1
|
Madasu PK, Chandran T. Structural insights into the toxicity of type II ribosome inactivating proteins (RIPs): a molecular dynamics study. J Biomol Struct Dyn 2024:1-12. [PMID: 39466135 DOI: 10.1080/07391102.2024.2419855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/17/2024] [Indexed: 10/29/2024]
Abstract
Ribosome Inactivating Proteins (RIPs) act by irreversibly depurinating the 28S rRNA ricin-sarcin loop (SRL) of the eukaryotic ribosome resulting in protein synthesis inhibition. In general, they consist of two variants: Type I which is single chained (∼30 kDa), and Type II, a more toxic variant which is a Type I N-glycosidase chain covalently linked to a lectin chain. These proteins are believed to play a pivotal role in defence mechanisms. Intriguingly, non-toxic variants of such toxic proteins do exist in nature. To explore their mode of action, in the present study we have selected three toxic (Ricin, Ebulin and HmRIP) as well as two non-toxic (BGSL and SGSL) RIPs and performed molecular docking and molecular dynamic simulations with the SRL loop. This study throws light on the structural stability and plasticity of the toxic and non-toxic RIP complexes. Furthermore, analysis of the active site cavity volume and binding free energy calculations reveal that the SRL, particularly the specific adenine (A4605), is relatively unstable in the case of non-toxic RIPs which is also supported by the free binding energy calculations, and the pocket size analysis indicates the abnormal increase in active site cavity volume of non-toxic RIPs with time. This first-of-its-kind comprehensive study of toxic and non-toxic RIPs gives insights about the mode of action and the dynamic nature of their interaction with the SRL loop. These observations will be helpful in the development of toxoids against RIPs and also in designing novel therapeutic approaches against human diseases.
Collapse
Affiliation(s)
- Pavan K Madasu
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Thyageshwar Chandran
- Biomolecular Structure and Dynamics Group, Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
2
|
Linzer JT, Aminov E, Abdullah AS, Kirkup CE, Diaz Ventura RI, Bijoor VR, Jung J, Huang S, Tse CG, Álvarez Toucet E, Onghai HP, Ghosh AP, Grodzki AC, Haines ER, Iyer AS, Khalil MK, Leong AP, Neuhaus MA, Park J, Shahid A, Xie M, Ziembicki JM, Simmerling C, Nagan MC. Accurately Modeling RNA Stem-Loops in an Implicit Solvent Environment. J Chem Inf Model 2024; 64:6092-6104. [PMID: 39002142 DOI: 10.1021/acs.jcim.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Ribonucleic acid (RNA) molecules can adopt a variety of secondary and tertiary structures in solution, with stem-loops being one of the more common motifs. Here, we present a systematic analysis of 15 RNA stem-loop sequences simulated with molecular dynamics simulations in an implicit solvent environment. Analysis of RNA cluster ensembles showed that the stem-loop structures can generally adopt the A-form RNA in the stem region. Loop structures are more sensitive, and experimental structures could only be reproduced with modification of CH···O interactions in the force field, combined with an implicit solvent nonpolar correction to better model base stacking interactions. Accurately modeling RNA with current atomistic physics-based models remains challenging, but the RNA systems studied herein may provide a useful benchmark set for testing other RNA modeling methods in the future.
Collapse
Affiliation(s)
- Jason T Linzer
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ethan Aminov
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Aalim S Abdullah
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Colleen E Kirkup
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Rebeca I Diaz Ventura
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Vinay R Bijoor
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jiyun Jung
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Sophie Huang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chi Gee Tse
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Emily Álvarez Toucet
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Hugo P Onghai
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Arghya P Ghosh
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alex C Grodzki
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Emilee R Haines
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Aditya S Iyer
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Mark K Khalil
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Alexander P Leong
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Michael A Neuhaus
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Joseph Park
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Asir Shahid
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew Xie
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jan M Ziembicki
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Maria C Nagan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Frezza E, Laage D, Duboué-Dijon E. Molecular Origin of Distinct Hydration Dynamics in Double Helical DNA and RNA Sequences. J Phys Chem Lett 2024; 15:4351-4358. [PMID: 38619551 DOI: 10.1021/acs.jpclett.4c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Water molecules are essential to determine the structure of nucleic acids and mediate their interactions with other biomolecules. Here, we characterize the hydration dynamics of analogous DNA and RNA double helices with unprecedented resolution and elucidate the molecular origin of their differences: first, the localization of the slowest hydration water molecules─in the minor groove in DNA, next to phosphates in RNA─and second, the markedly distinct hydration dynamics of the two phosphate oxygen atoms OR and OS in RNA. Using our Extended Jump Model for water reorientation, we assess the relative importance of previously proposed factors, including the local topography, water bridges, and the presence of ions. We show that the slow hydration dynamics at RNA OR sites is not due to bridging water molecules but is caused by both the larger excluded volume and the stronger initial H-bond next to OR, due to the different phosphate orientations in A-form double helical RNA.
Collapse
Affiliation(s)
- Elisa Frezza
- Université Paris Cité, CNRS, CiTCoM, Paris 75006, France
| | - Damien Laage
- PASTEUR, Department of Chemistry, École Normale Supérieure-PSL, Sorbonne Université, CNRS, Paris 75005, France
| | - Elise Duboué-Dijon
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France
| |
Collapse
|
4
|
Imamoto JM, Zauhar RJ, Bruist MF. Sarcin/Ricin Domain RNA Retains Its Structure Better Than A-RNA in Adaptively Biased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:10018-10033. [PMID: 36417896 DOI: 10.1021/acs.jpcb.2c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Less than one in thirty of the RNA sequences transcribed in humans are translated into protein. The noncoding RNA (ncRNA) functions in catalysis, structure, regulation, and more. However, for the most part, these functions are poorly characterized. RNA is modular and described by motifs that include helical A-RNA with canonical Watson-Crick base-pairing as well as structures with only noncanonical base pairs. Understanding the structure and dynamics of motifs will aid in deciphering functions of specific ncRNAs. We present computational studies on a standard sarcin/ricin domain (SRD), citrus bark cracking viroid SRD, as well as A-RNA. We have applied enhanced molecular dynamics techniques that construct an inverse free-energy surface (iFES) determined by collective variables that monitor base-pairing and backbone conformation. Each SRD RNA is flanked on each side by A-RNA, allowing comparison of the behavior of these motifs in the same molecule. The RNA iFESs have single peaks, indicating that the combined motifs should denature as a single cohesive unit, rather than by regional melting. Local root-mean-square deviation (RMSD) analysis and communication propensity (CProp, variance in distances between residue pairs) reveal distinct motif properties. Our analysis indicates that the standard SRD is more stable than the viroid SRD, which is more stable than A-RNA. Base pairs at SRD to A-RNA transitions have limited flexibility. Application of CProp reveals extraordinary stiffness of the SRD, allowing residues on opposite sides of the motif to sense each other's motions.
Collapse
Affiliation(s)
- Jason M Imamoto
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Randy J Zauhar
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| | - Michael F Bruist
- Department of Chemistry and Biochemistry, St. Joseph's University, Philadelphia, Pennsylvania19131, United States
| |
Collapse
|
5
|
Stacking geometry between two sheared Watson-Crick basepairs: Computational chemistry and bioinformatics based prediction. Biochim Biophys Acta Gen Subj 2020; 1864:129600. [PMID: 32179130 DOI: 10.1016/j.bbagen.2020.129600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs. METHODS We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair. RESULTS We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear. CONCLUSIONS The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity. GENERAL SIGNIFICANCE We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.
Collapse
|
6
|
Lledías F, Gutiérrez J, Martínez-Hernández A, García-Mendoza A, Sosa E, Hernández-Bermúdez F, Dinkova TD, Reyes S, Cassab GI, Nieto-Sotelo J. Mayahuelin, a Type I Ribosome Inactivating Protein: Characterization, Evolution, and Utilization in Phylogenetic Analyses of Agave. FRONTIERS IN PLANT SCIENCE 2020; 11:573. [PMID: 32528490 PMCID: PMC7266874 DOI: 10.3389/fpls.2020.00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/17/2020] [Indexed: 05/12/2023]
Abstract
Agaves resist extreme heat and drought. In A. tequilana var. azul, the central spike of the rosette -containing the shoot apical meristem and folded leaves in early stages of development- is remarkably heat tolerant. We found that the most abundant protein in this organ is a 27 kDa protein. This protein was named mayahuelin to honor Mayáhuel, the agave goddess in the Aztec pantheon. LC-MS/MS analyses identified mayahuelin as a type I RIP (Ribosome Inactivating Protein). In addition to the spike, mayahuelin was expressed in the peduncle and in seeds, whereas in mature leaves, anthers, filaments, pistils, and tepals was absent. Anti-mayahuelin antibody raised against the A. tequilana var. azul protein revealed strong signals in spike leaves of A. angustifolia, A. bracteosa, A. rhodacantha, and A. vilmoriniana, and moderate signals in A. isthmensis, A. kerchovei, A. striata ssp. falcata, and A. titanota, indicating conservation at the protein level throughout the Agave genus. As in charybdin, a type I RIP characterized in Drimia maritima, mayahuelin from A. tequilana var. azul contains a natural aa substitution (Y76D) in one out of four aa comprising the active site. The RIP gene family in A. tequilana var. azul consists of at least 12 genes and Mayahuelin is the only member encoding active site substitutions. Unlike canonical plant RIPs, expression of Mayahuelin gene in S. cerevisiae did not compromise growth. The inhibitory activity of the purified protein on a wheat germ in vitro translation system was moderate. Mayahuelin orthologs from other Agave species displayed one of six alleles at Y76: (Y/Y, D/D, S/S, Y/D, Y/S, D/S) and proved to be useful markers for phylogenetic analysis. Homozygous alleles were more frequent in wild accessions whereas heterozygous alleles were more frequent in cultivars. Mayahuelin sequences from different wild populations of A. angustifolia and A. rhodacantha allowed the identification of accessions closely related to azul, manso, sigüín, mano larga, and bermejo varieties of A. tequilana and var. espadín of A. angustifolia. Four A. rhodacantha accessions and A. angustifolia var. espadín were closer relatives of A. tequilana var. azul than A. angustifolia wild accessions or other A. tequilana varieties.
Collapse
Affiliation(s)
- Fernando Lledías
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jesús Gutiérrez
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Abisaí García-Mendoza
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eric Sosa
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe Hernández-Bermúdez
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tzvetanka D. Dinkova
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sandi Reyes
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gladys I. Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jorge Nieto-Sotelo
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Jorge Nieto-Sotelo,
| |
Collapse
|
7
|
Freidhoff P, Bruist MF. In silico survey of the central conserved regions in viroids of the Pospiviroidae family for conserved asymmetric loop structures. RNA (NEW YORK, N.Y.) 2019; 25:985-1003. [PMID: 31123078 PMCID: PMC6633198 DOI: 10.1261/rna.070409.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/14/2019] [Indexed: 06/01/2023]
Abstract
Viroids are the smallest replicative pathogens, consisting of RNA circles (∼300 nucleotides) that require host machinery to replicate. Structural RNA elements recruit these host factors. Currently, many of these structural elements and the nature of their interactions are unknown. All Pospiviroidae have homology in the central conserved region (CCR). The CCR of potato spindle tuber viroid (PSTVd) contains a sarcin/ricin domain (SRD), the only viroid structural element with an unequivocal replication role. We assumed that every member of this family uses this region to recruit host factors, and that each CCR has an SRD-like asymmetric loop within it. Potential SRD or SRD-like motifs were sought in the CCR of each Pospiviroidae member as follows. Motif location in each CCR was predicted with MUSCLE alignment and Vienna RNAfold. Viroid-specific models of SRD-like motifs were built by superimposing noncanonical base pairs and nucleotides on a model of an SRD. The RNA geometry search engine FR3D was then used to find nucleotide groups close to the geometry suggested by this superimposition. Atomic resolution structures were assembled using the molecular visualization program Chimera, and the stability of each motif was assessed with molecular dynamics (MD). Some models required a protonated cytosine. To be stable within a cell, the pKa of that cytosine must be shifted up. Constant pH-replica exchange MD analysis showed such a shift in the proposed structures. These data show that every Pospiviroidae member could form a motif that resembles an SRD in its CCR, and imply there could be undiscovered mimics of other RNA domains.
Collapse
Affiliation(s)
- Paul Freidhoff
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, USA
| | - Michael F Bruist
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
8
|
Saddala MS, Adi PJ. Discovery of small molecules through pharmacophore modeling, docking and molecular dynamics simulation against Plasmodium vivax Vivapain-3 (VP-3). Heliyon 2018; 4:e00612. [PMID: 29756074 PMCID: PMC5944417 DOI: 10.1016/j.heliyon.2018.e00612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/29/2018] [Accepted: 04/18/2018] [Indexed: 11/24/2022] Open
Abstract
Vivapain-3(VP-3) protein is a family of cysteine rich proteases of malaria parasite is extensively reported to participate in a range of wide cellular processes including survival. VP-3 of plasmodium recognized as an attractive drug target in vector-borne diseases like malaria. In the present study we robust a homology model of VP-3 protein and generated the pharmacophore based models adapted to screen the best drug like compounds from PubChem database. Our results finds the fourteen best lead molecules were mapped with core pharmacophore features of VP-3 and top hits were further evaluated by molecular dynamics simulation and docking studies. Based on the molecular dynamics simulation and docking results and binding vicinity of ligand molecules, top five i.e., CID 74427945, CID 74427946, CID 360883, CID193721 and CID 51416859 showed the best docking scores with good molecular interactions against VP-3. Furthermore in silico ADMET and in vitro assays clearly exhibited that out of five three CID74427946, CID74427945 and CID360883 ligand molecules showed the best promising inhibition against VP-3. The present study believed to provide significant information of potential ligand inhibitors against VP-3 to design and develop the next generation malaria therapeutics through computational approach.
Collapse
Affiliation(s)
- Madhu Sudhana Saddala
- Centre for Agricultural Bioinformatics, ICAR-IASRI, New Delhi, India
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
10
|
Zgarbová M, Jurečka P, Banáš P, Havrila M, Šponer J, Otyepka M. Noncanonical α/γ Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. J Phys Chem B 2017; 121:2420-2433. [PMID: 28290207 DOI: 10.1021/acs.jpcb.7b00262] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sugar-phosphate backbone of RNA can exist in diverse rotameric substates, giving RNA molecules enormous conformational variability. The most frequent noncanonical backbone conformation in RNA is α/γ = t/t, which is derived from the canonical backbone by a crankshaft motion and largely preserves the standard geometry of the RNA duplex. A similar conformation also exists in DNA, where it has been extensively studied and shown to be involved in DNA-protein interactions. However, the function of the α/γ = t/t conformation in RNA is poorly understood. Here, we present molecular dynamics simulations of several prototypical RNA structures obtained from X-ray and NMR experiments, including canonical and mismatched RNA duplexes, UUCG and GAGA tetraloops, Loop E, the sarcin-ricin loop, a parallel guanine quadruplex, and a viral pseudoknot. The stability of various noncanonical α/γ backbone conformations was analyzed with two AMBER force fields, ff99bsc0χOL3 and ff99bsc0χOL3 with the recent εζOL1 and βOL1 corrections for DNA. Although some α/γ substates were stable with seemingly well-described equilibria, many were unstable in our simulations. Notably, the most frequent noncanonical conformer α/γ = t/t was unstable in both tested force fields. Possible reasons for this instability are discussed. Our work reveals a potentially important artifact in RNA force fields and highlights a need for further force field refinement.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic.,Institute of Biophysics, Academy of Sciences of the Czech Republic , Královopolská 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
11
|
Parlea LG, Sweeney BA, Hosseini-Asanjan M, Zirbel CL, Leontis NB. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs. Methods 2016; 103:99-119. [PMID: 27125735 DOI: 10.1016/j.ymeth.2016.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/30/2022] Open
Abstract
RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs.
Collapse
Affiliation(s)
- Lorena G Parlea
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Blake A Sweeney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Neocles B Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
12
|
Pinamonti G, Bottaro S, Micheletti C, Bussi G. Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments. Nucleic Acids Res 2015; 43:7260-9. [PMID: 26187990 PMCID: PMC4551938 DOI: 10.1093/nar/gkv708] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/30/2015] [Indexed: 11/23/2022] Open
Abstract
Elastic network models (ENMs) are valuable and efficient tools for characterizing the collective internal dynamics of proteins based on the knowledge of their native structures. The increasing evidence that the biological functionality of RNAs is often linked to their innate internal motions poses the question of whether ENM approaches can be successfully extended to this class of biomolecules. This issue is tackled here by considering various families of elastic networks of increasing complexity applied to a representative set of RNAs. The fluctuations predicted by the alternative ENMs are stringently validated by comparison against extensive molecular dynamics simulations and SHAPE experiments. We find that simulations and experimental data are systematically best reproduced by either an all-atom or a three-beads-per-nucleotide representation (sugar-base-phosphate), with the latter arguably providing the best balance of accuracy and computational complexity.
Collapse
Affiliation(s)
- Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea I-34136 Trieste, Italy
| | - Sandro Bottaro
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea I-34136 Trieste, Italy
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea I-34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 265, Via Bonomea I-34136 Trieste, Italy
| |
Collapse
|
13
|
Osborn MF, White JD, Haley MM, DeRose VJ. Platinum-RNA modifications following drug treatment in S. cerevisiae identified by click chemistry and enzymatic mapping. ACS Chem Biol 2014; 9:2404-11. [PMID: 25055168 PMCID: PMC4201330 DOI: 10.1021/cb500395z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
With
the importance of RNA-based regulatory pathways, the potential
for targeting noncoding and coding RNAs by small molecule therapeutics
is of great interest. Platinum(II) complexes including cisplatin (cis-diamminedichloroplatinum(II)) are widely prescribed
anticancer compounds that form stable adducts on nucleic acids. In
tumors, DNA damage from Pt(II) initiates apoptotic signaling, but
this activity is not necessary for cytotoxicity (e.g., Yu et al., 2008), suggesting accumulation and consequences
of Pt(II) lesions on non-DNA targets. We previously reported an azide-functionalized
compound, picazoplatin, designed for post-treatment click labeling
that enables detection of Pt complexes (White et al., 2013). Here, we report in-gel fluorescent detection of Pt-bound
rRNA and tRNA extracted from picazoplatin-treated S. cerevisiae and labeled using Cu-free click chemistry. These data provide the
first evidence that cellular tRNA is a platinum drug substrate. We
assess Pt(II) binding sites within rRNA from cisplatin-treated S. cerevisiae, in regions where damage is linked to significant
downstream consequences including the sarcin-ricin loop (SRL) Helix
95. Pt-RNA adducts occur on the nucleotide substrates of ribosome-inactivating
proteins, as well as on the bulged-G motif critical for elongation
factor recognition of the loop. At therapeutically relevant concentrations,
Pt(II) also binds robustly within conserved cation-binding pockets
in Domains V and VI rRNA at the peptidyl transferase center. Taken
together, these results demonstrate a convenient click chemistry methodology
that can be applied to identify other metal or covalent modification-based
drug targets and suggest a ribotoxic mechanism for cisplatin cytotoxicity.
Collapse
Affiliation(s)
- Maire F. Osborn
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Jonathan D. White
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Michael M. Haley
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Victoria J. DeRose
- Department of Chemistry and
Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
14
|
Blanchet MF, St-Onge K, Lisi V, Robitaille J, Hamel S, Major F. Computational identification of RNA functional determinants by three-dimensional quantitative structure-activity relationships. Nucleic Acids Res 2014; 42:11261-71. [PMID: 25200082 PMCID: PMC4176186 DOI: 10.1093/nar/gku816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anti-infection drugs target vital functions of infectious agents, including their ribosome and other essential non-coding RNAs. One of the reasons infectious agents become resistant to drugs is due to mutations that eliminate drug-binding affinity while maintaining vital elements. Identifying these elements is based on the determination of viable and lethal mutants and associated structures. However, determining the structure of enough mutants at high resolution is not always possible. Here, we introduce a new computational method, MC-3DQSAR, to determine the vital elements of target RNA structure from mutagenesis and available high-resolution data. We applied the method to further characterize the structural determinants of the bacterial 23S ribosomal RNA sarcin–ricin loop (SRL), as well as those of the lead-activated and hammerhead ribozymes. The method was accurate in confirming experimentally determined essential structural elements and predicting the viability of new SRL variants, which were either observed in bacteria or validated in bacterial growth assays. Our results indicate that MC-3DQSAR could be used systematically to evaluate the drug-target potentials of any RNA sites using current high-resolution structural data.
Collapse
Affiliation(s)
- Marc-Frédérick Blanchet
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Karine St-Onge
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Véronique Lisi
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Julie Robitaille
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Sylvie Hamel
- Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
15
|
Kruse H, Havrila M, Šponer J. QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin–Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches. J Chem Theory Comput 2014; 10:2615-29. [DOI: 10.1021/ct500183w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Holger Kruse
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| | - Marek Havrila
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiřı́ Šponer
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
16
|
A novel implicit solvent model for simulating the molecular dynamics of RNA. Biophys J 2014; 105:1248-57. [PMID: 24010668 DOI: 10.1016/j.bpj.2013.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/21/2013] [Accepted: 07/23/2013] [Indexed: 11/24/2022] Open
Abstract
Although molecular dynamics simulations can be accelerated by more than an order of magnitude by implicitly describing the influence of the solvent with a continuum model, most currently available implicit solvent simulations cannot robustly simulate the structure and dynamics of nucleic acids. The difficulties become exacerbated especially for RNAs, suggesting the presence of serious physical flaws in the prior continuum models for the influence of the solvent and counter ions on the nucleic acids. We present a novel, to our knowledge, implicit solvent model for simulating nucleic acids by combining the Langevin-Debye model and the Poisson-Boltzmann equation to provide a better estimate of the electrostatic screening of both the water and counter ions. Tests of the model involve comparisons of implicit and explicit solvent simulations for three RNA targets with 20, 29, and 75 nucleotides. The model provides reasonable agreement with explicit solvent simulations, and directions for future improvement are noted.
Collapse
|
17
|
Galindo‐Murillo R, Bergonzo C, Cheatham TE. Molecular Modeling of Nucleic Acid Structure: Setup and Analysis. ACTA ACUST UNITED AC 2014; 56:7.10.1-21. [DOI: 10.1002/0471142700.nc0710s56] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Christina Bergonzo
- Department of Medicinal Chemistry, University of Utah Salt Lake City Utah
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, University of Utah Salt Lake City Utah
| |
Collapse
|
18
|
Havrila M, Réblová K, Zirbel CL, Leontis NB, Šponer J. Isosteric and nonisosteric base pairs in RNA motifs: molecular dynamics and bioinformatics study of the sarcin-ricin internal loop. J Phys Chem B 2013; 117:14302-19. [PMID: 24144333 PMCID: PMC3946555 DOI: 10.1021/jp408530w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The sarcin-ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, that is, in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of the SR motif. A SHAPE probing experiment was also performed to confirm the fidelity of the MD simulations. We identified 57 instances of the SR motif in a nonredundant subset of the RNA X-ray structure database and analyzed their base pairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large rRNA alignments to determine the frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with a highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Nonisosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. The MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that the inability to form stable cWW geometry is an important factor in the case of the first base pair of the flexible region of the SR motif. A comparison of structural, bioinformatics, SHAPE probing, and MD simulation data reveals that explicit solvent MD simulations neatly reflect the viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions.
Collapse
Affiliation(s)
- Marek Havrila
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Kamila Réblová
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Craig L. Zirbel
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
19
|
Halder S, Bhattacharyya D. RNA structure and dynamics: a base pairing perspective. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:264-83. [PMID: 23891726 DOI: 10.1016/j.pbiomolbio.2013.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 12/12/2022]
Abstract
RNA is now known to possess various structural, regulatory and enzymatic functions for survival of cellular organisms. Functional RNA structures are generally created by three-dimensional organization of small structural motifs, formed by base pairing between self-complementary sequences from different parts of the RNA chain. In addition to the canonical Watson-Crick or wobble base pairs, several non-canonical base pairs are found to be crucial to the structural organization of RNA molecules. They appear within different structural motifs and are found to stabilize the molecule through long-range intra-molecular interactions between basic structural motifs like double helices and loops. These base pairs also impart functional variation to the minor groove of A-form RNA helices, thus forming anchoring site for metabolites and ligands. Non-canonical base pairs are formed by edge-to-edge hydrogen bonding interactions between the bases. A large number of theoretical studies have been done to detect and analyze these non-canonical base pairs within crystal or NMR derived structures of different functional RNA. Theoretical studies of these isolated base pairs using ab initio quantum chemical methods as well as molecular dynamics simulations of larger fragments have also established that many of these non-canonical base pairs are as stable as the canonical Watson-Crick base pairs. This review focuses on the various structural aspects of non-canonical base pairs in the organization of RNA molecules and the possible applications of these base pairs in predicting RNA structures with more accuracy.
Collapse
Affiliation(s)
- Sukanya Halder
- Biophysics division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | | |
Collapse
|
20
|
Kührová P, Banáš P, Best RB, Šponer J, Otyepka M. Computer Folding of RNA Tetraloops? Are We There Yet? J Chem Theory Comput 2013; 9:2115-25. [DOI: 10.1021/ct301086z] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies
and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies
and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| | - Robert B. Best
- Laboratory of Chemical Physics,
National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520,
United States
| | - Jiří Šponer
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
- CEITEC − Central European
Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies
and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska
135, 612 65 Brno, Czech Republic
| |
Collapse
|
21
|
Banáš P, Sklenovský P, Wedekind JE, Šponer J, Otyepka M. Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study. J Phys Chem B 2012; 116:12721-34. [PMID: 22998634 PMCID: PMC3505677 DOI: 10.1021/jp309230v] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Riboswitches often occur in the 5'-untranslated regions of bacterial mRNA where they regulate gene expression. The preQ(1) riboswitch controls the biosynthesis of a hypermodified nucleoside queuosine in response to binding the queuosine metabolic intermediate. Structures of the ligand-bound and ligand-free states of the preQ(1) riboswitch from Thermoanaerobacter tengcongensis were determined recently by X-ray crystallography. We used multiple, microsecond-long molecular dynamics simulations (29 μs in total) to characterize the structural dynamics of preQ(1) riboswitches in both states. We observed different stabilities of the stem in the bound and free states, resulting in different accessibilities of the ribosome-binding site. These differences are related to different stacking interactions between nucleotides of the stem and the associated loop, which itself adopts different conformations in the bound and free states. We suggest that the loop not only serves to bind preQ(1) but also transmits information about ligand binding from the ligand-binding pocket to the stem, which has implications for mRNA accessibility to the ribosome. We explain functional results obscured by a high salt crystallization medium and help to refine regions of disordered electron density, which demonstrates the predictive power of our approach. Besides investigating the functional dynamics of the riboswitch, we have also utilized this unique small folded RNA system for analysis of performance of the RNA force field on the μs time scale. The latest AMBER parmbsc0χ(OL3) RNA force field is capable of providing stable trajectories of the folded molecule on the μs time scale. On the other hand, force fields that are not properly balanced lead to significant structural perturbations on the sub-μs time scale, which could easily lead to inappropriate interpretation of the simulation data.
Collapse
Affiliation(s)
- Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Petr Sklenovský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 712, Rochester, NY 14620, USA
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
22
|
Šponer J, Mládek A, Šponer JE, Svozil D, Zgarbová M, Banáš P, Jurečka P, Otyepka M. The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies. Phys Chem Chem Phys 2012; 14:15257-77. [PMID: 23072945 DOI: 10.1039/c2cp41987d] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Knowledge of geometrical and physico-chemical properties of the sugar-phosphate backbone substantially contributes to the comprehension of the structural dynamics, function and evolution of nucleic acids. We provide a side by side overview of structural biology/bioinformatics, quantum chemical and molecular mechanical/simulation studies of the nucleic acids backbone. We highlight main features, advantages and limitations of these techniques, with a special emphasis given to their synergy. The present status of the research is then illustrated by selected examples which include classification of DNA and RNA backbone families, benchmark structure-energy quantum chemical calculations, parameterization of the dihedral space of simulation force fields, incorporation of arsenate into DNA, sugar-phosphate backbone self-cleavage in small RNA enzymes, and intricate geometries of the backbone in recurrent RNA building blocks. Although not apparent from the current literature showing limited overlaps between the QM, simulation and bioinformatics studies of the nucleic acids backbone, there in fact should be a major cooperative interaction between these three approaches in studies of the sugar-phosphate backbone.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Caulfield T, Devkota B. Motion of transfer RNA from the A/T state into the A-site using docking and simulations. Proteins 2012; 80:2489-500. [PMID: 22730134 DOI: 10.1002/prot.24131] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/06/2022]
Abstract
The ribosome catalyzes peptidyl transfer reactions at the growing nascent polypeptide chain. Here, we present a structural mechanism for selecting cognate over near-cognate A/T transfer RNA (tRNA). In part, the structural basis for the fidelity of translation relies on accommodation to filter cognate from near-cognate tRNAs. To examine the assembly of tRNAs within the ribonucleic-riboprotein complex, we conducted a series of all-atom molecular dynamics (MD) simulations of the entire solvated 70S Escherichia coli ribosome, along with its associated cofactors, proteins, and messenger RNA (mRNA). We measured the motion of the A/T state of tRNA between initial binding and full accommodation. The mechanism of rejection was investigated. Using novel in-house algorithms, we determined trajectory pathways. Despite the large intersubunit cavity, the available space is limited by the presence of the tRNA, which is equally large. This article describes a "structural gate," formed between helices 71 and 92 on the ribosomal large subunit, which restricts tRNA motion. The gate and the interacting protein, L14, of the 50S ribosome act as steric filters in two consecutive substeps during accommodation, each requiring: (1) sufficient energy contained in the hybrid tRNA kink and (2) sufficient energy in the Watson-Crick base pairing of the codon-anticodon. We show that these barriers act to filter out near-cognate tRNA and promote proofreading of the codon-anticodon. Since proofreading is essential for understanding the fidelity of translation, our model for the dynamics of this process has substantial biomedical implications.
Collapse
Affiliation(s)
- Thomas Caulfield
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | |
Collapse
|
24
|
Krepl M, Zgarbová M, Stadlbauer P, Otyepka M, Banáš P, Koča J, Cheatham TE, Jurečka P, Šponer J. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA. J Chem Theory Comput 2012; 8:2506-2520. [PMID: 23197943 PMCID: PMC3506181 DOI: 10.1021/ct300275s] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Refinement of empirical force fields for nucleic acids requires their extensive testing using as wide range of systems as possible. However, finding unambiguous reference data is not easy. In this paper, we analyze four systems which we suggest should be included in standard portfolio of molecules to test nucleic acids force fields, namely, parallel and antiparallel stranded DNA guanine quadruplex stems, RNA quadruplex stem, and Z-DNA. We highlight parameters that should be monitored to assess the force field performance. The work is primarily based on 8.4 μs of 100-250 ns trajectories analyzed in detail followed by 9.6 μs of additional selected back up trajectories that were monitored to verify that the results of the initial analyses are correct. Four versions of the Cornell et al. AMBER force field are tested, including an entirely new parmχ(OL4) variant with χ dihedral specifically reparametrized for DNA molecules containing syn nucleotides. We test also different water models and ion conditions. While improvement for DNA quadruplexes is visible, the force fields still do not fully represent the intricate Z-DNA backbone conformation.
Collapse
Affiliation(s)
- Miroslav Krepl
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Petr Stadlbauer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jaroslav Koča
- CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
- National Center for Biomolecular Research, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
- CEITEC – Central European Institute of Technology, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
25
|
Mládek A, Šponer JE, Kulhánek P, Lu XJ, Olson WK, Šponer J. Understanding the Sequence Preference of Recurrent RNA Building Blocks using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. J Chem Theory Comput 2012; 8:335-347. [PMID: 22712001 PMCID: PMC3375708 DOI: 10.1021/ct200712b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Folded RNA molecules are shaped by an astonishing variety of highly conserved noncanonical molecular interactions and backbone topologies. The dinucleotide platform is a widespread recurrent RNA modular building submotif formed by the side-by-side pairing of bases from two consecutive nucleotides within a single strand, with highly specific sequence preferences. This unique arrangement of bases is cemented by an intricate network of noncanonical hydrogen bonds and facilitated by a distinctive backbone topology. The present study investigates the gas-phase intrinsic stabilities of the three most common RNA dinucleotide platforms - 5'-GpU-3', ApA, and UpC - via state-of-the-art quantum-chemical (QM) techniques. The mean stability of base-base interactions decreases with sequence in the order GpU > ApA > UpC. Bader's atoms-in-molecules analysis reveals that the N2(G)…O4(U) hydrogen bond of the GpU platform is stronger than the corresponding hydrogen bonds in the other two platforms. The mixed-pucker sugar-phosphate backbone conformation found in most GpU platforms, in which the 5'-ribose sugar (G) is in the C2'-endo form and the 3'-sugar (U) in the C3'-endo form, is intrinsically more stable than the standard A-RNA backbone arrangement, partially as a result of a favorable O2'…O2P intra-platform interaction. Our results thus validate the hypothesis of Lu et al. (Lu Xiang-Jun, et al. Nucleic Acids Res. 2010, 38, 4868-4876), that the superior stability of GpU platforms is partially mediated by the strong O2'…O2P hydrogen bond. In contrast, ApA and especially UpC platform-compatible backbone conformations are rather diverse and do not display any characteristic structural features. The average stabilities of ApA and UpC derived backbone conformers are also lower than those of GpU platforms. Thus, the observed structural and evolutionary patterns of the dinucleotide platforms can be accounted for, to a large extent, by their intrinsic properties as described by modern QM calculations. In contrast, we show that the dinucleotide platform is not properly described in the course of atomistic explicit-solvent simulations. Our work also gives methodological insights into QM calculations of experimental RNA backbone geometries. Such calculations are inherently complicated by rather large data and refinement uncertainties in the available RNA experimental structures, which often preclude reliable energy computations.
Collapse
Affiliation(s)
- Arnošt Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Kulhánek
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Wilma K. Olson
- Department of Chemistry & Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers - The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jiřĺ Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
26
|
Caulfield T, Medina-Franco JL. Molecular dynamics simulations of human DNA methyltransferase 3B with selective inhibitor nanaomycin A. J Struct Biol 2011; 176:185-91. [PMID: 21839172 DOI: 10.1016/j.jsb.2011.07.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 02/08/2023]
Abstract
DNA methyltransferases (DNMTs) are involved in epigenetic regulation of the genome and are promising targets for therapeutic intervention in cancer and other diseases. Until now, very limited information is available concerning the molecular dynamics of DNMTs. The natural product nanaomycin A is the first selective inhibitor of DNMT3B that induce genomic demethylation. Herein we report long (>100ns) molecular dynamics simulations for human DNMT3B bound to nanaomycin A with and without the presence of the cofactor S-adenosyl-L-methionine (SAM). We concluded that SAM favors the binding of nanaomycin A to DNMT3B. Key interactions of nanaomycin A with DNMT3B involve long lasting interactions with Arg731, Arg733, Arg832, and the catalytic Cys651. Results further support the previous hypothesis that nanaomycin A has key interactions with amino acid residues involved in the mechanism of methylation. This work represents one of the first molecular dynamics studies of DNMT3B. Results of this work shed light on the structure and binding recognition process of a key epigenetic enzyme with a small molecule inhibitor.
Collapse
Affiliation(s)
- Thomas Caulfield
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | | |
Collapse
|
27
|
Zhong C, Zhang S. Clustering RNA structural motifs in ribosomal RNAs using secondary structural alignment. Nucleic Acids Res 2011; 40:1307-17. [PMID: 21976732 PMCID: PMC3273805 DOI: 10.1093/nar/gkr804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
RNA structural motifs are the building blocks of the complex RNA architecture. Identification of non-coding RNA structural motifs is a critical step towards understanding of their structures and functionalities. In this article, we present a clustering approach for de novo RNA structural motif identification. We applied our approach on a data set containing 5S, 16S and 23S rRNAs and rediscovered many known motifs including GNRA tetraloop, kink-turn, C-loop, sarcin–ricin, reverse kink-turn, hook-turn, E-loop and tandem-sheared motifs, with higher accuracy than the state-of-the-art clustering method. We also identified a number of potential novel instances of GNRA tetraloop, kink-turn, sarcin–ricin and tandem-sheared motifs. More importantly, several novel structural motif families have been revealed by our clustering analysis. We identified a highly asymmetric bulge loop motif that resembles the rope sling. We also found an internal loop motif that can significantly increase the twist of the helix. Finally, we discovered a subfamily of hexaloop motif, which has significantly different geometry comparing to the currently known hexaloop motif. Our discoveries presented in this article have largely increased current knowledge of RNA structural motifs.
Collapse
Affiliation(s)
- Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | | |
Collapse
|
28
|
Zgarbová M, Jurečka P, Banáš P, Otyepka M, Sponer JE, Leontis NB, Zirbel CL, Sponer J. Noncanonical hydrogen bonding in nucleic acids. Benchmark evaluation of key base-phosphate interactions in folded RNA molecules using quantum-chemical calculations and molecular dynamics simulations. J Phys Chem A 2011; 115:11277-92. [PMID: 21910417 DOI: 10.1021/jp204820b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RNA molecules are stabilized by a wide range of noncanonical interactions that are not present in DNA. Among them, the recently classified base-phosphate (BPh) interactions belong to the most important ones. Twelve percent of nucleotides in the ribosomal crystal structures are involved in BPh interactions. BPh interactions are highly conserved and provide major constraints on RNA sequence evolution. Here we provide assessment of the energetics of BPh interactions using MP2 computations extrapolated to the complete basis set of atomic orbitals and corrected for higher-order electron correlation effects. The reference computations are compared with DFT-D and DFT-D3 approaches, the SAPT method, and the molecular mechanics force field. The computations, besides providing the basic benchmark for the BPh interactions, allow some refinements of the original classification, including identification of some potential doubly bonded BPh patterns. The reference computations are followed by analysis of some larger RNA fragments that consider the context of the BPh interactions. The computations demonstrate the complexity of interaction patterns utilizing the BPh interactions in real RNA structures. The BPh interactions are often involved in intricate interaction networks. We studied BPh interactions of protonated adenine that can contribute to catalysis of hairpin ribozyme, the key BPh interaction in the S-turn motif of the sarcin-ricin loop, which may predetermine the S-turn topology and complex BPh patterns from the glmS riboswitch. Finally, the structural stability of BPh interactions in explicit solvent molecular dynamics simulations is assessed. The simulations well preserve key BPh interactions and allow dissection of structurally/functionally important water-meditated BPh bridges, which could not be considered in earlier bioinformatics classification of BPh interactions.
Collapse
Affiliation(s)
- Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sklenovský P, Florová P, Banáš P, Réblová K, Lankaš F, Otyepka M, Šponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. J Chem Theory Comput 2011; 7:2963-80. [PMID: 26605485 DOI: 10.1021/ct200204t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reverse kink-turn is a recurrent elbow-like RNA building block occurring in the ribosome and in the group I intron. Its sequence signature almost matches that of the conventional kink-turn. However, the reverse and conventional kink-turns have opposite directions of bending. The reverse kink-turn lacks basically any tertiary interaction between its stems. We report unrestrained, explicit solvent molecular dynamics simulations of ribosomal and intron reverse kink-turns (54 simulations with 7.4 μs of data in total) with different variants (ff94, ff99, ff99bsc0, ff99χOL, and ff99bsc0χOL) of the Cornell et al. force field. We test several ion conditions and two water models. The simulations characterize the directional intrinsic flexibility of reverse kink-turns pertinent to their folded functional geometries. The reverse kink-turns are the most flexible RNA motifs studied so far by explicit solvent simulations which are capable at the present simulation time scale to spontaneously and reversibly sample a wide range of geometries from tightly kinked ones through flexible intermediates up to extended, unkinked structures. A possible biochemical role of the flexibility is discussed. Among the tested force fields, the latest χOL variant is essential to obtaining stable trajectories while all force field versions lacking the χ correction are prone to a swift degradation toward senseless ladder-like structures of stems, characterized by high-anti glycosidic torsions. The type of explicit water model affects the simulations considerably more than concentration and the type of ions.
Collapse
Affiliation(s)
- Petr Sklenovský
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petra Florová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Filip Lankaš
- Centre for Complex Molecular Systems and Biomolecules, Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2, 166 10 Praha 6, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc , tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic , Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
30
|
Examinations of tRNA Range of Motion Using Simulations of Cryo-EM Microscopy and X-Ray Data. JOURNAL OF BIOPHYSICS 2011; 2011:219515. [PMID: 21716650 PMCID: PMC3116532 DOI: 10.1155/2011/219515] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/31/2010] [Accepted: 01/24/2011] [Indexed: 11/17/2022]
Abstract
We examined tRNA flexibility using a combination of steered and unbiased molecular dynamics simulations. Using Maxwell's demon algorithm, molecular dynamics was used to steer X-ray structure data toward that from an alternative state obtained from cryogenic-electron microscopy density maps. Thus, we were able to fit X-ray structures of tRNA onto cryogenic-electron microscopy density maps for hybrid states of tRNA. Additionally, we employed both Maxwell's demon molecular dynamics simulations and unbiased simulation methods to identify possible ribosome-tRNA contact areas where the ribosome may discriminate tRNAs during translation. Herein, we collected >500 ns of simulation data to assess the global range of motion for tRNAs. Biased simulations can be used to steer between known conformational stop points, while unbiased simulations allow for a general testing of conformational space previously unexplored. The unbiased molecular dynamics data describes the global conformational changes of tRNA on a sub-microsecond time scale for comparison with steered data. Additionally, the unbiased molecular dynamics data was used to identify putative contacts between tRNA and the ribosome during the accommodation step of translation. We found that the primary contact regions were H71 and H92 of the 50S subunit and ribosomal proteins L14 and L16.
Collapse
|
31
|
Spacková N, Réblová K, Sponer J. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations. J Phys Chem B 2010; 114:10581-93. [PMID: 20701388 DOI: 10.1021/jp102572k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Kink-turns (K-turns) are recurrent elbow-like RNA motifs that participate in protein-assisted RNA folding and contribute to RNA dynamics. We carried out a set of molecular dynamics (MD) simulations using parm99 and parmbsc0 force fields to investigate structural dynamics of the box C/D RNA and its complexes with two proteins: native archaeal L7ae protein and human 15.5 kDa protein, originally bound to very similar structure of U4 snRNA. The box C/D RNA forms K-turn with A-minor 0 tertiary interaction between its canonical (C) and noncanonical (NC) stems. The local K-turn architecture is thus different from the previously studied ribosomal K-turns 38 and 42 having A-minor I interaction. The simulations reveal visible structural dynamics of this tertiary interaction involving altogether six substates which substantially contribute to the elbow-like flexibility of the K-turn. The interaction can even temporarily shift to the A-minor I type pattern; however, this is associated with distortion of the G/A base pair in the NC-stem of the K-turn. The simulations show reduction of the K-turn flexibility upon protein binding. The protein interacts with the apex of the K-turn and with the NC-stem. The protein-RNA interface includes long-residency hydration sites. We have also found long-residency hydration sites and major ion-binding sites associated with the K-turn itself. The overall topology of the K-turn remains stable in all simulations. However, in simulations of free K-turn, we observed instability of the key C16(O2')-A7(N1) H-bond, which is a signature interaction of K-turns and which was visibly more stable in simulations of K-turns possessing A-minor I interaction. It may reflect either some imbalance of the force field or it may be a correct indication of early stages of unfolding since this K-turn requires protein binding for its stabilization. Interestingly, the 16(O2')-7(N1) H- bond is usually not fully lost since it is replaced by a water bridge with a tightly bound water, which is adenine-specific similarly as the original interaction. The 16(O2')-7(N1) H-bond is stabilized by protein binding. The stabilizing effect is more visible with the human 15.5 kDa protein, which is attributed to valine to arginine substitution in the binding site. The behavior of the A-minor interaction is force-field-dependent because the parmbsc0 force field attenuates the A-minor fluctuations compared to parm99 simulations. Behavior of other regions of the box C/D RNA is not sensitive to the force field choice. Simulation with net-neutralizing Na(+) and 0.2 M excess salt conditions appear in all aspects equivalent. The simulations show loss of a hairpin tetraloop, which is not part of the K-turn. This was attributed to force field limitations.
Collapse
Affiliation(s)
- Nad'a Spacková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | |
Collapse
|
32
|
Banáš P, Hollas D, Zgarbová M, Jurečka P, Orozco M, Cheatham TE, Šponer J, Otyepka M. Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. J Chem Theory Comput 2010; 6:3836-3849. [DOI: 10.1021/ct100481h] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| | - Daniel Hollas
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| | - Modesto Orozco
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| | - Thomas E. Cheatham
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic, Joint Research Program in Computational Biology, Institut de Recerca Biomédica and Barcelona Superocomputing Center, Baldiri i Reixac 10, Barcelona 08028, Spain, Jordi Girona 31, Barcelona 08028, Spain
| |
Collapse
|
33
|
Halder S, Bhattacharyya D. Structural Stability of Tandemly Occurring Noncanonical Basepairs within Double Helical Fragments: Molecular Dynamics Studies of Functional RNA. J Phys Chem B 2010; 114:14028-40. [DOI: 10.1021/jp102835t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sukanya Halder
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata—700 064, India
| | - Dhananjay Bhattacharyya
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata—700 064, India
| |
Collapse
|
34
|
Zhong C, Tang H, Zhang S. RNAMotifScan: automatic identification of RNA structural motifs using secondary structural alignment. Nucleic Acids Res 2010; 38:e176. [PMID: 20696653 PMCID: PMC2952876 DOI: 10.1093/nar/gkq672] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies have shown that RNA structural motifs play essential roles in RNA folding and interaction with other molecules. Computational identification and analysis of RNA structural motifs remains a challenging task. Existing motif identification methods based on 3D structure may not properly compare motifs with high structural variations. Other structural motif identification methods consider only nested canonical base-pairing structures and cannot be used to identify complex RNA structural motifs that often consist of various non-canonical base pairs due to uncommon hydrogen bond interactions. In this article, we present a novel RNA structural alignment method for RNA structural motif identification, RNAMotifScan, which takes into consideration the isosteric (both canonical and non-canonical) base pairs and multi-pairings in RNA structural motifs. The utility and accuracy of RNAMotifScan is demonstrated by searching for kink-turn, C-loop, sarcin-ricin, reverse kink-turn and E-loop motifs against a 23S rRNA (PDBid: 1S72), which is well characterized for the occurrences of these motifs. Finally, we search these motifs against the RNA structures in the entire Protein Data Bank and the abundances of them are estimated. RNAMotifScan is freely available at our supplementary website (http://genome.ucf.edu/RNAMotifScan).
Collapse
Affiliation(s)
- Cuncong Zhong
- School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | | | | |
Collapse
|
35
|
Besseová I, Réblová K, Leontis NB, Sponer J. Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome. Nucleic Acids Res 2010; 38:6247-64. [PMID: 20507916 PMCID: PMC2952862 DOI: 10.1093/nar/gkq414] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We present extensive explicit solvent molecular dynamics analysis of three RNA three-way junctions (3WJs) from the large ribosomal subunit: the 3WJ formed by Helices 90–92 (H90–H92) of 23S rRNA; the 3WJ formed by H42–H44 organizing the GTPase associated center (GAC) of 23S rRNA; and the 3WJ of 5S rRNA. H92 near the peptidyl transferase center binds the 3′-CCA end of amino-acylated tRNA. The GAC binds protein factors and stimulates GTP hydrolysis driving protein synthesis. The 5S rRNA binds the central protuberance and A-site finger (ASF) involved in bridges with the 30S subunit. The simulations reveal that all three 3WJs possess significant anisotropic hinge-like flexibility between their stacked stems and dynamics within the compact regions of their adjacent stems. The A-site 3WJ dynamics may facilitate accommodation of tRNA, while the 5S 3WJ flexibility appears to be essential for coordinated movements of ASF and 5S rRNA. The GAC 3WJ may support large-scale dynamics of the L7/L12-stalk region. The simulations reveal that H42–H44 rRNA segments are not fully relaxed and in the X-ray structures they are bent towards the large subunit. The bending may be related to L10 binding and is distributed between the 3WJ and the H42–H97 contact.
Collapse
Affiliation(s)
- Ivana Besseová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
36
|
Mlýnský V, Banáš P, Hollas D, Réblová K, Walter NG, Šponer J, Otyepka M. Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H+ forms are most consistent with crystal structures of hairpin ribozyme. J Phys Chem B 2010; 114:6642-52. [PMID: 20420375 PMCID: PMC2872159 DOI: 10.1021/jp1001258] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hairpin ribozyme is a prominent member of the group of small catalytic RNAs (RNA enzymes or ribozymes) because it does not require metal ions to achieve catalysis. Biochemical and structural data have implicated guanine 8 (G8) and adenine 38 (A38) as catalytic participants in cleavage and ligation catalyzed by the hairpin ribozyme, yet their exact role in catalysis remains disputed. To gain insight into dynamics in the active site of a minimal self-cleaving hairpin ribozyme, we have performed extensive classical, explicit-solvent molecular dynamics (MD) simulations on time scales of 50-150 ns. Starting from the available X-ray crystal structures, we investigated the structural impact of the protonation states of G8 and A38, and the inactivating A-1(2'-methoxy) substitution employed in crystallography. Our simulations reveal that a canonical G8 agrees well with the crystal structures while a deprotonated G8 profoundly distorts the active site. Thus MD simulations do not support a straightforward participation of the deprotonated G8 in catalysis. By comparison, the G8 enol tautomer is structurally well tolerated, causing only local rearrangements in the active site. Furthermore, a protonated A38H(+) is more consistent with the crystallography data than a canonical A38. The simulations thus support the notion that A38H(+) is the dominant form in the crystals, grown at pH 6. In most simulations, the canonical A38 departs from the scissile phosphate and substantially perturbs the structures of the active site and S-turn. Yet, we occasionally also observe formation of a stable A-1(2'-OH)...A38(N1) hydrogen bond, which documents the ability of the ribozyme to form this hydrogen bond, consistent with a potential role of A38 as general base catalyst. The presence of this hydrogen bond is, however, incompatible with the expected in-line attack angle necessary for self-cleavage, requiring a rapid transition of the deprotonated 2'-oxyanion to a position more favorable for in-line attack after proton transfer from A-1(2'-OH) to A38(N1). The simulations revealed a potential force field artifact, occasional but irreversible formation of "ladder-like", underwound A-RNA structure in one of the external helices. Although it does not affect the catalytic center of the hairpin ribozyme, further studies are under way to better assess possible influence of such force field behavior on long RNA simulations.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Pavel Banáš
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Daniel Hollas
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Jiří Šponer
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. 17. listopadu 12, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
37
|
Freedman H, Huynh LP, Le L, Cheatham TE, Tuszynski JA, Truong TN. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer. J Phys Chem B 2010; 114:2227-37. [PMID: 20099932 DOI: 10.1021/jp9059664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To provide more accurate computational estimates of binding free energies in solution from molecular dynamics (MD) simulations, a separate solvation contribution for the binding ligand is determined from a linear response treatment. We use explicit water coordinates for this term and combine with MM-PBSA (molecular mechanics, Poisson-Boltzmann, and surface area contributions) in a new approach (MM-PB/LRA-SA). To assess this method, application to the binding between theophylline and its derivatives to an RNA aptamer was performed and compared with experimental binding affinities. Explicitly solvated MD trajectories were generated with the same parameter set used in the previous work by Gouda et al., who compared the relative binding of these molecules by both the MM-PBSA and thermodynamic integration methods. Substituting the linear response term for the ligand in the MM-PB/LRA-SA approach led to an improvement upon MM-PBSA when compared with experimental and thermodynamic integration results at approximately twice the computational cost. The balance between accuracy and computational expense achieved using this method suggests potential advantages in applying it in the virtual drug-screening process.
Collapse
Affiliation(s)
- Holly Freedman
- Department of Experimental Oncology, Room 3336, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Sharma P, Chawla M, Sharma S, Mitra A. On the role of Hoogsteen:Hoogsteen interactions in RNA: ab initio investigations of structures and energies. RNA (NEW YORK, N.Y.) 2010; 16:942-957. [PMID: 20354152 PMCID: PMC2856888 DOI: 10.1261/rna.1919010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/27/2010] [Indexed: 05/28/2023]
Abstract
We use a combination of database analysis and quantum chemical studies to investigate the role of cis and trans Hoogsteen:Hoogsteen (H:H) base pairs and associated higher-order structures in RNA. We add three new examples to the list of previously identified base-pair combinations belonging to these families and, in addition to contextual classification and characterization of their structural and energetic features, we compare their interbase interaction energies and propensities toward participation in triplets and quartets. We find that some base pairs, which are nonplanar in their isolated minimum energy geometries, attain planarity and stability upon triplet formation. A:A H:H trans is the most frequent H:H combination in RNA structures. This base pair occurs at many distinct positions in known rRNA structures, where it helps in the interaction of ribosomal domains in the 50S subunit. It is also present as a part of tertiary interaction in tRNA structures. Although quantum chemical studies suggest an intrinsically nonplanar geometry for this base pair in isolated form, it has the tendency to attain planar geometry in RNA crystal structures by forming higher-order tertiary interactions or in the presence of additional base-phosphate interactions. The tendency of this base pair to form such additional interactions may be helpful in bringing together different segments of RNA, thus making it suitable for the role of facilitator for RNA folding. This also explains the high occurrence frequency of this base pair among all H:H interactions.
Collapse
Affiliation(s)
- Purshotam Sharma
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology (IIIT-H), Gachibowli, Hyderabad 500032, India
| | | | | | | |
Collapse
|
39
|
Giel-Pietraszuk M, Fedoruk-Wyszomirska A, Barciszewski J. Effect of high hydrostatic pressure on hydration and activity of ribozymes. Mol Biol Rep 2010; 37:3713-9. [PMID: 20204525 DOI: 10.1007/s11033-010-0024-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Formation and stabilization of RNA structure in the cell depends on its interaction with solvent and metal ions. High hydrostatic pressure (HHP) is a convenient tool in an analysis of the role of small molecules in the structure stabilization of biological macromolecules. Analysis of HHP effect and various concentrations of ions showed that water induce formation of the active ribozyme structure. So, it is clear that water is the driving force of conformational changes of nucleic acid.
Collapse
Affiliation(s)
- Małgorzata Giel-Pietraszuk
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | | | | |
Collapse
|
40
|
Réblová K, Střelcová Z, Kulhánek P, Beššeová I, Mathews DH, Van Nostrand K, Yildirim I, Turner DH, Šponer J. An RNA Molecular Switch: Intrinsic Flexibility of 23S rRNA Helices 40 and 68 5′-UAA/5′-GAN Internal Loops Studied by Molecular Dynamics Methods. J Chem Theory Comput 2010; 6:910-29. [DOI: 10.1021/ct900440t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Zora Střelcová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Petr Kulhánek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Ivana Beššeová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - David H. Mathews
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Keith Van Nostrand
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Ilyas Yildirim
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Douglas H. Turner
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic, Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, and Department of Chemistry, University of
| |
Collapse
|
41
|
Réblová K, Střelcová Z, Kulhánek P, Beššeová I, Mathews DH, Nostrand KV, Yildirim I, Turner DH, Šponer J. An RNA molecular switch: Intrinsic flexibility of 23S rRNA Helices 40 and 68 5'-UAA/5'-GAN internal loops studied by molecular dynamics methods. J Chem Theory Comput 2010; 2010:910-929. [PMID: 21132104 PMCID: PMC2994019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Functional RNA molecules such as ribosomal RNAs frequently contain highly conserved internal loops with a 5'-UAA/5'-GAN (UAA/GAN) consensus sequence. The UAA/GAN internal loops adopt distinctive structure inconsistent with secondary structure predictions. The structure has a narrow major groove and forms a trans Hoogsteen/Sugar edge (tHS) A/G base pair followed by an unpaired stacked adenine, a trans Watson-Crick/Hoogsteen (tWH) U/A base pair and finally by a bulged nucleotide (N). The structure is further stabilized by a three-adenine stack and base-phosphate interaction. In the ribosome, the UAA/GAN internal loops are involved in extensive tertiary contacts, mainly as donors of A-minor interactions. Further, this sequence can adopt an alternative 2D/3D pattern stabilized by a four-adenine stack involved in a smaller number of tertiary interactions. The solution structure of an isolated UAA/GAA internal loop shows substantially rearranged base pairing with three consecutive non-Watson-Crick base pairs. Its A/U base pair adopts an incomplete cis Watson-Crick/Sugar edge (cWS) A/U conformation instead of the expected Watson-Crick arrangement. We performed 3.1 µs of explicit solvent molecular dynamics (MD) simulations of the X-ray and NMR UAA/GAN structures, supplemented by MM-PBSA free energy calculations, locally enhanced sampling (LES) runs, targeted MD (TMD) and nudged elastic band (NEB) analysis. We compared parm99 and parmbsc0 force fields and net-neutralizing Na(+) vs. excess salt KCl ion environments. Both force fields provide a similar description of the simulated structures, with the parmbsc0 leading to modest narrowing of the major groove. The excess salt simulations also cause a similar effect. While the NMR structure is entirely stable in simulations, the simulated X-ray structure shows considerable widening of the major groove, loss of base-phosphate interaction and other instabilities. The alternative X-ray geometry even undergoes conformational transition towards the solution 2D structure. Free energy calculations confirm that the X-ray arrangement is less stable than the solution structure. LES, TMD and NEB provide a rather consistent pathway for interconversion between the X-ray and NMR structures. In simulations, the incomplete cWS A/U base pair of the NMR structure is water mediated and alternates with the canonical A-U base pair, which is not indicated by the NMR data. Completion of full cWS A/U base pair is prevented by the overall internal loop arrangement. In summary, the simulations confirm that the UAA/GAN internal loop is a molecular switch RNA module that adopts its functional geometry upon specific tertiary contexts.
Collapse
Affiliation(s)
- Kamila Réblová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Zora Střelcová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Kulhánek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Ivana Beššeová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - David H. Mathews
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642
| | - Keith Van Nostrand
- Department of Biochemistry & Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 712, Rochester, New York 14642
| | - Ilyas Yildirim
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| |
Collapse
|
42
|
Banáš P, Jurečka P, Walter NG, Šponer J, Otyepka M. Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods 2009; 49:202-16. [PMID: 19398008 PMCID: PMC2753711 DOI: 10.1016/j.ymeth.2009.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/28/2022] Open
Abstract
Hybrid QM/MM methods combine the rigor of quantum mechanical (QM) calculations with the low computational cost of empirical molecular mechanical (MM) treatment allowing to capture dynamic properties to probe critical atomistic details of enzyme reactions. Catalysis by RNA enzymes (ribozymes) has only recently begun to be addressed with QM/MM approaches and is thus still a field under development. This review surveys methodology as well as recent advances in QM/MM applications to RNA mechanisms, including those of the HDV, hairpin, and hammerhead ribozymes, as well as the ribosome. We compare and correlate QM/MM results with those from QM and/or molecular dynamics (MD) simulations, and discuss scope and limitations with a critical eye on current shortcomings in available methodologies and computer resources. We thus hope to foster mutual appreciation and facilitate collaboration between experimentalists and theorists to jointly advance our understanding of RNA catalysis at an atomistic level.
Collapse
Affiliation(s)
- Pavel Banáš
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Jiří Šponer
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
43
|
Fadrná E, Špačková N, Sarzyñska J, Koča J, Orozco M, Cheatham TE, Kulinski T, Šponer J. Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. J Chem Theory Comput 2009; 5:2514-30. [DOI: 10.1021/ct900200k] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Eva Fadrná
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Nad’a Špačková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Joanna Sarzyñska
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Jaroslav Koča
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Modesto Orozco
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Thomas E. Cheatham
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Tadeusz Kulinski
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Jiří Šponer
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| |
Collapse
|
44
|
Noy A, Soteras I, Luque FJ, Orozco M. The impact of monovalent ion force field model in nucleic acids simulations. Phys Chem Chem Phys 2009; 11:10596-607. [PMID: 20145804 DOI: 10.1039/b912067j] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different classical models for monovalent ions (typically used to neutralize proteins or nucleic acids) are available in the literature and are widely used in molecular dynamics simulations without a great knowledge of their quality, consistency with the macromolecular force field and impact on the global simulation results. In this paper the ability of several of the most popular ion models to reproduce both quantum mechanics and experimental results is examined. Artefacts due to the use of incorrect ion models in molecular dynamics simulations of concentrated solutions of NaCl and KCl in water and of a short DNA duplex in 500 mM aqueous solutions of NaCl and KCl have been analyzed. Our results allow us to discuss the robustness and reliability of different ion models and to highlight the source of potential errors arising from non-optimal models. However, it is also found that the structural and dynamic characteristics of DNA (as an example of a heavily charged macromolecule) in near-physiological conditions are quite independent of the ion model used, providing support to most already-published simulations of macromolecules.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics and Astronomy, University of Sheffield, Sheffield, UK S3 7RH
| | | | | | | |
Collapse
|
45
|
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res 2009; 37:4898-918. [PMID: 19528080 PMCID: PMC2731888 DOI: 10.1093/nar/gkp468] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Structured RNA molecules form complex 3D architectures stabilized by multiple interactions involving the nucleotide base, sugar and phosphate moieties. A significant percentage of the bases in structured RNA molecules in the Protein Data Bank (PDB) hydrogen-bond with phosphates of other nucleotides. By extracting and superimposing base-phosphate (BPh) interactions from a reduced-redundancy subset of 3D structures from the PDB, we identified recurrent phosphate-binding sites on the RNA bases. Quantum chemical calculations were carried out on model systems representing each BPh interaction. The calculations show that the centers of each cluster obtained from the structure superpositions correspond to energy minima on the potential energy hypersurface. The calculations also show that the most stable phosphate-binding sites occur on the Watson-Crick edge of guanine and the Hoogsteen edge of cytosine. We modified the 'Find RNA 3D' (FR3D) software suite to automatically find and classify BPh interactions. Comparison of the 3D structures of the 16S and 23S rRNAs of Escherichia coli and Thermus thermophilus revealed that most BPh interactions are phylogenetically conserved and they occur primarily in hairpin, internal or junction loops or as part of tertiary interactions. Bases that form BPh interactions, which are conserved in the rRNA 3D structures are also conserved in homologous rRNA sequence alignments.
Collapse
Affiliation(s)
- Craig L Zirbel
- Department of Mathematics and Statistics, Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | | | | | |
Collapse
|
46
|
Mládek A, Sharma P, Mitra A, Bhattacharyya D, Sponer J, Sponer JE. Trans Hoogsteen/sugar edge base pairing in RNA. Structures, energies, and stabilities from quantum chemical calculations. J Phys Chem B 2009; 113:1743-55. [PMID: 19152254 DOI: 10.1021/jp808357m] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Trans Hoogsteen/sugar edge (H/SE) RNA base pairs form one of the six families of RNA base pairs that utilize the 2'-hydroxyl group of ribose for base pairing and play key roles in stabilizing folded RNA molecules. Here, we provide a detailed quantum chemical characterization of intrinsic structures and interaction energies of this base pair family, along with the evaluation of solvent screening effects by a continuum solvent approach. We report DFT-optimized geometries and MP2 interaction energies for all 10 crystallographically identified members of the family, for a representative set of them, using complete basis set extrapolation. For 6 of the 10 base pairs, we had to apply geometric constraints to keep the geometries relevant to RNA. We confirm that the remaining, hitherto undetected, possible members of this family do not have appropriate steric features required to establish stable base pairing in the trans H/SE fashion. The interaction patterns in the trans H/SE family are highly diverse, with gas-phase interaction energies in the range from -1 to -17 kcal/mol. Except for the C/rC and G/rG trans H/SE base pairs, the interaction energy is roughly evenly distributed between the HF and correlation components. Thus, in the trans H/SE base pairs, the relative importance of electron correlation is noticeably smaller than in the cis WC/SE or cis and trans SE/SE base pairs, but still larger than in canonical base pairs. The trans H/SE A/rG base pair is the intrinsically most stable member of this family. This base pair is also known as the sheared AG base pair and belongs to the most prominent set of RNA base pairs utilized in molecular building blocks of functional RNAs. For all trans H/SE base pairs that we identified, in addition to conventional base pairing, viable alternative structures were stabilized by amino-acceptor interactions. In the QM calculations, these amino-acceptor complexes appear to be equally as stable as those with common H-bonds, and more importantly, the switch to amino-acceptor interaction does not require any significant geometrical rearrangement of the base pairs. Such interactions are worthy of further investigations, as X-ray crystallography cannot unambiguously distinguish between conventional and amino-acceptor interactions involving the 2'-hydroxyl group, formation of such interactions is usually not considered, and molecular modeling force fields do not include such interactions properly as a result of neglect of aminogroup pyramidalization.
Collapse
Affiliation(s)
- Arnost Mládek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
47
|
Dissection of the high rate constant for the binding of a ribotoxin to the ribosome. Proc Natl Acad Sci U S A 2009; 106:6974-9. [PMID: 19346475 DOI: 10.1073/pnas.0900291106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Restrictocin belongs to a family of site-specific ribonucleases that kill cells by inactivating the ribosome. The restrictocin-ribosome binding rate constant was observed to exceed 10(10) M(-1) s(-1). We have developed a transient-complex theory to model the binding rates of protein-protein and protein-RNA complexes. The theory predicts the rate constant as k(a) = k(a0) exp(-DeltaG(el)*/k(B)T), where k(a0) is the basal rate constant for reaching the transient complex, located at the outer boundary of the bound state, by random diffusion, and DeltaG(el)* is the average electrostatic interaction free energy of the transient complex. Here, we applied the transient-complex theory to dissect the high restrictocin-ribosome binding rate constant. We found that the binding rate of restrictocin to the isolated sarcin/ricin loop is electrostatically enhanced by approximately 300-fold, similar to results found in other protein-protein and protein-RNA complexes. The ribosome provides an additional 10,000-fold rate enhancement because of two synergistic mechanisms afforded by the distal regions of the ribosome. First, they provide additional electrostatic attraction with restrictocin. Second, they reposition the transient complex into a region where local electrostatic interactions of restrictocin with the sarcin/ricin loop are particularly favorable. Our calculations rationalize a host of experimental observations and identify a strategy for designing proteins that bind their targets with high speed.
Collapse
|
48
|
Šponer J, Zgarbová M, Jurečka P, Riley KE, Šponer JE, Hobza P. Reference Quantum Chemical Calculations on RNA Base Pairs Directly Involving the 2′-OH Group of Ribose. J Chem Theory Comput 2009; 5:1166-79. [DOI: 10.1021/ct800547k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Marie Zgarbová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Petr Jurečka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Kevin E. Riley
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Pavel Hobza
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| |
Collapse
|
49
|
Svozil D, Sponer JE, Marchan I, Pérez A, Cheatham TE, Forti F, Luque FJ, Orozco M, Sponer J. Geometrical and electronic structure variability of the sugar-phosphate backbone in nucleic acids. J Phys Chem B 2008; 112:8188-97. [PMID: 18558755 DOI: 10.1021/jp801245h] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The anionic sugar-phosphate backbone of nucleic acids substantially contributes to their structural flexibility. To model nucleic acid structure and dynamics correctly, the potentially sampled substates of the sugar-phosphate backbone must be properly described. However, because of the complexity of the electronic distribution in the nucleic acid backbone, its representation by classical force fields is very challenging. In this work, the three-dimensional potential energy surfaces with two independent variables corresponding to rotations around the alpha and gamma backbone torsions are studied by means of high-level ab initio methods (B3LYP/6-31+G*, MP2/6-31+G*, and MP2 complete basis set limit levels). The ability of the AMBER ff99 [Wang, J. M.; Cieplak, P.; Kollman, P. A. J. Comput. Chem. 2000, 21, 1049-1074] and parmbsc0 [Perez, A.; Marchan, I.; Svozil, D.; Sponer, J.; Cheatham, T. E.; Laughten, C. A.; Orozco, M. Biophys. J. 2007, 92, 3817-3829] force fields to describe the various alpha/gamma conformations of the DNA backbone accurately is assessed by comparing the results with those of ab initio quantum chemical calculations. Two model systems differing in structural complexity were used to describe the alpha/gamma energetics. The simpler one, SPM, consisting of a sugar and methyl group linked through a phosphodiester bond was used to determine higher-order correlation effects covered by the CCSD(T) method. The second, more complex model system, SPSOM, includes two deoxyribose residues (without the bases) connected via a phosphodiester bond. It has been shown by means of a natural bond orbital analysis that the SPSOM model provides a more realistic representation of the hyperconjugation network along the C5'-O5'-P-O3'-C3' linkage. However, we have also shown that quantum mechanical investigations of this model system are nontrivial because of the complexity of the SPSOM conformational space. A comparison of the ab initio data with the ff99 potential energy surface clearly reveals an incorrect ff99 force-field description in the regions where the gamma torsion is in the trans conformation. An explanation is proposed for why the alpha/gamma flips are eliminated so successfully when the parmbsc0 force-field modification is used.
Collapse
Affiliation(s)
- Daniel Svozil
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 166 10, Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cheatham TE, Brooks BR, Kollman PA. Molecular modeling of nucleic acid structure: setup and analysis. ACTA ACUST UNITED AC 2008; Chapter 7:Unit 7.10. [PMID: 18428869 DOI: 10.1002/0471142700.nc0710s06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The last in a set of units by these authors, this unit addresses some important remaining questions about molecular modeling of nucleic acids. It describes how to choose an appropriate molecular mechanics force field; how to set up and equilibrate the system for accurate simulation of a nucleic acid in an explicit solvent by molecular dynamics or Monte Carlo simulation; and how to analyze molecular dynamics trajectories.
Collapse
|