1
|
Mlotkowski AJ, Schlegel HB, Chow CS. Calculated p Ka Values for a Series of Aza- and Deaza-Modified Nucleobases. J Phys Chem A 2023; 127:3526-3534. [PMID: 37037184 PMCID: PMC10123669 DOI: 10.1021/acs.jpca.3c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
A variety of synthetic modified nucleobases have been used to investigate the structure and function of RNA and DNA or act as enzyme inhibitors. A set of these modifications involves the addition or removal of a nitrogen atom in the ring. These aza and deaza modifications have garnered interest as useful biochemical tools, but information on some of their physical characteristics is lacking. In this study, the B3LYP density functional with the 6-31+G(d,p) basis set and an implicit-explicit solvent model was used to perform ab initio quantum mechanical studies to estimate pKa values of aza- and deaza-modified nucleobases. A comparison between theoretical and known experimental pKa values was carried out, and adjustment factors were applied to 57 pKa values in the purine and pyrimidine data sets.
Collapse
Affiliation(s)
- Alan J Mlotkowski
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Bereiter R, Himmelstoß M, Renard E, Mairhofer E, Egger M, Breuker K, Kreutz C, Ennifar E, Micura R. Impact of 3-deazapurine nucleobases on RNA properties. Nucleic Acids Res 2021; 49:4281-4293. [PMID: 33856457 PMCID: PMC8096147 DOI: 10.1093/nar/gkab256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.
Collapse
Affiliation(s)
- Raphael Bereiter
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Maximilian Himmelstoß
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Eva Renard
- Architecture et Réactivité de l’ARN - CNRS UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Michaela Egger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Eric Ennifar
- Architecture et Réactivité de l’ARN - CNRS UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Ayele T, Chang SJ, Resendiz MJ. The use of dialkyl acetals in the N-alkylation of 8-oxoadenosine and guanosine. Mechanistic studies and rate determination. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Krishnamurthy R. Role of pK(a) of nucleobases in the origins of chemical evolution. Acc Chem Res 2012; 45:2035-44. [PMID: 22533519 PMCID: PMC3525050 DOI: 10.1021/ar200262x] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Indexed: 11/30/2022]
Abstract
The formation of canonical base pairs through Watson-Crick hydrogen bonding sits at the heart of the genetic apparatus. The specificity of the base pairing of adenine with thymine/uracil and guanine with cytosine preserves accurate information for the biochemical blueprint and replicates the instructions necessary for carrying out biological function. The chemical evolution question of how these five canonical nucleobases were selected over various other possibilities remains intriguing. Since these and alternative nucleobases would have been available for chemical evolution, the reasons for the emergence of this system appear to be primarily functional. While investigating the base-pairing properties of structural nucleic acid analogs, we encountered a relationship between the pK(a) of a series of nonstandard (and canonical) nucleobases and the pH of the aqueous medium. This relationship appeared to correspond with the propensity of these molecules to self-assemble via Watson-Crick-type base-pairing interactions. A simple correlation of the "magnitude of the difference between the pK(a) and pH" (pK(a)-pH correlation) enables a general prediction of which types of heterocyclic recognition elements form hydrogen-bonded base pairs in aqueous media. Using the pK(a)-pH relationship, we can rationalize why nature chose the canonical nucleobases in terms of hydrophobic and hydrophilic interactions, and further extrapolate its significance within the context of chemical evolution. The connection between the physicochemical properties of bioorganic compounds and the interactions with their aqueous environment directly affects structure and function, at both a molecular and a supramolecular level. A general structure-function pattern emerges in biomolecules and biopolymers in aqueous media near neutral pH. A pK(a) - pH < 2 generally prompts catalytic functions, central to metabolism, but a difference in pK(a) - pH > 2 seems to result in the emergence of structure, central to replication. While this general trend is observed throughout extant biology, it could have also been an important factor in chemical evolution.
Collapse
Affiliation(s)
- Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
5
|
Sun H, Sheng J, Hassan AEA, Jiang S, Gan J, Huang Z. Novel RNA base pair with higher specificity using single selenium atom. Nucleic Acids Res 2012; 40:5171-9. [PMID: 22323523 PMCID: PMC3367167 DOI: 10.1093/nar/gks010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Specificity of nucleobase pairing provides essential foundation for genetic information storage, replication, transcription and translation in all living organisms. However, the wobble base pairs, where U in RNA (or T in DNA) pairs with G instead of A, might compromise the high specificity of the base pairing. The U/G wobble pairing is ubiquitous in RNA, especially in non-coding RNA. In order to increase U/A pairing specificity, we have hypothesized to discriminate against U/G wobble pair by tailoring the steric and electronic effects at the 2-exo position of uridine and replacing the 2-exo oxygen with a selenium atom. We report here the first synthesis of the 2-Se-U-RNAs as well as the 2-Se-uridine (SeU) phosphoramidite. Our biophysical and structural studies of the SeU-RNAs indicate that this single atom replacement can indeed create a novel U/A base pair with higher specificity than the natural one. We reveal that the SeU/A pair maintains a structure virtually identical to the native U/A base pair, while discriminating against U/G wobble pair. This oxygen replacement with selenium offers a unique chemical strategy to enhance the base pairing specificity at the atomic level.
Collapse
Affiliation(s)
- Huiyan Sun
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
6
|
Ohkubo A, Kuwayama Y, Nishino Y, Tsunoda H, Seio K, Sekine M. Oligonucleotide synthesis involving deprotection of amidine-type protecting groups for nucleobases under acidic conditions. Org Lett 2010; 12:2496-9. [PMID: 20455549 DOI: 10.1021/ol100676j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amidine-type protecting groups, i.e., N,N-dimethylformamidine (dmf) and N,N-dibutylformamidine (dbf) groups, introduced into nucleobases were rapidly removed under mild acidic conditions using imidazolium triflate (IMT) or 1-hydroxybenztriazole (HOBt). This new deprotection strategy allowed a 2'-O-methyl-RNA derivative bearing a base-labile group to be efficiently synthesized using a silyl-type linker. It was also found that our new method could be applied to the synthesis of an unmodified RNA oligomer.
Collapse
Affiliation(s)
- Akihiro Ohkubo
- Department of Life Science, Tokyo Institute of Technology, J2-12, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Computational evaluation of the stability of 2′-O-methyl-RNA/RNA duplexes incorporating 3-deazaguanine derivatives by ab initio calculations and a molecular dynamics simulation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2008.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Synthesis and hybridization properties of oligodeoxynucleotides incorporating 2-N-carbamoylguanine derivatives as guanine analogs. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Seio K, Sasami T, Ohkubo A, Ando K, Sekine M. Highly selective recognition of cytosine over uracil and adenine by a guanine analogue, 2-N-acetyl-3-deazaguanine, in 2'-O-methyl-RNA/RNA and DNA duplexes. J Am Chem Soc 2007; 129:1026-7. [PMID: 17263372 DOI: 10.1021/ja064612g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kohji Seio
- Frontier Collaborative Research Center and Department of Life Science, Tokyo Institute of Technology, and CREST, JST, 4259 Nagatsuta, Yokohama, Japan 226-8501
| | | | | | | | | |
Collapse
|