A 2017; 114:11932-11937. [PMID: 29078357 DOI: 10.1073/pnas.1711282114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes that operate on DNA or RNA perform the core functions of replication and expression in all of biology. To gain high-resolution access to the detailed mechanistic behavior of these enzymes, we developed single-molecule picometer-resolution nanopore tweezers (SPRNT), a single-molecule technique in which the motion of polynucleotides through an enzyme is measured by a nanopore. SPRNT reveals two mechanical substates of the ATP hydrolysis cycle of the superfamily 2 helicase Hel308 during translocation on single-stranded DNA (ssDNA). By analyzing these substates at millisecond resolution, we derive a detailed kinetic model for Hel308 translocation along ssDNA that sheds light on how superfamily 1 and 2 helicases turn ATP hydrolysis into motion along DNA. Surprisingly, we find that the DNA sequence within Hel308 affects the kinetics of helicase translocation.
Collapse
|
31
|
Northall SJ, Buckley R, Jones N, Penedo JC, Soultanas P, Bolt EL. DNA binding and unwinding by Hel308 helicase requires dual functions of a winged helix domain. DNA Repair (Amst) 2017; 57:125-132. [DOI: 10.1016/j.dnarep.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022]
|
32
|
Zhai B, DuPrez K, Doukov TI, Li H, Huang M, Shang G, Ni J, Gu L, Shen Y, Fan L. Structure and Function of a Novel ATPase that Interacts with Holliday Junction Resolvase Hjc and Promotes Branch Migration. J Mol Biol 2017; 429:1009-1029. [PMID: 28238763 PMCID: PMC5565510 DOI: 10.1016/j.jmb.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/25/2017] [Accepted: 02/19/2017] [Indexed: 11/15/2022]
Abstract
Holliday junction (HJ) is a hallmark intermediate in DNA recombination and must be processed by dissolution (for double HJ) or resolution to ensure genome stability. Although HJ resolvases have been identified in all domains of life, there is a long-standing effort to search in prokaryotes and eukarya for proteins promoting HJ migration. Here, we report the structural and functional characterization of a novel ATPase, Sulfolobus islandicusPilT N-terminal-domain-containing ATPase (SisPINA), encoded by the gene adjacent to the resolvase Hjc coding gene. PINA is conserved in archaea and vital for S. islandicus viability. Purified SisPINA forms hexameric rings in the crystalline state and in solution, similar to the HJ migration helicase RuvB in Gram-negative bacteria. Structural analysis suggests that ATP binding and hydrolysis cause conformational changes in SisPINA to drive branch migration. Further studies reveal that SisPINA interacts with SisHjc and coordinates HJ migration and cleavage.
Collapse
Affiliation(s)
- Binyuan Zhai
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Kevin DuPrez
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Tzanko I Doukov
- Macromolecular Crystallography Group, Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
| | - Huan Li
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Mengting Huang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Guijun Shang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Road, Jinan 250100, PR China.
| | - Li Fan
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
33
|
Liu DN, Zhou YF, Peng AF, Long XH, Chen XY, Liu ZL, Xia H. HELQ reverses the malignant phenotype of osteosarcoma cells via CHK1-RAD51 signaling pathway. Oncol Rep 2016; 37:1107-1113. [PMID: 28000895 DOI: 10.3892/or.2016.5329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/03/2016] [Indexed: 11/05/2022] Open
Abstract
HELQ is a DNA helicase important for repair of DNA lesions and has been linked to several types of cancer. However, little is known about its relationship with osteosarcoma (OS) and its mechanism. In the present study, the expression of HELQ and its downstream mediators in OS cells was assayed by quantitative PCR and western blot analysis. The function of HELQ in OS cells was investigated by Transwell invasion, wound healing, CCK8 assays and Comet assay. The results demonstrated that HELQ gene and protein were expressed in OS cells. OS cell invasion, migration, proliferation and DNA damage repair were enhanced by HELQ knock-down with shRNA-lentivirus and inhibited by HELQ overexpression with lentivirus transfection. Furthermore, the antitumor activities of HELQ may be associated with upregulated expression of the DNA damage-related proteins CHK1 and RAD51. Our findings indicated that HELQ confers an anti-invasive phenotype on OS cells by activating the CHK1-RAD51 signaling pathway and suggested that HELQ could be recognized as a promising therapeutic target for OS and other types of malignant tumors.
Collapse
Affiliation(s)
- Dong Ning Liu
- Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Yun Fei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ai Fen Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Xuan Yin Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Hong Xia
- Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
34
|
Black SJ, Kashkina E, Kent T, Pomerantz RT. DNA Polymerase θ: A Unique Multifunctional End-Joining Machine. Genes (Basel) 2016; 7:E67. [PMID: 27657134 PMCID: PMC5042397 DOI: 10.3390/genes7090067] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/01/2023] Open
Abstract
The gene encoding DNA polymerase θ (Polθ) was discovered over ten years ago as having a role in suppressing genome instability in mammalian cells. Studies have now clearly documented an essential function for this unique A-family polymerase in the double-strand break (DSB) repair pathway alternative end-joining (alt-EJ), also known as microhomology-mediated end-joining (MMEJ), in metazoans. Biochemical and cellular studies show that Polθ exhibits a unique ability to perform alt-EJ and during this process the polymerase generates insertion mutations due to its robust terminal transferase activity which involves template-dependent and independent modes of DNA synthesis. Intriguingly, the POLQ gene also encodes for a conserved superfamily 2 Hel308-type ATP-dependent helicase domain which likely assists in alt-EJ and was reported to suppress homologous recombination (HR) via its anti-recombinase activity. Here, we review our current knowledge of Polθ-mediated end-joining, the specific activities of the polymerase and helicase domains, and put into perspective how this multifunctional enzyme promotes alt-EJ repair of DSBs formed during S and G2 cell cycle phases.
Collapse
Affiliation(s)
- Samuel J Black
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Ekaterina Kashkina
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
35
|
Remodeling and Control of Homologous Recombination by DNA Helicases and Translocases that Target Recombinases and Synapsis. Genes (Basel) 2016; 7:genes7080052. [PMID: 27548227 PMCID: PMC4999840 DOI: 10.3390/genes7080052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/24/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022] Open
Abstract
Recombinase enzymes catalyse invasion of single-stranded DNA (ssDNA) into homologous duplex DNA forming "Displacement loops" (D-loops), a process called synapsis. This triggers homologous recombination (HR), which can follow several possible paths to underpin DNA repair and restart of blocked and collapsed DNA replication forks. Therefore, synapsis can be a checkpoint for controlling whether or not, how far, and by which pathway, HR proceeds to overcome an obstacle or break in a replication fork. Synapsis can be antagonized by limiting access of a recombinase to ssDNA and by dissociation of D-loops or heteroduplex formed by synapsis. Antagonists include DNA helicases and translocases that are identifiable in eukaryotes, bacteria and archaea, and which target synaptic and pre-synaptic DNA structures thereby controlling HR at early stages. Here we survey these events with emphasis on enabling DNA replication to be resumed from sites of blockage or collapse. We also note how knowledge of anti-recombination activities could be useful to improve efficiency of CRISPR-based genome editing.
Collapse
|
36
|
Song X, Huang Q, Ni J, Yu Y, Shen Y. Knockout and functional analysis of two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A. Extremophiles 2016; 20:537-46. [PMID: 27290726 DOI: 10.1007/s00792-016-0847-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/31/2016] [Indexed: 01/05/2023]
Abstract
DExD/H-box helicases represent the largest family of helicases. They belong to superfamily 2 helicases and participate in nucleotide metabolism, ribosome biogenesis, and nucleocytoplasmic transport. The biochemical properties and structures of some DExD/H-box helicases in the archaea have been documented, but many of them have not been characterized; and reports on in vivo functional analyses are limited. In this study, we attempted gene knockout of 8 putative DExD/H-box helicases in Sulfolobus islandicus REY15A and obtained two deletion mutants, SiRe_0681 and SiRe_1605. We determined that ΔSiRe_0681 grew faster than wild type cells in the presence of methyl methanesulfonate (MMS). Flow cytometry analysis showed that this strain had fewer G1/S phase cells than the wild type, and the genes coding for cell division proteins were up-regulated. The stain ΔSiRe_1605 was more sensitive to MMS than the wild type cell, and many nucleotide metabolism and DNA repair enzymes were found to be down-regulated. Intriguingly, deletion of either gene led to silencing simultaneously of over 80 genes located at a specific region. This study provides a novel insight into the in vivo functions of predicted DExD/H-box family helicases in the archaea.
Collapse
Affiliation(s)
- Xueguo Song
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, China
| | - Qihong Huang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, China
| | - Yang Yu
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, China.
| |
Collapse
|
37
|
Song X, Ni J, Shen Y. Structure-Based Genetic Analysis of Hel308a in the Hyperthermophilic Archaeon Sulfolobus islandicus. J Genet Genomics 2016; 43:405-13. [PMID: 27317310 DOI: 10.1016/j.jgg.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
In archaea, the HEL308 homolog Hel308a (or Hjm) is implicated in stalled replication fork repair. The biochemical properties and structures of Hjm homologs are well documented, but in vivo mechanistic information is limited. Herein, a structure-based functional analysis of Hjm was performed in the genetically tractable hyperthermophilic archaeon, Sulfolobus islandicus. Results showed that domain V and residues within it, which affect Hjm activity and regulation, are essential and that the domain V-truncated mutants and site-directed mutants within domain V cannot complement hjm chromosomal deletion. Chromosomal hjm deletion can be complemented by ectopic expression of hjm under the control of its native promoter but not an artificial arabinose promoter. Cellular Hjm levels are kept constant under ultraviolet (UV) and methyl methanesulfonate (MMS) treatment conditions in a strain carrying a plasmid to induce Hjm overexpression. These results suggest that Hjm expression and activity are tightly controlled, probably at the translational level.
Collapse
Affiliation(s)
- Xueguo Song
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.
| |
Collapse
|
38
|
Newman JA, Cooper CDO, Aitkenhead H, Gileadi O. Structure of the Helicase Domain of DNA Polymerase Theta Reveals a Possible Role in the Microhomology-Mediated End-Joining Pathway. Structure 2015; 23:2319-2330. [PMID: 26636256 PMCID: PMC4671958 DOI: 10.1016/j.str.2015.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/06/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022]
Abstract
DNA polymerase theta (Polθ) has been identified as a crucial alternative non-homologous end-joining factor in mammalian cells. Polθ is upregulated in a range of cancer cell types defective in homologous recombination, and knockdown has been shown to inhibit cell survival in a subset of these, making it an attractive target for cancer treatment. We present crystal structures of the helicase domain of human Polθ in the presence and absence of bound nucleotides, and a characterization of its DNA-binding and DNA-stimulated ATPase activities. Comparisons with related helicases from the Hel308 family identify several unique features. Polθ exists as a tetramer both in the crystals and in solution. We propose a model for DNA binding to the Polθ helicase domain in the context of the Polθ tetramer, which suggests a role for the helicase domain in strand annealing of DNA templates for subsequent processing by the polymerase domain.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Christopher D O Cooper
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
39
|
Chamieh H, Ibrahim H, Kozah J. Genome-wide identification of SF1 and SF2 helicases from archaea. Gene 2015; 576:214-28. [PMID: 26456193 DOI: 10.1016/j.gene.2015.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 10/04/2015] [Indexed: 11/26/2022]
Abstract
Archaea microorganisms have long been used as model organisms for the study of protein molecular machines. Archaeal proteins are particularly appealing to study since archaea, even though prokaryotic, possess eukaryotic-like cellular processes. Super Family I (SF1) and Super Family II (SF2) helicase families have been studied in many model organisms, little is known about their presence and distribution in archaea. We performed an exhaustive search of homologs of SF1 and SF2 helicase proteins in 95 complete archaeal genomes. In the present study, we identified the complete sets of SF1 and SF2 helicases in archaea. Comparative analysis between archaea, human and the bacteria E. coli SF1 and SF2 helicases, resulted in the identification of seven helicase families conserved among representatives of the domains of life. This analysis suggests that these helicase families are highly conserved throughout evolution. We highlight the conserved motifs of each family and characteristic domains of the detected families. Distribution of SF1/SF2 families show that Ski2-like, Lhr, Sfth and Rad3-like helicases are ubiquitous among archaeal genomes while the other families are specific to certain archaeal groups. We also report the presence of a novel SF2 helicase specific to archaea domain named Archaea Specific Helicase (ASH). Phylogenetic analysis indicated that ASH has evolved in Euryarchaeota and is evolutionary related to the Ski2-like family with specific characteristic domains. Our study provides the first exhaustive analysis of SF1 and SF2 helicases from archaea. It expands the variety of SF1 and SF2 archaeal helicases known to exist to date and provides a starting point for new biochemical and genetic studies needed to validate their biological functions.
Collapse
Affiliation(s)
- Hala Chamieh
- Faculty of Science, Department of Biology, Lebanese University, Tripoli, Lebanon; Centre AZM pour la Recherche en Biotechnologie et ses Applications, Laboratoire de Biotechnologie Appliquée, Ecole Doctorale Sciences et Technologies, Mitein Street, Tripoli, Lebanon.
| | - Hiba Ibrahim
- Faculty of Science, Department of Environmental and Biological Science, Beirut Arab University, Tripoli, Lebanon
| | - Juliana Kozah
- Faculty of Science, Université Saint Esprit de Kaslik, Jounieh, Lebanon
| |
Collapse
|
40
|
Abstract
RecA/Rad51 catalyzed pairing of homologous DNA strands, initiated by polymerization of the recombinase on single-stranded DNA (ssDNA), is a universal feature of homologous recombination (HR). Generation of ssDNA from a double-strand break (DSB) requires nucleolytic degradation of the 5'-terminated strands to generate 3'-ssDNA tails, a process referred to as 5'-3' end resection. The RecBCD helicase-nuclease complex is the main end-processing machine in Gram-negative bacteria. Mre11-Rad50 and Mre11-Rad50-Xrs2/Nbs1 can play a direct role in end resection in archaea and eukaryota, respectively, by removing end-blocking lesions and act indirectly by recruiting the helicases and nucleases responsible for extensive resection. In eukaryotic cells, the initiation of end resection has emerged as a critical regulatory step to differentiate between homology-dependent and end-joining repair of DSBs.
Collapse
|
41
|
Han W, Shen Y, She Q. Nanobiomotors of archaeal DNA repair machineries: current research status and application potential. Cell Biosci 2014; 4:32. [PMID: 24995126 PMCID: PMC4080772 DOI: 10.1186/2045-3701-4-32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
Nanobiomotors perform various important functions in the cell, and they also emerge as potential vehicle for drug delivery. These proteins employ conserved ATPase domains to convert chemical energy to mechanical work and motion. Several archaeal nucleic acid nanobiomotors, such as DNA helicases that unwind double-stranded DNA molecules during DNA damage repair, have been characterized in details. XPB, XPD and Hjm are SF2 family helicases, each of which employs two ATPase domains for ATP binding and hydrolysis to drive DNA unwinding. They also carry additional specific domains for substrate binding and regulation. Another helicase, HerA, forms a hexameric ring that may act as a DNA-pumping enzyme at the end processing of double-stranded DNA breaks. Common for all these nanobiomotors is that they contain ATPase domain that adopts RecA fold structure. This structure is characteristic for RecA/RadA family proteins and has been studied in great details. Here we review the structural analyses of these archaeal nucleic acid biomotors and the molecular mechanisms of how ATP binding and hydrolysis promote the conformation change that drives mechanical motion. The application potential of archaeal nanobiomotors in drug delivery has been discussed.
Collapse
Affiliation(s)
- Wenyuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China ; Archaeal Centre, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China
| | - Qunxin She
- Archaeal Centre, Department of Biology, University of Copenhagen, Copenhagen Biocenter, Copenhagen, Denmark
| |
Collapse
|
42
|
Luebben SW, Kawabata T, Akre MK, Lee WL, Johnson CS, O'Sullivan MG, Shima N. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res 2013; 41:10283-97. [PMID: 24005041 PMCID: PMC3905894 DOI: 10.1093/nar/gkt676] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
HELQ is a superfamily 2 DNA helicase found in archaea and metazoans. It has been implicated in processing stalled replication forks and in repairing DNA double-strand breaks and inter-strand crosslinks. Though previous studies have suggested the possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant mechanism for inter-strand crosslink repair in vertebrates, this connection remains elusive. Here, we investigated this question in mice using the Helqgt and Fancc− strains. Compared with Fancc−/− mice lacking FANCC, a component of the FA core complex, Helqgt/gt mice exhibited a mild of form of FA-like phenotypes including hypogonadism and cellular sensitivity to the crosslinker mitomycin C. However, unlike Fancc−/− primary fibroblasts, Helqgt/gt cells had intact FANCD2 mono-ubiquitination and focus formation. Notably, for all traits examined, Helq was non-epistatic with Fancc, as Helqgt/gt;Fancc−/− double mutants displayed significantly worsened phenotypes than either single mutant. Importantly, this was most noticeable for the suppression of spontaneous chromosome instability such as micronuclei and 53BP1 nuclear bodies, known consequences of persistently stalled replication forks. These findings suggest that mammalian HELQ contributes to genome stability in unchallenged conditions through a mechanism distinct from the function of FANCC.
Collapse
Affiliation(s)
- Spencer W Luebben
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA, Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA, Masonic Cancer Center, Minneapolis, MN 55455, USA and College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
During DNA repair by HR (homologous recombination), the ends of a DNA DSB (double-strand break) must be resected to generate single-stranded tails, which are required for strand invasion and exchange with homologous chromosomes. This 5'-3' end-resection of the DNA duplex is an essential process, conserved across all three domains of life: the bacteria, eukaryota and archaea. In the present review, we examine the numerous and redundant helicase and nuclease systems that function as the enzymatic analogues for this crucial process in the three major phylogenetic divisions.
Collapse
|
44
|
Mozaffari-Jovin S, Santos KF, Hsiao HH, Will CL, Urlaub H, Wahl MC, Lührmann R. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev 2013; 26:2422-34. [PMID: 23124066 DOI: 10.1101/gad.200949.112] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The spliceosomal RNA helicase Brr2 catalyzes unwinding of the U4/U6 snRNA duplex, an essential step for spliceosome catalytic activation. Brr2 is regulated in part by the spliceosomal Prp8 protein by an unknown mechanism. We demonstrate that the RNase H (RH) domain of yeast Prp8 binds U4/U6 small nuclear RNA (snRNA) with the single-stranded regions of U4 and U6 preceding U4/U6 stem I, contributing to its binding. Via cross-linking coupled with mass spectrometry, we identify RH domain residues that contact the U4/U6 snRNA. We further demonstrate that the same single-stranded region of U4 preceding U4/U6 stem I is recognized by Brr2, indicating that it translocates along U4 and first unwinds stem I of the U4/U6 duplex. Finally, we show that the RH domain of Prp8 interferes with U4/U6 unwinding by blocking Brr2's interaction with the U4 snRNA. Our data reveal a novel mechanism whereby Prp8 negatively regulates Brr2 and potentially prevents premature U4/U6 unwinding during splicing. They also support the idea that the RH domain acts as a platform for the exchange of U6 snRNA for U1 at the 5' splice site. Our results provide insights into the mechanism whereby Brr2 unwinds U4/U6 and show how this activity is potentially regulated prior to spliceosome activation.
Collapse
Affiliation(s)
- Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Johnson SJ, Jackson RN. Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 2012; 10:33-43. [PMID: 22995828 DOI: 10.4161/rna.22101] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Ski2-like RNA helicases are large multidomain proteins involved in a variety of RNA processing and degradation events. Recent structures of Mtr4, Ski2 and Brr2 provide our first view of these intricate helicases. Here we review these structures, which reveal a conserved ring-like architecture that extends beyond the canonical RecA domains to include a winged helix and ratchet domain. Comparison of apo- and RNA-bound Mtr4 structures suggests a role for the winged helix domain as a molecular hub that coordinates RNA interacting events throughout the helicase. Unique accessory domains provide expanded diversity and functionality to each Ski2-like family member. A common theme is the integration of Ski2-like RNA helicases into larger protein assemblies. We describe the central role of Mtr4 and Ski2 in formation of complexes that activate RNA decay by the eukaryotic exosome. The current structures provide clues into what promises to be a fascinating view of these dynamic assemblies.
Collapse
Affiliation(s)
- Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, Logan, UT, USA.
| | | |
Collapse
|
46
|
Blackwood JK, Rzechorzek NJ, Abrams AS, Maman JD, Pellegrini L, Robinson NP. Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex. Nucleic Acids Res 2011; 40:3183-96. [PMID: 22135300 PMCID: PMC3326311 DOI: 10.1093/nar/gkr1157] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helicase–nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.
Collapse
Affiliation(s)
- John K Blackwood
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
47
|
Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein. Biochem J 2011; 439:85-95. [PMID: 21699496 DOI: 10.1042/bj20110901] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a nucleic acid processing system in bacteria and archaea that interacts with mobile genetic elements. CRISPR DNA and RNA sequences are processed by Cas proteins: in Escherichia coli K-12, one CRISPR locus links to eight cas genes (cas1, 2, 3 and casABCDE), whose protein products promote protection against phage. In the present paper, we report that purified E. coli Cas3 catalyses ATP-independent annealing of RNA with DNA forming R-loops, hybrids of RNA base-paired into duplex DNA. ATP abolishes Cas3 R-loop formation and instead powers Cas3 helicase unwinding of the invading RNA strand of a model R-loop substrate. R-loop formation by Cas3 requires magnesium as a co-factor and is inactivated by mutagenesis of a conserved amino acid motif. Cells expressing the mutant Cas3 protein are more sensitive to plaque formation by the phage λvir. A complex of CasABCDE ('Cascade') also promotes R-loop formation and we discuss possible overlapping roles of Cas3 and Cascade in E. coli, and the apparently antagonistic roles of Cas3 catalysing RNA-DNA annealing and ATP-dependent helicase unwinding.
Collapse
|
48
|
Hong Y, Chu M, Li Y, Ni J, Sheng D, Hou G, She Q, Shen Y. Dissection of the functional domains of an archaeal Holliday junction helicase. DNA Repair (Amst) 2011; 11:102-11. [PMID: 22062475 DOI: 10.1016/j.dnarep.2011.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Helicases and nucleases form complexes that play very important roles in DNA repair pathways some of which interact with each other at Holliday junctions. In this study, we present in vitro and in vivo analysis of Hjm and its interaction with Hjc in Sulfolobus. In vitro studies employed Hjm from the hyperthermophilic archaeon Sulfolobus tokodaii (StoHjm) and its truncated derivatives, and characterization of the StoHjm proteins revealed that the N-terminal module (residues 1-431) alone was capable of ATP hydrolysis and DNA binding, while the C-terminal one (residues 415-704) was responsible for regulating the helicase activity. The region involved in StoHjm-StoHjc (Hjc from S. tokodaii) interaction was identified as part of domain II, domain III (Winged Helix motif), and domain IV (residues 366-645) for StoHjm. We present evidence supporting that StoHjc regulates the helicase activity of StoHjm by inducing conformation change of the enzyme. Furthermore, StoHjm is able to prevent the formation of Hjc/HJ high complex, suggesting a regulation mechanism of Hjm to the activity of Hjc. We show that Hjm is essential for cell viability using recently developed genetic system and mutant propagation assay, suggesting that Hjm/Hjc mediated resolution of stalled replication forks is of crucial importance in archaea. A tentative pathway with which Hjm/Hjc interaction could have occurred at stalled replication forks is discussed.
Collapse
Affiliation(s)
- Ye Hong
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The process of information exchange between two homologous DNA duplexes is known as homologous recombination (HR) or double-strand break repair (DSBR), depending on the context. HR is the fundamental process underlying the genome shuffling that expands genetic diversity (for example during meiosis in eukaryotes). DSBR is an essential repair pathway in all three domains of life, and plays a major role in the rescue of stalled or collapsed replication forks, a phenomenon known as recombination-dependent replication (RDR). The process of HR in the archaea is gradually being elucidated, initially from structural and biochemical studies, but increasingly using new genetic systems. The present review focuses on our current understanding of the structures, functions and interactions of archaeal HR proteins, with an emphasis on recent advances. There are still many unknown aspects of archaeal HR, most notably the mechanism of branch migration of Holliday junctions, which is also an open question in eukarya.
Collapse
|
50
|
Abstract
Hel308 is a superfamily 2 helicase/translocase that is conserved throughout archaea and in some eukaryotes for repair of genotoxic lesions such as ICLs (interstrand DNA cross-links). Atomic structures of archaeal Hel308 have allowed mechanistic insights into ATPase and helicase functions, but have also highlighted structures that currently lack a known function, such as an unexpected WH (winged helix) domain. This domain and similar overall protein structural organization was also identified in other superfamily 2 helicases that process RNA molecules in eukaryotes: Brr2, Mtr4 and Prp43p. We survey the structure of Hel308 with regard to its WH domain in particular and its function(s) in maintaining structural integrity of the overall Hel308 ring structure, and possibly during interactions of Hel308 with other proteins and/or forked DNA.
Collapse
|