1
|
Vilar JMG, Saiz L. The unreasonable effectiveness of equilibrium gene regulation through the cell cycle. Cell Syst 2024; 15:639-648.e2. [PMID: 38981487 DOI: 10.1016/j.cels.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/19/2023] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Systems like the prototypical lac operon can reliably hold repression of transcription upon DNA replication across cell cycles with just 10 repressor molecules per cell and behave as if they were at equilibrium. The origin of this phenomenology is still an unresolved question. Here, we develop a general theory to analyze strong perturbations in quasi-equilibrium systems and use it to quantify the effects of DNA replication in gene regulation. We find a scaling law linking actual with predicted equilibrium transcription via a single kinetic parameter. We show that even the lac operon functions beyond the physical limits of naive regulation through compensatory mechanisms that suppress non-equilibrium effects. Synthetic systems without adjuvant activators, such as the cAMP receptor protein (CRP), lack this reliability. Our results provide a rationale for the function of CRP, beyond just being a tunable activator, as a mitigator of cell cycle perturbations.
Collapse
Affiliation(s)
- Jose M G Vilar
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive, Davis, CA 95616, USA; Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany; Center for Systems Biology Dresden, 01307 Dresden, Germany.
| |
Collapse
|
2
|
Schultz D, Stevanovic M, Tsimring LS. Optimal transcriptional regulation of dynamic bacterial responses to sudden drug exposures. Biophys J 2022; 121:4137-4152. [PMID: 36168291 PMCID: PMC9675034 DOI: 10.1016/j.bpj.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cellular responses to the presence of toxic compounds in their environment require prompt expression of the correct levels of the appropriate enzymes, which are typically regulated by transcription factors that control gene expression for the duration of the response. The characteristics of each response dictate the choice of regulatory parameters such as the affinity of the transcription factor to its binding sites and the strength of the promoters it regulates. Although much is known about the dynamics of cellular responses, we still lack a framework to understand how different regulatory strategies evolved in natural systems relate to the selective pressures acting in each particular case. Here, we analyze a dynamical model of a typical antibiotic response in bacteria, where a transcriptionally repressed enzyme is induced by a sudden exposure to the drug that it processes. We identify strategies of gene regulation that optimize this response for different types of selective pressures, which we define as a set of costs associated with the drug, enzyme, and repressor concentrations during the response. We find that regulation happens in a limited region of the regulatory parameter space. While responses to more costly (toxic) drugs favor the usage of strongly self-regulated repressors, responses where expression of enzyme is more costly favor the usage of constitutively expressed repressors. Only a very narrow range of selective pressures favor weakly self-regulated repressors. We use this framework to determine which costs and benefits are most critical for the evolution of a variety of natural cellular responses that satisfy the approximations in our model and to analyze how regulation is optimized in new environments with different demands.
Collapse
Affiliation(s)
- Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| | - Mirjana Stevanovic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Phillips R, Belliveau NM, Chure G, Garcia HG, Razo-Mejia M, Scholes C. Figure 1 Theory Meets Figure 2 Experiments in the Study of Gene Expression. Annu Rev Biophys 2020; 48:121-163. [PMID: 31084583 DOI: 10.1146/annurev-biophys-052118-115525] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is tempting to believe that we now own the genome. The ability to read and rewrite it at will has ushered in a stunning period in the history of science. Nonetheless, there is an Achilles' heel exposed by all of the genomic data that has accrued: We still do not know how to interpret them. Many genes are subject to sophisticated programs of transcriptional regulation, mediated by DNA sequences that harbor binding sites for transcription factors, which can up- or down-regulate gene expression depending upon environmental conditions. This gives rise to an input-output function describing how the level of expression depends upon the parameters of the regulated gene-for instance, on the number and type of binding sites in its regulatory sequence. In recent years, the ability to make precision measurements of expression, coupled with the ability to make increasingly sophisticated theoretical predictions, has enabled an explicit dialogue between theory and experiment that holds the promise of covering this genomic Achilles' heel. The goal is to reach a predictive understanding of transcriptional regulation that makes it possible to calculate gene expression levels from DNA regulatory sequence. This review focuses on the canonical simple repression motif to ask how well the models that have been used to characterize it actually work. We consider a hierarchy of increasingly sophisticated experiments in which the minimal parameter set learned at one level is applied to make quantitative predictions at the next. We show that these careful quantitative dissections provide a template for a predictive understanding of the many more complex regulatory arrangements found across all domains of life.
Collapse
Affiliation(s)
- Rob Phillips
- Department of Physics, California Institute of Technology, Pasadena, California, USA; .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Nathan M Belliveau
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Griffin Chure
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Hernan G Garcia
- Department of Molecular & Cell Biology, Department of Physics, Biophysics Graduate Group, and Institute for Quantitative Biosciences-QB3, University of California, Berkeley, California, USA
| | - Manuel Razo-Mejia
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Dimas RP, Jiang XL, Alberto de la Paz J, Morcos F, Chan CTY. Engineering repressors with coevolutionary cues facilitates toggle switches with a master reset. Nucleic Acids Res 2019; 47:5449-5463. [PMID: 31162606 PMCID: PMC6547410 DOI: 10.1093/nar/gkz280] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Engineering allosteric transcriptional repressors containing an environmental sensing module (ESM) and a DNA recognition module (DRM) has the potential to unlock a combinatorial set of rationally designed biological responses. We demonstrated that constructing hybrid repressors by fusing distinct ESMs and DRMs provides a means to flexibly rewire genetic networks for complex signal processing. We have used coevolutionary traits among LacI homologs to develop a model for predicting compatibility between ESMs and DRMs. Our predictions accurately agree with the performance of 40 engineered repressors. We have harnessed this framework to develop a system of multiple toggle switches with a master OFF signal that produces a unique behavior: each engineered biological activity is switched to a stable ON state by different chemicals and returned to OFF in response to a common signal. One promising application of this design is to develop living diagnostics for monitoring multiple parameters in complex physiological environments and it represents one of many circuit topologies that can be explored with modular repressors designed with coevolutionary information.
Collapse
Affiliation(s)
- Rey P Dimas
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Xian-Li Jiang
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX 75080, USA
| | - Jose Alberto de la Paz
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX 75080, USA
| | - Faruck Morcos
- Department of Biological Sciences, The University of Texas at Dallas, Dallas, TX 75080, USA.,Department of Bioengineering, The University of Texas at Dallas, Dallas, TX 75080, USA.,Center for Systems Biology, The University of Texas at Dallas, Dallas, TX 75080, USA
| | - Clement T Y Chan
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA.,Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
5
|
Abstract
Microbiologists often express foreign proteins in bacteria in order study them or to use bacteria as a microbial factory. Usually, this requires controlling the number of foreign proteins expressed in each cell, but for many common protein expression systems, it is difficult to “tune” protein expression without large cell-to-cell variation in expression levels (called “noise” in protein expression). This work describes two protein expression systems that can be combined in the same cell, with tunable expression levels and very low protein expression noise. One new system was used to detect single mRNA molecules by fluorescence microscopy, and the two systems were shown to be independent of each other. These protein expression systems may be useful in any experiment or biotechnology application that can be improved with low protein expression noise. Some microbiology experiments and biotechnology applications can be improved if it is possible to tune the expression of two different genes at the same time with cell-to-cell variation at or below the level of genes constitutively expressed from the chromosome (the “extrinsic noise limit”). This was recently achieved for a single gene by exploiting negative autoregulation by the tetracycline repressor (TetR) and bicistronic gene expression to reduce gene expression noise. We report new plasmids that use the same principles to achieve simultaneous, low-noise expression for two genes in Escherichia coli. The TetR system was moved to a compatible plasmid backbone, and a system based on the lac repressor (LacI) was found to also exhibit gene expression noise below the extrinsic noise limit. We characterized gene expression mean and noise across the range of induction levels for these plasmids, applied the LacI system to tune expression for single-molecule mRNA detection under two different growth conditions, and showed that two plasmids can be cotransformed to independently tune expression of two different genes. IMPORTANCE Microbiologists often express foreign proteins in bacteria in order study them or to use bacteria as a microbial factory. Usually, this requires controlling the number of foreign proteins expressed in each cell, but for many common protein expression systems, it is difficult to “tune” protein expression without large cell-to-cell variation in expression levels (called “noise” in protein expression). This work describes two protein expression systems that can be combined in the same cell, with tunable expression levels and very low protein expression noise. One new system was used to detect single mRNA molecules by fluorescence microscopy, and the two systems were shown to be independent of each other. These protein expression systems may be useful in any experiment or biotechnology application that can be improved with low protein expression noise.
Collapse
|
6
|
Atitey K, Loskot P, Rees P. Determining the Transcription Rates Yielding Steady-State Production of mRNA in the Lac Genetic Switch of Escherichia coli. J Comput Biol 2018; 25:1023-1039. [PMID: 29957031 DOI: 10.1089/cmb.2018.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To elucidate the regulatory dynamics of the gene expression activation and inactivation, an in silico biochemical model of the lac circuit in Escherichia coli was used to evaluate the transcription rates that yield the steady-state mRNA production in active and inactive states of the lac circuit. This result can be used in synthetic biology applications to understand the limits of the genetic synthesis. Since most genetic networks involve many interconnected components with positive and negative feedback control, intuitive understanding of their dynamics is often difficult to obtain. Although the kinetic model of the lac circuit considered involves only a single positive feedback, the developed computational framework can be used to evaluate supported ranges of other reaction rates in genetic circuits with more complex regulatory networks. More specifically, the inducible lac gene switch in E. coli is regulated by unbinding and binding of the inducer-repressor complexes to or from the DNA operator to switch the gene expression on and off. The dependency of mRNA production at steady state on different transcription rates and the repressor complexes has been studied by computer simulations in the Lattice Microbe software. Provided that the lac circuit is in active state, the transcription rate is independent of the inducer-repressor complexes present in the cell. In inactive state, the transcription rate is dependent on the specific inducer-repressor complex bound to the operator that inactivates the gene expression. We found that the repressor complex with the largest affinity to the operator yields the smallest range of the feasible transcription rates to yield the steady state while the lac circuit is in inactive state. In contrast, the steady state in active state can be obtained for any value of the transcription rate.
Collapse
Affiliation(s)
- Komlan Atitey
- College of Engineering, Swansea University , Swansea, United Kingdom
| | - Pavel Loskot
- College of Engineering, Swansea University , Swansea, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University , Swansea, United Kingdom
| |
Collapse
|
7
|
Haddad N, Jost D, Vaillant C. Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Res 2017; 25:35-50. [PMID: 28091870 PMCID: PMC5346151 DOI: 10.1007/s10577-016-9548-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Compartmentalization is a ubiquitous feature of cellular function. In the nucleus, early observations revealed a non-random spatial organization of the genome with a large-scale segregation between transcriptionally active—euchromatin—and silenced—heterochromatin—parts of the genome. Recent advances in genome-wide mapping and imaging techniques have strikingly improved the resolution at which nuclear genome folding can be analyzed and have revealed a multiscale spatial compartmentalization with increasing evidences that such compartment may indeed result from and participate to genome function. Understanding the underlying mechanisms of genome folding and in particular the link to gene regulation requires a cross-disciplinary approach that combines the new high-resolution techniques with computational modeling of chromatin and chromosomes. In this perspective article, we first present how the copolymer theoretical framework can account for the genome compartmentalization. We then suggest, in a second part, that compartments may act as a “nanoreactor,” increasing the robustness of either activation or repression by enhancing the local concentration of regulators. We conclude with the need to develop a new framework, namely the “living chromatin” model that will allow to explicitly investigate the coupling between spatial compartmentalization and gene regulation.
Collapse
Affiliation(s)
- N Haddad
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France
| | - D Jost
- University Grenoble-Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, France.
| | - C Vaillant
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France.
| |
Collapse
|
8
|
Jost D, Vaillant C, Meister P. Coupling 1D modifications and 3D nuclear organization: data, models and function. Curr Opin Cell Biol 2016; 44:20-27. [PMID: 28040646 DOI: 10.1016/j.ceb.2016.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, advances in molecular methods have strikingly improved the resolution at which nuclear genome folding can be analyzed. This revealed a wealth of conserved features organizing the one dimensional DNA molecule into tridimensional nuclear domains. In this review, we briefly summarize the main findings and highlight how models based on polymer physics shed light on the principles underlying the formation of these domains. Finally, we discuss the mechanistic similarities allowing self-organization of these structures and the functional importance of these in the maintenance of transcriptional programs.
Collapse
Affiliation(s)
- Daniel Jost
- University Grenoble Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, F-38706 La Tronche, France
| | - Cédric Vaillant
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69007 Lyon, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
9
|
Garcia HG, Brewster RC, Phillips R. Using synthetic biology to make cells tomorrow's test tubes. Integr Biol (Camb) 2016; 8:431-50. [PMID: 26952708 DOI: 10.1039/c6ib00006a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.
Collapse
Affiliation(s)
- Hernan G Garcia
- Department of Molecular and Cell Biology, Department of Physics, Biophysics Graduate Group, and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley CA 94720, USA.
| | | | | |
Collapse
|
10
|
Morra R, Shankar J, Robinson CJ, Halliwell S, Butler L, Upton M, Hay S, Micklefield J, Dixon N. Dual transcriptional-translational cascade permits cellular level tuneable expression control. Nucleic Acids Res 2015; 44:e21. [PMID: 26405200 PMCID: PMC4756846 DOI: 10.1093/nar/gkv912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/28/2015] [Indexed: 12/03/2022] Open
Abstract
The ability to induce gene expression in a small molecule dependent manner has led to many applications in target discovery, functional elucidation and bio-production. To date these applications have relied on a limited set of protein-based control mechanisms operating at the level of transcription initiation. The discovery, design and reengineering of riboswitches offer an alternative means by which to control gene expression. Here we report the development and characterization of a novel tunable recombinant expression system, termed RiboTite, which operates at both the transcriptional and translational level. Using standard inducible promoters and orthogonal riboswitches, a multi-layered modular genetic control circuit was developed to control the expression of both bacteriophage T7 RNA polymerase and recombinant gene(s) of interest. The system was benchmarked against a number of commonly used E. coli expression systems, and shows tight basal control, precise analogue tunability of gene expression at the cellular level, dose-dependent regulation of protein production rates over extended growth periods and enhanced cell viability. This novel system expands the number of E. coli expression systems for use in recombinant protein production and represents a major performance enhancement over and above the most widely used expression systems.
Collapse
Affiliation(s)
- Rosa Morra
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jayendra Shankar
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Christopher J Robinson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Samantha Halliwell
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Lisa Butler
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Mathew Upton
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL4 8AA, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK SYNBIOCHEM, University of Manchester, Manchester, M13 9PL, UK
| | - Neil Dixon
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M13 9PL, UK Faculty of Life Sciences, University of Manchester, Manchester, M13 9PL, UK School of Chemistry, University of Manchester, Manchester, M13 9PL, UK SYNBIOCHEM, University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
11
|
Determining the bistability parameter ranges of artificially induced lac operon using the root locus method. Comput Biol Med 2015; 61:75-91. [PMID: 25864166 DOI: 10.1016/j.compbiomed.2015.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/24/2022]
Abstract
This paper employs the root locus method to conduct a detailed investigation of the parameter regions that ensure bistability in a well-studied gene regulatory network namely, lac operon of Escherichia coli (E. coli). In contrast to previous works, the parametric bistability conditions observed in this study constitute a complete set of necessary and sufficient conditions. These conditions were derived by applying the root locus method to the polynomial equilibrium equation of the lac operon model to determine the parameter values yielding the multiple real roots necessary for bistability. The lac operon model used was defined as an ordinary differential equation system in a state equation form with a rational right hand side, and it was compatible with the Hill and Michaelis-Menten approaches of enzyme kinetics used to describe biochemical reactions that govern lactose metabolism. The developed root locus method can be used to study the steady-state behavior of any type of convergent biological system model based on mass action kinetics. This method provides a solution to the problem of analyzing gene regulatory networks under parameter uncertainties because the root locus method considers the model parameters as variable, rather than fixed. The obtained bistability ranges for the lac operon model parameters have the potential to elucidate the appearance of bistability for E. coli cells in in vivo experiments, and they could also be used to design robust hysteretic switches in synthetic biology.
Collapse
|
12
|
Lomnitz JG, Savageau MA. Strategy revealing phenotypic differences among synthetic oscillator designs. ACS Synth Biol 2014; 3:686-701. [PMID: 25019938 PMCID: PMC4210169 DOI: 10.1021/sb500236e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested.
Collapse
Affiliation(s)
- Jason G. Lomnitz
- Department of Biomedical Engineering and ‡Microbiology
Graduate Group, University of California, Davis, California 95616, United States
| | - Michael A. Savageau
- Department of Biomedical Engineering and ‡Microbiology
Graduate Group, University of California, Davis, California 95616, United States
| |
Collapse
|
13
|
Choudhary K, Oehler S, Narang A. Protein distributions from a stochastic model of the lac operon of E. coli with DNA looping: analytical solution and comparison with experiments. PLoS One 2014; 9:e102580. [PMID: 25055040 PMCID: PMC4108355 DOI: 10.1371/journal.pone.0102580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022] Open
Abstract
Although noisy gene expression is widely accepted, its mechanisms are subjects of debate, stimulated largely by single-molecule experiments. This work is concerned with one such study, in which Choi et al., 2008, obtained real-time data and distributions of Lac permease in E. coli. They observed small and large protein bursts in strains with and without auxiliary operators. They also estimated the size and frequency of these bursts, but these were based on a stochastic model of a constitutive promoter. Here, we formulate and solve a stochastic model accounting for the existence of auxiliary operators and DNA loops. We find that DNA loop formation is so fast that small bursts are averaged out, making it impossible to extract their size and frequency from the data. In contrast, we can extract not only the size and frequency of the large bursts, but also the fraction of proteins derived from them. Finally, the proteins follow not the negative binomial distribution, but a mixture of two distributions, which reflect the existence of proteins derived from small and large bursts.
Collapse
Affiliation(s)
- Krishna Choudhary
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Delhi, India
| | - Stefan Oehler
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Delhi, India
| | - Atul Narang
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Delhi, India
- * E-mail:
| |
Collapse
|
14
|
Vilar JMG, Saiz L. Reliable prediction of complex phenotypes from a modular design in free energy space: an extensive exploration of the lac operon. ACS Synth Biol 2013; 2:576-86. [PMID: 23654358 DOI: 10.1021/sb400013w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The basic methodology for designing, altering, and constructing biological systems is increasingly relying on well-established engineering principles to move forward from trial and error approaches to reliably predicting the system behavior from the properties of the components and their interactions. The inherent complexity of even the simplest biological systems, however, often precludes achieving such predictive power. A prototypical example is the lac operon, one of the best-characterized genetic systems, which still poses serious challenges for understanding the results of combining its parts into novel setups. The reason is the pervasive complex hierarchy of events involved in gene regulation that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. Here, we integrate such complexity into a few-parameter model to accurately predict gene expression from a few simple rules to connect the parts. The model accurately reproduces the observed transcriptional activity of the lac operon over a 10,000-fold range for 21 different operator setups, different repressor concentrations, and tetrameric and dimeric forms of the repressor. Incorporation of the calibrated model into more complex scenarios accurately captures the induction curves for key operator configurations and the temporal evolution of the β-galactosidase activity of cell populations.
Collapse
Affiliation(s)
- Jose M. G. Vilar
- Biophysics Unit (CSIC-UPV/EHU)
and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080
Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, 451 E. Health Sciences Drive,
Davis, California 95616, United States
| |
Collapse
|
15
|
Lomnitz JG, Savageau MA. Phenotypic deconstruction of gene circuitry. CHAOS (WOODBURY, N.Y.) 2013; 23:025108. [PMID: 23822506 PMCID: PMC3695976 DOI: 10.1063/1.4809776] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
It remains a challenge to obtain a global perspective on the behavioral repertoire of complex nonlinear gene circuits. In this paper, we describe a method for deconstructing complex systems into nonlinear sub-systems, based on mathematically defined phenotypes, which are then represented within a system design space that allows the repertoire of qualitatively distinct phenotypes of the complex system to be identified, enumerated, and analyzed. This method efficiently characterizes large regions of system design space and quickly generates alternative hypotheses for experimental testing. We describe the motivation and strategy in general terms, illustrate its use with a detailed example involving a two-gene circuit with a rich repertoire of dynamic behavior, and discuss experimental means of navigating the system design space.
Collapse
Affiliation(s)
- Jason G Lomnitz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | |
Collapse
|
16
|
Michel D. Kinetic approaches to lactose operon induction and bimodality. J Theor Biol 2013; 325:62-75. [PMID: 23454080 DOI: 10.1016/j.jtbi.2013.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 11/25/2022]
Abstract
The quasi-equilibrium approximation is acceptable when molecular interactions are fast enough compared to circuit dynamics, but is no longer allowed when cellular activities are governed by rare events. A typical example is the lactose operon (lac), one of the most famous paradigms of transcription regulation, for which several theories still coexist to describe its behaviors. The lac system is generally analyzed by using equilibrium constants, contradicting single-event hypotheses long suggested by Novick and Weiner (1957). Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. USA 43, 553-566) and recently refined in the study of (Choi et al., 2008. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322, 442-446). In the present report, a lac repressor (LacI)-mediated DNA immunoprecipitation experiment reveals that the natural LacI-lac DNA complex built in vivo is extremely tight and long-lived compared to the time scale of lac expression dynamics, which could functionally disconnect the abortive expression bursts and forbid using the standard modes of lac bistability. As alternatives, purely kinetic mechanisms are examined for their capacity to restrict induction through: (i) widely scattered derepression related to the arrival time variance of a predominantly backward asymmetric random walk and (ii) an induction threshold arising in a single window of derepression without recourse to nonlinear multimeric binding and Hill functions. Considering the complete disengagement of the lac repressor from the lac promoter as the probabilistic consequence of a transient stepwise mechanism, is sufficient to explain the sigmoidal lac responses as functions of time and of inducer concentration. This sigmoidal shape can be misleadingly interpreted as a phenomenon of equilibrium cooperativity classically used to explain bistability, but which has been reported to be weak in this system.
Collapse
Affiliation(s)
- Denis Michel
- Universite de Rennes1-IRSET, Campus de Beaulieu Bat. 13, 35042 Rennes Cedex, France.
| |
Collapse
|
17
|
Earnest TM, Roberts E, Assaf M, Dahmen K, Luthey-Schulten Z. DNA looping increases the range of bistability in a stochastic model of thelacgenetic switch. Phys Biol 2013; 10:026002. [DOI: 10.1088/1478-3975/10/2/026002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Goodson KA, Wang Z, Haeusler AR, Kahn JD, English DS. LacI-DNA-IPTG loops: equilibria among conformations by single-molecule FRET. J Phys Chem B 2013; 117:4713-22. [PMID: 23406418 DOI: 10.1021/jp308930c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The E. coli Lac repressor (LacI) tetramer binds simultaneously to a promoter-proximal DNA binding site (operator) and an auxiliary operator, resulting in a DNA loop, which increases repression efficiency. Induction of the lac operon by allolactose reduces the affinity of LacI for DNA, but induction does not completely prevent looping in vivo. Our previous work on the conformations of LacI loops used a hyperstable model DNA construct, 9C14, that contains a sequence directed bend flanked by operators. Single-molecule fluorescence resonance energy transfer (SM-FRET) on a dual fluorophore-labeled LacI-9C14 loop showed that it adopts a single, stable, high-FRET V-shaped LacI conformation. Ligand-induced changes in loop geometry can affect loop stability, and the current work assesses loop population distributions for LacI-9C14 complexes containing the synthetic inducer IPTG. SM-FRET confirms that the high-FRET LacI-9C14 loop is only partially destabilized by saturating IPTG. LacI titration experiments and FRET fluctuation analysis suggest that the addition of IPTG induces loop conformational dynamics and re-equilibration between loop population distributions that include a mixture of looped states that do not exhibit high-efficiency FRET. The results show that repression by looping even at saturating IPTG should be considered in models for regulation of the operon. We propose that persistent DNA loops near the operator function biologically to accelerate rerepression upon exhaustion of inducer.
Collapse
Affiliation(s)
- Kathy A Goodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Transcriptional regulation is at the heart of biological functions such as adaptation to a changing environment or to new carbon sources. One of the mechanisms which has been found to modulate transcription, either positively (activation) or negatively (repression), involves the formation of DNA loops. A DNA loop occurs when a protein or a complex of proteins simultaneously binds to two different sites on DNA with looping out of the intervening DNA. This simple mechanism is central to the regulation of several operons in the genome of the bacterium Escherichia coli, like the lac operon, one of the paradigms of genetic regulation. The aim of this review is to gather and discuss concepts and ideas from experimental biology and theoretical physics concerning DNA looping in genetic regulation. We first describe experimental techniques designed to show the formation of a DNA loop. We then present the benefits that can or could be derived from a mechanism involving DNA looping. Some of these are already experimentally proven, but others are theoretical predictions and merit experimental investigation. Then, we try to identify other genetic systems that could be regulated by a DNA looping mechanism in the genome of Escherichia coli. We found many operons that, according to our set of criteria, have a good chance to be regulated with a DNA loop. Finally, we discuss the proposition recently made by both biologists and physicists that this mechanism could also act at the genomic scale and play a crucial role in the spatial organization of genomes.
Collapse
|
20
|
Block DHS, Hussein R, Liang LW, Lim HN. Regulatory consequences of gene translocation in bacteria. Nucleic Acids Res 2012; 40:8979-92. [PMID: 22833608 PMCID: PMC3467084 DOI: 10.1093/nar/gks694] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene translocations play an important role in the plasticity and evolution of bacterial genomes. In this study, we investigated the impact on gene regulation of three genome organizational features that can be altered by translocations: (i) chromosome position; (ii) gene orientation; and (iii) the distance between a target gene and its transcription factor gene (‘target-TF distance’). Specifically, we quantified the effect of these features on constitutive expression, transcription factor binding and/or gene expression noise using a synthetic network in Escherichia coli composed of a transcription factor (LacI repressor) and its target gene (yfp). Here we show that gene regulation is generally robust to changes in chromosome position, gene orientation and target-TF distance. The only demonstrable effect was that chromosome position alters constitutive expression, due to changes in gene copy number and local sequence effects, and that this determines maximum and minimum expression levels. The results were incorporated into a mathematical model which was used to quantitatively predict the responses of a simple gene network to gene translocations; the predictions were confirmed experimentally. In summary, gene translocation can modulate constitutive gene expression levels due to changes in chromosome position but it has minimal impact on other facets of gene regulation.
Collapse
Affiliation(s)
- Dena H S Block
- Department of Integrative Biology, 1005 Valley Life Sciences Building MC 3140, University of California, Berkeley, CA 94720-3140, USA
| | | | | | | |
Collapse
|
21
|
Fernández-Castané A, Caminal G, López-Santín J. Direct measurements of IPTG enable analysis of the induction behavior of E. coli in high cell density cultures. Microb Cell Fact 2012; 11:58. [PMID: 22571410 PMCID: PMC3442970 DOI: 10.1186/1475-2859-11-58] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/03/2012] [Indexed: 01/04/2023] Open
Abstract
Background The E. coli lac operon and its components have been studied for decades, and lac-derived systems are widely used for recombinant protein production. However, lac operon dynamics and induction behavior remain the paradigm of gene regulation. Recently, an HPLC-MS-based method to quantify IPTG in the medium and inside the biomass has been established, and this tool may be useful to uncover the lack of knowledge and allow optimization of biotechnological processes. Results The results obtained from the study of IPTG distribution profiles in fed-batch, high cell density cultures allowed discrimination between two different depletion patterns of an inducer from the medium to the biomass in E. coli-expressing rhamnulose-1-phosphate aldolase (RhuA). Moreover, we could demonstrate that active transport mediates the uptake of this gratuitous inducer. Additionally, we could study the induction behaviors of this expression system by taking into account the biomass concentration at the induction time. Conclusions In the bistable range, partial induction occurred, which led to intermediate levels of RhuA activity. There was a direct relationship between the initial inducer concentrations and the initial inducer transport rate together with the specific activity. A majority of the inducer remains in the medium to reach equilibrium with the intracellular level. The intracellular inducer accumulation was a further evidence of bistability of the lac operon.
Collapse
Affiliation(s)
- Alfred Fernández-Castané
- Departament d'Enginyeria Química, Unitat de Biocatàlisi Aplicada associada al IQAC (CSIC), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
22
|
Kuhlman TE, Cox EC. Gene location and DNA density determine transcription factor distributions in Escherichia coli. Mol Syst Biol 2012; 8:610. [PMID: 22968444 PMCID: PMC3472691 DOI: 10.1038/msb.2012.42] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
The diffusion coefficient of the transcription factor LacI within living Escherichia coli has been measured directly by in vivo tracking to be D = 0.4 μm(2)/s. At this rate, simple models of diffusion lead to the expectation that LacI and other proteins will rapidly homogenize throughout the cell. Here, we test this expectation of spatial homogeneity by single-molecule visualization of LacI molecules non-specifically bound to DNA in fixed cells. Contrary to expectation, we find that the distribution depends on the spatial location of its encoding gene. We demonstrate that the spatial distribution of LacI is also determined by the local state of DNA compaction, and that E. coli can dynamically redistribute proteins by modifying the state of its nucleoid. Finally, we show that LacI inhomogeneity increases the strength with which targets located proximally to the LacI gene are regulated. We propose a model for intranucleoid diffusion that can reconcile these results with previous measurements of LacI diffusion, and we discuss the implications of these findings for gene regulation in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Thomas E Kuhlman
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | | |
Collapse
|
23
|
Galagan J, Lyubetskaya A, Gomes A. ChIP-Seq and the complexity of bacterial transcriptional regulation. Curr Top Microbiol Immunol 2012; 363:43-68. [PMID: 22983621 DOI: 10.1007/82_2012_257] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet, until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing enables mapping of binding sites for TFs in a global and high-throughput fashion. The NIAID funded TB systems biology project http://www.broadinstitute.org/annotation/tbsysbio/home.html aims to map the binding sites for every transcription factor in the genome of Mycobacterium tuberculosis (MTB), the causative agent of human TB. ChIP-Seq data already released through TBDB.org have provided new insight into the mechanisms of TB pathogenesis. But in addition, data from MTB are beginning to challenge many simplifying assumptions associated with gene regulation in all bacteria. In this chapter, we review the global aspects of TF binding in MTB and discuss the implications of these data for our understanding of bacterial gene regulation. We begin by reviewing the canonical model of bacterial transcriptional regulation using the lac operon as the standard paradigm. We then review the use of ChIP-Seq to map the binding sites of DNA-binding proteins and the application of this method to mapping TF binding sites in MTB. Finally, we discuss two aspects of the binding discovered by ChIP-Seq that were unexpected given the canonical model: the substantial binding outside the proximal promoter region and the large number of weak binding sites.
Collapse
Affiliation(s)
- James Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
24
|
Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. J Biotechnol 2011; 157:391-8. [PMID: 22202176 DOI: 10.1016/j.jbiotec.2011.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/10/2011] [Accepted: 12/06/2011] [Indexed: 11/22/2022]
Abstract
The lac-operon and its components have been studied for decades and it is widely used as one of the common systems for recombinant protein production in Escherichia coli. However, the role of the lactose permease, encoded by the lacY gene, when using the gratuitous inducer IPTG for the overexpression of heterologous proteins, is still a matter of discussion. A lactose permease deficient strain was successfully constructed. Growing profiles and acetate production were compared with its parent strain at shake flask scale. Our results show that the lac-permease deficient strain grows slower than the parent in defined medium at shake flask scale, probably due to a downregulation of the phosphotransferase system (PTS). The distributions of IPTG in the medium and inside the cells, as well as recombinant protein production were measured by HPLC-MS and compared in substrate limiting fed-batch fermentations at different inducer concentrations. For the mutant strain, IPTG concentration in the medium depletes slower, reaching at the end of the culture higher concentration values compared with the parent strain. Final intracellular and medium concentrations of IPTG were similar for the mutant strain, while higher intracellular concentrations than in medium were found for the parent strain. Comparison of the distribution profiles of IPTG of both strains in fed-batch fermentations showed that lac-permease is crucially involved in IPTG uptake. In the absence of the transporter, apparently IPTG only diffuses, while in the presence of lac-permease, the inducer accumulates in the cytoplasm at higher rates emphasizing the significant contribution of the permease-mediated transport.
Collapse
|
25
|
Stamatakis M, Zygourakis K. Deterministic and stochastic population-level simulations of an artificial lac operon genetic network. BMC Bioinformatics 2011; 12:301. [PMID: 21791088 PMCID: PMC3181209 DOI: 10.1186/1471-2105-12-301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 07/26/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The lac operon genetic switch is considered as a paradigm of genetic regulation. This system has a positive feedback loop due to the LacY permease boosting its own production by the facilitated transport of inducer into the cell and the subsequent de-repression of the lac operon genes. Previously, we have investigated the effect of stochasticity in an artificial lac operon network at the single cell level by comparing corresponding deterministic and stochastic kinetic models. RESULTS This work focuses on the dynamics of cell populations by incorporating the above kinetic scheme into two Monte Carlo (MC) simulation frameworks. The first MC framework assumes stochastic reaction occurrence, accounts for stochastic DNA duplication, division and partitioning and tracks all daughter cells to obtain the statistics of the entire cell population. In order to better understand how stochastic effects shape cell population distributions, we develop a second framework that assumes deterministic reaction dynamics. By comparing the predictions of the two frameworks, we conclude that stochasticity can create or destroy bimodality, and may enhance phenotypic heterogeneity. CONCLUSIONS Our results show how various sources of stochasticity act in synergy with the positive feedback architecture, thereby shaping the behavior at the cell population level. Further, the insights obtained from the present study allow us to construct simpler and less computationally intensive models that can closely approximate the dynamics of heterogeneous cell populations.
Collapse
Affiliation(s)
- Michail Stamatakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Kyriacos Zygourakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
26
|
Design of the lac gene circuit revisited. Math Biosci 2011; 231:19-38. [PMID: 21414326 DOI: 10.1016/j.mbs.2011.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 01/17/2023]
Abstract
The lactose (lac) operon of Escherichia coli serves as the paradigm for gene regulation, not only for bacteria, but also for all biological systems from simple phage to humans. The details of the systems may differ, but the key conceptual framework remains, and the original system continues to reveal deeper insights with continued experimental and theoretical study. Nearly as long lasting in impact as the pivotal work of Jacob and Monod is the classic experiment of Novick and Weiner in which they demonstrated all-or-none gene expression in response to an artificial inducer. These results are often cited in claims that normal gene expression is in fact a discontinuous bistable phenomenon. In this paper, I review several levels of analysis of the lac system and introduce another perspective based on the construction of the system design space. These represent variations on a theme, based on a simply stated design principle, that captures the key qualitative features of the system in a largely mechanism-independent fashion. Moreover, this principle can be readily interpreted in terms of specific mechanisms to make predictions regarding monostable vs. bistable behavior. The regions of design space representing bifurcations are compared with the corresponding regions identified through bifurcation analysis. I present evidence based on biological considerations as well as modeling and analysis to suggest that induction of the lac system in its natural setting is a monostable continuously graded phenomenon. Nevertheless, it must be acknowledged that the lac stability question remains unsettled, and it undoubtedly will remain so until there are definitive experimental results.
Collapse
|
27
|
Roberts E, Magis A, Ortiz JO, Baumeister W, Luthey-Schulten Z. Noise contributions in an inducible genetic switch: a whole-cell simulation study. PLoS Comput Biol 2011; 7:e1002010. [PMID: 21423716 PMCID: PMC3053318 DOI: 10.1371/journal.pcbi.1002010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/03/2011] [Indexed: 11/18/2022] Open
Abstract
Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The simulations also provide mRNA–protein probability landscapes, which demonstrate that switching is the result of crossing both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger internal inducer concentration, leading to a significant decrease in the lifetime of the repressor–operator complex and an increase in the frequency of transcriptional bursts. Expressing genes in a bacterial cell is noisy and random. A colony of bacteria grown from a single cell can show remarkable differences in the copy number per cell of a given protein after only a few generations. In this work we use computer simulations to study the variation in how individual cells in a population express a set of genes in response to an environmental signal. The modeled system is the lac genetic switch that Escherichia coli uses to find, collect, and process lactose sugar from the environment. The noise inherent in the genetic circuit controlling the cell's response determines how similar the cells are to each other and we study how the different components of the circuit affect this noise. Furthermore, an estimated 30–50% of the cell volume is taken up by a wide variety of large biomolecules. To study the response of the circuit caused by crowding, we simulate the circuit inside a three-dimensional model of an E. coli cell built using data from cryoelectron tomography reconstructions of a single cell and proteomics data. Correctly including random effects of molecular crowding will be critical to developing fully dynamic models of living cells.
Collapse
Affiliation(s)
- Elijah Roberts
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | | | | | | | | |
Collapse
|
28
|
Abstract
Regulatory DNAs serve as templates to bring weakly interacting transcription factors into close proximity so they can work synergistically to switch genes on and off in time and space. Most of these regulatory DNAs are enhancers that can work over long distances--a million base pairs or more in mammals--to control gene expression. Critical enhancers are sometimes even found within the introns of neighboring genes. This review summarizes well-defined examples of enhancers controlling key processes in animal development. Potential mechanisms of transcriptional synergy are discussed with regard to enhancer structure and contemporary ChIP-sequencing assays, whereby just a small fraction of the observed binding sites represent bona fide regulatory DNAs. Finally, there is a discussion of how enhancer evolution can produce novelty in animal morphology and of the prospects for reconstructing transitions in animal evolution by introducing derived enhancers in basal ancestors.
Collapse
Affiliation(s)
- Mike Levine
- Department of Molecular and Cell Biology, University of California-Berkeley, CA 94720, USA.
| |
Collapse
|
29
|
Garcia HG, Sanchez A, Kuhlman T, Kondev J, Phillips R. Transcription by the numbers redux: experiments and calculations that surprise. Trends Cell Biol 2010; 20:723-33. [PMID: 20801657 DOI: 10.1016/j.tcb.2010.07.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 01/13/2023]
Abstract
The study of transcription has witnessed an explosion of quantitative effort both experimentally and theoretically. In this article we highlight some of the exciting recent experimental efforts in the study of transcription with an eye to the demands that such experiments put on theoretical models of transcription. From a modeling perspective, we focus on two broad classes of models: the so-called thermodynamic models that use statistical mechanics to reckon the level of gene expression as probabilities of promoter occupancy, and rate-equation treatments that focus on the temporal evolution of the activity of a given promoter and that make it possible to compute the distributions of messenger RNA and proteins. We consider several appealing case studies to illustrate how quantitative models have been used to dissect transcriptional regulation.
Collapse
Affiliation(s)
- Hernan G Garcia
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
30
|
Control and signal processing by transcriptional interference. Mol Syst Biol 2009; 5:300. [PMID: 19690569 PMCID: PMC2736658 DOI: 10.1038/msb.2009.61] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 07/21/2009] [Indexed: 01/11/2023] Open
Abstract
A transcriptional activator can suppress gene expression by interfering with transcription initiated by another activator. Transcriptional interference has been increasingly recognized as a regulatory mechanism of gene expression. The signals received by the two antagonistically acting activators are combined by the polymerase trafficking along the DNA. We have designed a dual-control genetic system in yeast to explore this antagonism systematically. Antagonism by an upstream activator bears the hallmarks of competitive inhibition, whereas a downstream activator inhibits gene expression non-competitively. When gene expression is induced weakly, the antagonistic activator can have a positive effect and can even trigger paradoxical activation. Equilibrium and non-equilibrium models of transcription shed light on the mechanism by which interference converts signals, and reveals that self-antagonism of activators imitates the behavior of feed-forward loops. Indeed, a synthetic circuit generates a bell-shaped response, so that the induction of expression is limited to a narrow range of the input signal. The identification of conserved regulatory principles of interference will help to predict the transcriptional response of genes in their genomic context.
Collapse
|
31
|
Abstract
Negative feedback regulation, mediated through repressor binding site O3, which overlaps the lacI gene, could explain the robustness of the weak expression of Lac repressor. Significant autorepression of Lac repressor has never been ruled out. In the work presented here, the degree of autoregulation of Lac repressor was determined. It is negligible.
Collapse
|
32
|
Swint-Kruse L, Matthews KS. Allostery in the LacI/GalR family: variations on a theme. Curr Opin Microbiol 2009; 12:129-37. [PMID: 19269243 DOI: 10.1016/j.mib.2009.01.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/22/2009] [Accepted: 01/26/2009] [Indexed: 12/21/2022]
Abstract
The lactose repressor protein (LacI) was among the very first genetic regulatory proteins discovered, and more than 1000 members of the bacterial LacI/GalR family are now identified. LacI has been the prototype for understanding how transcription is controlled using small metabolites to modulate protein association with specific DNA sites. This understanding has been greatly expanded by the study of other LacI/GalR homologues. A general picture emerges in which the conserved fold provides a scaffold for multiple types of interactions - including oligomerization, small molecule binding, and protein-protein binding - that in turn influence target DNA binding and thereby regulate mRNA production. Although many different functions have evolved from this basic scaffold, each homologue retains functional flexibility: For the same protein, different small molecules can have disparate impact on DNA binding and hence transcriptional outcome. In turn, binding to alternative DNA sequences may impact the degree of allosteric response. Thus, this family exhibits a symphony of variations by which transcriptional control is achieved.
Collapse
Affiliation(s)
- Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, 66160, United States.
| | | |
Collapse
|
33
|
The diffusive influx and carrier efflux have a strong effect on the bistability of the lac operon in Escherichia coli. J Theor Biol 2009; 256:14-28. [DOI: 10.1016/j.jtbi.2008.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 02/05/2023]
|
34
|
Narang A, Pilyugin SS. Bistability of the lac operon during growth of Escherichia coli on lactose and lactose+glucose. Bull Math Biol 2008; 70:1032-64. [PMID: 18246403 DOI: 10.1007/s11538-007-9289-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 10/26/2007] [Indexed: 11/29/2022]
Abstract
The lac operon of Escherichia coli can exhibit bistability. Early studies showed that bistability occurs during growth on TMG/succinate and lactose+glucose, but not during growth on lactose. More recently, studies with lacGFP-transfected cells show bistability during growth on TMG/succinate, but not during growth on lactose and lactose+glucose. In the literature, these results are invariably attributed to variations in the destabilizing effect of the positive feedback generated by induction. Specifically, during growth on TMG/succinate, lac induction generates strong positive feedback because the permease stimulates the accumulation of intracellular TMG, which in turn, promotes the synthesis of even more permease. This positive feedback is attenuated during growth on lactose because hydrolysis of intracellular lactose by beta-galactosidase suppresses the stimulatory effect of the permease. It is attenuated even more during growth on lactose + glucose because glucose inhibits the uptake of lactose. But it is clear that the stabilizing effect of dilution also changes dramatically as a function of the medium composition. For instance, during growth on TMG/succinate, the dilution rate of lac permease is proportional to its activity, e, because the specific growth rate is independent of e (it is completely determined by the concentration of succinate). However, during growth on lactose, the dilution rate of the permease is proportional to e2 because the specific growth rate is proportional to the specific lactose uptake rate, which in turn, proportional to e. We show that: (a) This dependence on e2 creates such a strong stabilizing effect that bistability is virtually impossible during growth on lactose, even in the face of the intense positive feedback generated by induction. (b) This stabilizing effect is weakened during growth on lactose+glucose because the specific growth rate on glucose is independent of e, so that the dilution rate once again contains a term that is proportional to e. These results imply that the lac operon is much more prone to bistability if the medium contains carbon sources that cannot be metabolized by the lac enzymes, e.g., succinate during growth on TMG/succinate and glucose during growth on lactose+glucose. We discuss the experimental data in the light of these results.
Collapse
Affiliation(s)
- Atul Narang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611-6005, USA.
| | | |
Collapse
|
35
|
Saiz L, Vilar JMG. Ab initio thermodynamic modeling of distal multisite transcription regulation. Nucleic Acids Res 2007; 36:726-31. [PMID: 18056082 PMCID: PMC2241893 DOI: 10.1093/nar/gkm1034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription regulation typically involves the binding of proteins over long distances on multiple DNA sites that are brought close to each other by the formation of DNA loops. The inherent complexity of assembling regulatory complexes on looped DNA challenges the understanding of even the simplest genetic systems, including the prototypical lac operon. Here we implement a scalable approach based on thermodynamic molecular properties to model ab initio systems regulated through multiple DNA sites with looping. We show that this approach applied to the lac operon accurately predicts the system behavior for a wide range of cellular conditions, which include the transcription rate over five orders of magnitude as a function of the repressor concentration for wild type and all seven combinations of deletions of three operators, as well as the observed induction curves for cells with and without active catabolite activator protein. Our results provide new insights into the detailed functioning of the lac operon and reveal an efficient avenue to incorporate the required underlying molecular complexity into fully predictive models of gene regulation.
Collapse
Affiliation(s)
- Leonor Saiz
- Integrative Biological Modeling Laboratory, Computational Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | |
Collapse
|
36
|
Substitutions at auxiliary operator O3 enhance repression by nitrate-responsive regulator NarL at synthetic lac control regions in Escherichia coli K-12. J Bacteriol 2007; 190:428-33. [PMID: 17965164 DOI: 10.1128/jb.01431-07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed monocopy lac operon control regions in which the operators O1-lac and O3-lac were replaced by NarL and NarP binding sites from the nirB or napF operon control regions. The results support the hypothesis that DNA-bound dimers of phospho-NarL can participate in higher-order cooperative interactions.
Collapse
|
37
|
Narang A. Effect of DNA looping on the induction kinetics of the lac operon. J Theor Biol 2007; 247:695-712. [PMID: 17490688 DOI: 10.1016/j.jtbi.2007.03.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/16/2007] [Accepted: 03/23/2007] [Indexed: 11/28/2022]
Abstract
The induction of the lac operon follows cooperative kinetics. The first mechanistic model of these kinetics is the de facto standard in the modeling literature [Yagil, G., Yagil, E., 1971. On the relation between effector concentration and the rate of induced enzyme synthesis. Biophys. J. 11, 11-17]. Yet, subsequent studies have shown that the model is based on incorrect assumptions. Specifically, the repressor is a tetramer with four (not two) inducer-binding sites, and the operon contains two auxiliary operators (in addition to the main operator). Furthermore, these structural features are crucial for the formation of DNA loops, the key determinants of lac repression and induction. Indeed, the repression is determined almost entirely (>95%) by the looped complexes [Oehler, S., Eismann, E.R., Krämer, H., Müller-Hill, B., 1990. The three operators of the lac operon cooperate in repression. EMBO J. 9(4), 973-979], and the pronounced cooperativity of the induction curve hinges upon the existence of the looped complexes [Oehler, S., Alberti, S., Müller-Hill, B., 2006. Induction of the lac promoter in the absence of DNA loops and the stoichiometry of induction. Nucleic Acids Res. 34(2), 606-612]. Here, we formulate a model of lac induction taking due account of the tetrameric structure of the repressor and the existence of looped complexes. We show that: (1) The kinetics are significantly more cooperative than those predicted by the Yagil and Yagil model. The cooperativity is higher because the formation of looped complexes is easily abolished by repressor-inducer binding. (2) The model provides good fits to the repression data for cells containing wild-type tetrameric or mutant dimeric repressor, as well as the induction curves for 6 different strains of Escherichia coli. It also implies that the ratios of certain looped and non-looped complexes are independent of inducer and repressor levels, a conclusion that can be rigorously tested by gel electrophoresis. (3) Repressor overexpression dramatically increases the cooperativity of the induction curve. This suggests that repressor overexpression can induce bistability in systems, such as growth of E. coli on lactose, that are otherwise monostable.
Collapse
Affiliation(s)
- Atul Narang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611-6005, USA
| |
Collapse
|
38
|
Kuhlman T, Zhang Z, Saier MH, Hwa T. Combinatorial transcriptional control of the lactose operon of Escherichia coli. Proc Natl Acad Sci U S A 2007; 104:6043-8. [PMID: 17376875 PMCID: PMC1851613 DOI: 10.1073/pnas.0606717104] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Indexed: 11/18/2022] Open
Abstract
The goal of systems biology is to understand the behavior of the whole in terms of knowledge of the parts. This is hard to achieve in many cases due to the difficulty of characterizing the many constituents involved in a biological system and their complex web of interactions. The lac promoter of Escherichia coli offers the possibility of confronting "system-level" properties of transcriptional regulation with the known biochemistry of the molecular constituents and their mutual interactions. Such confrontations can reveal previously unknown constituents and interactions, as well as offer insight into how the components work together as a whole. Here we study the combinatorial control of the lac promoter by the regulators Lac repressor (LacR) and cAMP-receptor protein (CRP). A previous in vivo study [Setty Y, Mayo AE, Surette MG, Alon U (2003) Proc Natl Acad Sci USA 100:7702-7707] found gross disagreement between the observed promoter activities and the expected behavior based on the known molecular mechanisms. We repeated the study by identifying and removing several extraneous factors that significantly modulated the expression of the lac promoter. Through quantitative, systematic characterization of promoter activity for a number of key mutants and guided by the thermodynamic model of transcriptional regulation, we were able to account for the combinatorial control of the lac promoter quantitatively, in terms of a cooperative interaction between CRP and LacR-mediated DNA looping. Specifically, our analysis indicates that the sensitivity of the inducer response results from LacR-mediated DNA looping, which is significantly enhanced by CRP.
Collapse
Affiliation(s)
| | - Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0374
| | - Milton H. Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0374
| | - Terence Hwa
- *Center for Theoretical Biological Physics and
| |
Collapse
|
39
|
Lim HN, van Oudenaarden A. A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat Genet 2007; 39:269-75. [PMID: 17220888 DOI: 10.1038/ng1956] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/04/2006] [Indexed: 11/09/2022]
Abstract
In many prokaryotes and eukaryotes, DNA methylation at cis-regulatory sequences determines whether gene expression is on or off. Stable inheritance of these expression states is required in bacterial pathogenesis, cancer and developmental pathways. Here we delineate the factors that control the stability of these states by using the agn43 gene in Escherichia coli as a model system. Systematic disruption of this system shows that a functional switch requires the presence of several, rarely occupied, intermediate states that separate the 'on' and 'off' states. Cells that leave the on and off state enter different intermediate states, where there is a strong bias that drives cells back to their original state. The intermediate states therefore act as buffers that prevent back and forth switching. This mechanism of generating multiple states is an alternative to feedback regulation, and its general principle should be applicable to the analysis of other epigenetic switches and the design of synthetic circuits.
Collapse
Affiliation(s)
- Han N Lim
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
40
|
Narang A, Pilyugin SS. Bacterial gene regulation in diauxic and non-diauxic growth. J Theor Biol 2006; 244:326-48. [PMID: 16989865 DOI: 10.1016/j.jtbi.2006.08.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/24/2006] [Accepted: 08/09/2006] [Indexed: 11/18/2022]
Abstract
When bacteria are grown in a batch culture containing a mixture of two growth-limiting substrates, they exhibit a rich spectrum of substrate consumption patterns including diauxic growth, simultaneous consumption, and bistable growth. In previous work, we showed that a minimal model accounting only for enzyme induction and dilution captures all the substrate consumption patterns [Narang, A., 1998a. The dynamical analogy between microbial growth on mixtures of substrates and population growth of competing species. Biotechnol. Bioeng. 59, 116-121, Narang, A., 2006. Comparitive analysis of some models of gene regulation in mixed-substrate microbial growth, J. Theor. Biol. 242, 489-501]. In this work, we construct the bifurcation diagram of the minimal model, which shows the substrate consumption pattern at any given set of parameter values. The bifurcation diagram explains several general properties of mixed-substrate growth. (1) In almost all the cases of diauxic growth, the "preferred" substrate is the one that, by itself, supports a higher specific growth rate. In the literature, this property is often attributed to the optimality of regulatory mechanisms. Here, we show that the minimal model, which accounts for induction and growth only, displays the property under fairly general conditions. This suggests that the higher growth rate of the preferred substrate is an intrinsic property of the induction and dilution kinetics. It can be explained mechanistically without appealing to optimality principles. (2) The model explains the phenotypes of various mutants containing lesions in the regions encoding for the operator, repressor, and peripheral enzymes. A particularly striking phenotype is the "reversal of the diauxie" in which the wild-type and mutant strains consume the very same two substrates in opposite order. This phenotype is difficult to explain in terms of molecular mechanisms, such as inducer exclusion or CAP activation, but it turns out to be a natural consequence of the model. We show furthermore that the model is robust. The key property of the model, namely, the competitive dynamics of the enzymes, is preserved even if the model is modified to account for various regulatory mechanisms. Finally, the model has important implications for the problem of size regulation in development. It suggests that protein dilution may be the mechanism coupling patterning and growth.
Collapse
Affiliation(s)
- Atul Narang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611-6005, USA.
| | | |
Collapse
|