1
|
Zielinski KA, Katz AM, Calvey GD, Pabit SA, Milano SK, Aplin C, San Emeterio J, Cerione RA, Pollack L. Chaotic advection mixer for capturing transient states of diverse biological macromolecular systems with time-resolved small-angle X-ray scattering. IUCRJ 2023; 10:363-375. [PMID: 37144817 PMCID: PMC10161774 DOI: 10.1107/s2052252523003482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Advances in time-resolved structural techniques, mainly in macromolecular crystallography and small-angle X-ray scattering (SAXS), allow for a detailed view of the dynamics of biological macromolecules and reactions between binding partners. Of particular promise, are mix-and-inject techniques, which offer a wide range of experimental possibility as microfluidic mixers are used to rapidly combine two species just prior to data collection. Most mix-and-inject approaches rely on diffusive mixers, which have been effectively used within crystallography and SAXS for a variety of systems, but their success is dependent on a specific set of conditions to facilitate fast diffusion for mixing. The use of a new chaotic advection mixer designed for microfluidic applications helps to further broaden the types of systems compatible with time-resolved mixing experiments. The chaotic advection mixer can create ultra-thin, alternating layers of liquid, enabling faster diffusion so that even more slowly diffusing molecules, like proteins or nucleic acids, can achieve fast mixing on timescales relevant to biological reactions. This mixer was first used in UV-vis absorbance and SAXS experiments with systems of a variety of molecular weights, and thus diffusion speeds. Careful effort was also dedicated to making a loop-loading sample-delivery system that consumes as little sample as possible, enabling the study of precious, laboratory-purified samples. The combination of the versatile mixer with low sample consumption opens the door to many new applications for mix-and-inject studies.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Andrea M. Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - George D. Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Shawn K. Milano
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
| | - Cody Aplin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
| | - Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| | - Richard A. Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York USA
- Department of Molecular Medicine, Cornell University, Ithaca, New York USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York USA
| |
Collapse
|
2
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
3
|
Bailly C. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022; 914:174661. [PMID: 34863996 DOI: 10.1016/j.ejphar.2021.174661] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
The bacterial thiopeptide thiostrepton (TS) is used as a veterinary medicine to treat bacterial infections. TS is a protein translation inhibitor, essentially active against Gram-positive bacteria and some Gram-negative bacteria. In procaryotes, TS abrogates binding of GTPase elongation factors to the 70S ribosome, by altering the structure of rRNA-L11 protein complexes. TS exerts also antimalarial effects by disrupting protein synthesis in the apicoplast genome of Plasmodium falciparum. Interestingly, the drug targets both the infectious pathogen (bacteria or parasite) and host cell, by inducing endoplasmic reticulum stress-mediated autophagy which contributes to enhance the host cell defense. In addition, TS has been characterized as a potent chemical inhibitor of the oncogenic transcription factor FoxM1, frequently overexpressed in cancers or other diseases. The capacity of TS to crosslink FoxM1, and a few other proteins such as peroxiredoxin 3 (PRX3) and the 19S proteasome, contributes to the anticancer effects of the thiopeptide. The anticancer activities of TS evidenced using diverse tumor cell lines, in vivo models and drug combinations are reviewed here, together with the implicated targets and mechanisms. The difficulty to formulate TS is a drag on the pharmaceutical development of the natural product. However, the design of hemisynthetic analogues and the use of micellar drug delivery systems should facilitate a broader utilization of the compound in human and veterinary medicines. This review shed light on the many pharmacological properties of TS, with the objective to promote its use as a pharmacological tool and medicinal product.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
4
|
Sinha S, Dwivedi N, Woodgett J, Tao S, Howard C, Fields TA, Jamadar A, Rao R. Glycogen synthase kinase-3β inhibits tubular regeneration in acute kidney injury by a FoxM1-dependent mechanism. FASEB J 2020; 34:13597-13608. [PMID: 32813289 DOI: 10.1096/fj.202000526rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is characterized by injury to the tubular epithelium that leads to the sudden loss of renal function. Proper tubular regeneration is essential to prevent progression to chronic kidney disease. In this study, we examined the role of FoxM1, a forkhead box family member transcription factor in tubular repair after AKI. Renal FoxM1 expression increased after renal ischemia/reperfusion (I/R)-induced AKI in mouse kidneys. Treatment with thiostrepton, a FoxM1 inhibitor, reduced FoxM1 regulated pro-proliferative factors and cell proliferation in vitro, and tubular regeneration in mouse kidneys after AKI. Glycogen synthase kinase-3 (GSK3) was found to be an upstream regulator of FoxM1 because GSK3 inhibition or renal tubular GSK3β gene deletion significantly increased FoxM1 expression, and improved tubular repair and renal function. GSK3 inactivation increased β-catenin, Cyclin D1, and c-Myc, and reduced cell cycle inhibitors p21 and p27. Importantly, thiostrepton treatment abolished the improved tubular repair in GSK3β knockout mice following AKI. These results demonstrate that FoxM1 is important for renal tubular regeneration following AKI and that GSK3β suppresses tubular repair by inhibiting FoxM1.
Collapse
Affiliation(s)
- Sonali Sinha
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nidhi Dwivedi
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - James Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shixin Tao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Christianna Howard
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy A Fields
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Pathology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abeda Jamadar
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Gabdulkhakov A, Mitroshin I, Garber M. Structure of the ribosomal P stalk base in archaean Methanococcus jannaschii. J Struct Biol 2020; 211:107559. [PMID: 32653645 DOI: 10.1016/j.jsb.2020.107559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 11/29/2022]
Abstract
Complexes of archaeal ribosomal proteins uL11 and uL10/P0 (the two-domain N-terminal fragment of uL10, uL10NTF/P0NTF) with the adjacent 74 nucleotides of 23S rRNA fragment (23SrRNA(74)) from Methanococcus jannaschii (Mja) were obtained, crystallized and their structures were studied. The comparative structural analysis of the complexes of Mja uL10NTF•23SrRNA(74) and Mja uL10NTF•uL11•23SrRNA(74) shows that the insertion of uL11 in the binary complex does not change the conformation of the 23S rRNA fragment. On the other hand, the interaction with this specific RNA fragment leads to the restructuring of uL11 compared to the structure of this protein in the free state. Besides, although analysis confirmed the mobility of uL10/P0 domain II, disproved the assumption that it may be in contact with rRNA or uL11. In addition, the Mja uL10NTF•uL11•23SrRNA(74) complex was cocrystallized with the antibiotic thiostrepton, and the structure of this complex was solved. The thiostrepton binding site in this archaeal complex was found between the 23S rRNA and the N-terminal domain (NTD) of the Mja uL11 protein, similar to its binding site in the one of bacterial ribosome complex with thiostrepton. Upon binding of thiostrepton, the NTD of uL11 shifts toward rRNA by 7 Å. Such a shift may be the cause of the inhibitory effect of the antibiotic on the recruitment of translation factors to the GTPase-activating region in archaeal ribosomes, similar to its inhibitory effect on protein synthesis in bacterial ribosomes.
Collapse
Affiliation(s)
- Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino, Moscow Region 142290, Russian Federation.
| | - Ivan Mitroshin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino, Moscow Region 142290, Russian Federation
| | - Maria Garber
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino, Moscow Region 142290, Russian Federation
| |
Collapse
|
6
|
Welty R, Rau M, Pabit S, Dunstan MS, Conn GL, Pollack L, Hall KB. Ribosomal Protein L11 Selectively Stabilizes a Tertiary Structure of the GTPase Center rRNA Domain. J Mol Biol 2019; 432:991-1007. [PMID: 31874150 DOI: 10.1016/j.jmb.2019.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/14/2023]
Abstract
The GTPase Center (GAC) RNA domain in bacterial 23S rRNA is directly bound by ribosomal protein L11, and this complex is essential to ribosome function. Previous cocrystal structures of the 58-nucleotide GAC RNA bound to L11 revealed the intricate tertiary fold of the RNA domain, with one monovalent and several divalent ions located in specific sites within the structure. Here, we report a new crystal structure of the free GAC that is essentially identical to the L11-bound structure, which retains many common sites of divalent ion occupation. This new structure demonstrates that RNA alone folds into its tertiary structure with bound divalent ions. In solution, we find that this tertiary structure is not static, but rather is best described as an ensemble of states. While L11 protein cannot bind to the GAC until the RNA has adopted its tertiary structure, new experimental data show that L11 binds to Mg2+-dependent folded states, which we suggest lie along the folding pathway of the RNA. We propose that L11 stabilizes a specific GAC RNA tertiary state, corresponding to the crystal structure, and that this structure reflects the functionally critical conformation of the rRNA domain in the fully assembled ribosome.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Rau
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA
| | - Suzette Pabit
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Mark S Dunstan
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta GA, 30322, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Clark Hall, Ithaca, NY, 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Nikulin AD. Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins. BIOCHEMISTRY (MOSCOW) 2018; 83:S111-S133. [DOI: 10.1134/s0006297918140109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
9
|
Mitroshin I, Garber M, Gabdulkhakov A. Crystallographic analysis of archaeal ribosomal protein L11. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2015; 71:1083-7. [PMID: 26249704 DOI: 10.1107/s2053230x15011395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/12/2015] [Indexed: 11/10/2022]
Abstract
Ribosomal protein L11 is an important part of the GTPase-associated centre in ribosomes of all organisms. L11 is a highly conserved two-domain ribosomal protein. The C-terminal domain of L11 is an RNA-binding domain that binds to a fragment of 23S rRNA and stabilizes its structure. The complex between L11 and 23S rRNA is involved in the GTPase activity of the translation elongation and release factors. Bacterial and archaeal L11-rRNA complexes are targets for peptide antibiotics of the thiazole class. To date, there is no complete structure of archaeal L11 owing to the mobility of the N-terminal domain of the protein. Here, the crystallization and X-ray analysis of the ribosomal protein L11 from Methanococcus jannaschii are reported. Crystals of the native protein and its selenomethionine derivative belonged to the orthorhombic space group I222 and were suitable for structural studies. Native and single-wavelength anomalous dispersion data sets have been collected and determination of the structure is in progress.
Collapse
Affiliation(s)
- Ivan Mitroshin
- Laboratory for Structural Studies of the Translation Apparatus, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - Maria Garber
- Laboratory for Structural Studies of the Translation Apparatus, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| | - Azat Gabdulkhakov
- Laboratory for Structural Studies of the Translation Apparatus, Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
10
|
Sandu C, Chandramouli N, Glickman JF, Molina H, Kuo CL, Kukushkin N, Goldberg AL, Steller H. Thiostrepton interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. J Cell Mol Med 2015; 19:2181-92. [PMID: 26033448 PMCID: PMC4568923 DOI: 10.1111/jcmm.12602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/03/2015] [Indexed: 11/30/2022] Open
Abstract
Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell-based high-throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin-proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell-based reporters, detection of global ubiquitination status, and proteasome-mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell-based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG-132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition.
Collapse
Affiliation(s)
- Cristinel Sandu
- Howard Hughes Medical Institute, Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| | | | - Joseph Fraser Glickman
- High Throughput Screening Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Chueh-Ling Kuo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | - Hermann Steller
- Howard Hughes Medical Institute, Strang Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
11
|
Yin S, Jiang H, Chen D, Murchie AIH. Substrate recognition and modification by the nosiheptide resistance methyltransferase. PLoS One 2015; 10:e0122972. [PMID: 25910005 PMCID: PMC4409310 DOI: 10.1371/journal.pone.0122972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
Background The proliferation of antibiotic resistant pathogens is an increasing threat to the general public. Resistance may be conferred by a number of mechanisms including covalent or mutational modification of the antibiotic binding site, covalent modification of the drug, or the over-expression of efflux pumps. The nosiheptide resistance methyltransferase (NHR) confers resistance to the thiazole antibiotic nosiheptide in the nosiheptide producer organism Streptomyces actuosus through 2ʹO-methylation of 23S rRNA at the nucleotide A1067. Although the crystal structures of NHR and the closely related thiostrepton-resistance methyltransferase (TSR) in complex with the cofactor S-Adenosyl-L-methionine (SAM) are available, the principles behind NHR substrate recognition and catalysis remain unclear. Methodology/Principal Findings We have analyzed the binding interactions between NHR and model 58 and 29 nucleotide substrate RNAs by gel electrophoresis mobility shift assays (EMSA) and fluorescence anisotropy. We show that the enzyme binds to RNA as a dimer. By constructing a hetero-dimer complex composed of one wild-type subunit and one inactive mutant NHR-R135A subunit, we show that only one functional subunit of the NHR homodimer is required for its enzymatic activity. Mutational analysis suggests that the interactions between neighbouring bases (G1068 and U1066) and A1067 have an important role in methyltransfer activity, such that the substitution of a deoxy sugar spacer (5ʹ) to the target nucleotide achieved near wild-type levels of methylation. A series of atomic substitutions at specific positions on the substrate adenine show that local base-base interactions between neighbouring bases are important for methylation. Conclusion/Significance Taken together these data suggest that local base-base interactions play an important role in aligning the substrate 2’ hydroxyl group of A1067 for methyl group transfer. Methylation of nucleic acids is playing an increasingly important role in fundamental biological processes and we anticipate that the approach outlined in this manuscript may be useful for investigating other classes of nucleic acid methyltransferases.
Collapse
Affiliation(s)
- Sitao Yin
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
| | - Hengyi Jiang
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
| | - Dongrong Chen
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- * E-mail: (AM); (DC)
| | - Alastair I. H. Murchie
- Key Laboratory of Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- Institutes of Biomedical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, PR China
- * E-mail: (AM); (DC)
| |
Collapse
|
12
|
Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system. Proc Natl Acad Sci U S A 2014; 111:E5498-507. [PMID: 25489067 DOI: 10.1073/pnas.1412070111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TipA is a transcriptional regulator found in diverse bacteria. It constitutes a minimal autoregulated multidrug resistance system against numerous thiopeptide antibiotics. Here we report the structures of its drug-binding domain TipAS in complexes with promothiocin A and nosiheptide, and a model of the thiostrepton complex. Drug binding induces a large transition from a partially unfolded to a globin-like structure. The structures rationalize the mechanism of promiscuous, yet specific, drug recognition: (i) a four-ring motif present in all known TipA-inducing antibiotics is recognized specifically by conserved TipAS amino acids; and (ii) the variable part of the antibiotic is accommodated within a flexible cleft that rigidifies upon drug binding. Remarkably, the identified four-ring motif is also the major interacting part of the antibiotic with the ribosome. Hence the TipA multidrug resistance mechanism is directed against the same chemical motif that inhibits protein synthesis. The observed identity of chemical motifs responsible for antibiotic function and resistance may be a general principle and could help to better define new leads for antibiotics.
Collapse
|
13
|
Wolf A, Schoof S, Baumann S, Arndt HD, Kirschner KN. Structure–activity relationships of thiostrepton derivatives: implications for rational drug design. J Comput Aided Mol Des 2014; 28:1205-15. [DOI: 10.1007/s10822-014-9797-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
|
14
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
15
|
Pröpper K, Holstein JJ, Hübschle CB, Bond CS, Dittrich B. Invariom refinement of a new monoclinic solvate of thiostrepton at 0.64 Å resolution. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1530-9. [DOI: 10.1107/s0907444913010664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/18/2013] [Indexed: 11/10/2022]
|
16
|
Wolf A, Baumann S, Arndt HD, Kirschner KN. Influence of thiostrepton binding on the ribosomal GTPase associated region characterized by molecular dynamics simulation. Bioorg Med Chem 2012; 20:7194-205. [PMID: 23107668 DOI: 10.1016/j.bmc.2012.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
The thiostrepton antibiotic inhibits bacterial protein synthesis by binding to a cleft formed by the ribosomal protein L11 and 23S's rRNA helices 43-44 on the 70S ribosome. It was proposed from crystal structures that the ligand restricts L11's N-terminal movement and thus prevents proper translation factor binding. An exact understanding of thiostrepton's impact on the binding site's dynamics at atomistic resolution is still missing. Here we report an all-atom molecular dynamics simulations of the binary L11·rRNA and the ternary L11·rRNA·thiostrepton complex (rRNA = helices 43-44). We demonstrate that thiostrepton directly impacts the binding site's atomic and biomacromolecular dynamics.
Collapse
Affiliation(s)
- Antje Wolf
- Department of Bioinformatics, Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | | | | | | |
Collapse
|
17
|
Zhang D, Liu G, Xue J, Lou J, Nierhaus KH, Gong W, Qin Y. Common chaperone activity in the G-domain of trGTPase protects L11-L12 interaction on the ribosome. Nucleic Acids Res 2012; 40:10851-65. [PMID: 22965132 PMCID: PMC3505967 DOI: 10.1093/nar/gks833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases-regardless of their different specific functions-use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions.
Collapse
Affiliation(s)
- Dandan Zhang
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Principal component and clustering analysis on molecular dynamics data of the ribosomal L11·23S subdomain. J Mol Model 2012; 19:539-49. [PMID: 22961589 PMCID: PMC3592554 DOI: 10.1007/s00894-012-1563-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/06/2012] [Indexed: 11/04/2022]
Abstract
With improvements in computer speed and algorithm efficiency, MD simulations are sampling larger amounts of molecular and biomolecular conformations. Being able to qualitatively and quantitatively sift these conformations into meaningful groups is a difficult and important task, especially when considering the structure-activity paradigm. Here we present a study that combines two popular techniques, principal component (PC) analysis and clustering, for revealing major conformational changes that occur in molecular dynamics (MD) simulations. Specifically, we explored how clustering different PC subspaces effects the resulting clusters versus clustering the complete trajectory data. As a case example, we used the trajectory data from an explicitly solvated simulation of a bacteria’s L11·23S ribosomal subdomain, which is a target of thiopeptide antibiotics. Clustering was performed, using K-means and average-linkage algorithms, on data involving the first two to the first five PC subspace dimensions. For the average-linkage algorithm we found that data-point membership, cluster shape, and cluster size depended on the selected PC subspace data. In contrast, K-means provided very consistent results regardless of the selected subspace. Since we present results on a single model system, generalization concerning the clustering of different PC subspaces of other molecular systems is currently premature. However, our hope is that this study illustrates a) the complexities in selecting the appropriate clustering algorithm, b) the complexities in interpreting and validating their results, and c) by combining PC analysis with subsequent clustering valuable dynamic and conformational information can be obtained.
Collapse
|
19
|
Ziegeler M, Cevec M, Richter C, Schwalbe H. NMR Studies of HAR1 RNA Secondary Structures Reveal Conformational Dynamics in the Human RNA. Chembiochem 2012; 13:2100-12. [DOI: 10.1002/cbic.201200401] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 12/19/2022]
|
20
|
A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat Struct Mol Biol 2012; 19:403-10. [PMID: 22407015 DOI: 10.1038/nsmb.2254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/31/2012] [Indexed: 11/08/2022]
Abstract
When elongation factor G (EF-G) binds to the ribosome, it first makes contact with the C-terminal domain (CTD) of L12 before interacting with the N-terminal domain (NTD) of L11. Here we have identified a universally conserved residue, Pro22 of L11, that functions as a proline switch (PS22), as well as the corresponding center of peptidyl-prolyl cis-trans isomerase (PPIase) activity on EF-G that drives the cis-trans isomerization of PS22. Only the cis configuration of PS22 allows direct contact between the L11 NTD and the L12 CTD. Mutational analyses of both PS22 and the residues of the EF-G PPIase center reveal their function in translational GTPase (trGTPase) activity, protein synthesis and cell survival in Escherichia coli. Finally, we demonstrate that all known universal trGTPases contain an active PPIase center. Our observations suggest that the cis-trans isomerization of the L11 PS22 is a universal event required for an efficient turnover of trGTPases throughout the translation process.
Collapse
|
21
|
Walter JD, Hunter M, Cobb M, Traeger G, Spiegel PC. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4. Nucleic Acids Res 2011; 40:360-70. [PMID: 21908407 PMCID: PMC3245911 DOI: 10.1093/nar/gkr623] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented.
Collapse
Affiliation(s)
- Justin D Walter
- Department of Chemistry, Western Washington University, 516 High Street, MS 9150, Bellingham, WA 98225-9150, USA
| | | | | | | | | |
Collapse
|
22
|
Jonker HRA, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H, Arndt HD. NMR structures of thiostrepton derivatives for characterization of the ribosomal binding site. Angew Chem Int Ed Engl 2011; 50:3308-12. [PMID: 21365717 DOI: 10.1002/anie.201003582] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/20/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Hendrik R A Jonker
- Johann Wolfgang Goethe-Universität, Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jonker HRA, Baumann S, Wolf A, Schoof S, Hiller F, Schulte KW, Kirschner KN, Schwalbe H, Arndt HD. NMR-Strukturen von Thiostrepton-Derivaten zur Charakterisierung der ribosomalen Bindetasche. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201003582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FHT. Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:1-61. [PMID: 21241883 DOI: 10.1016/j.pnmrs.2010.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Cyril Dominguez
- Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Antimicrob Agents Chemother 2011; 55:1338-48. [PMID: 21245445 DOI: 10.1128/aac.01096-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ribosome-targeting antibiotics exert their antimalarial activity on the apicoplast of the malaria parasite, an organelle of prokaryote origin having essential metabolic functions. These antibiotics typically cause a delayed-death phenotype, which manifests in parasite killing during the second replication cycle following administration. As an exception, treatment with the antibiotic thiostrepton results in an immediate killing. We recently demonstrated that thiostrepton and its derivatives interfere with the eukaryotic proteasome, a multimeric protease complex that is important for the degradation of ubiquitinated proteins. Here, we report that the thiostrepton-based compounds are active against chloroquine-sensitive and -resistant Plasmodium falciparum, where they rapidly eliminate parasites before DNA replication. The minor parasite fraction that escapes the fast killing of the first replication cycle is arrested in the schizont stage of the following cycle, displaying a delayed-death phenotype. Thiostrepton further exhibits gametocytocidal activity by eliminating gametocytes, the sexual precursor cells that are crucial for parasite transmission to the mosquito. Compound treatment results in an accumulation of ubiquitinated proteins in the blood stages, indicating an effect on the parasite proteasome. In accordance with these findings, expression profiling revealed that the proteasome is present in the nucleus and cytoplasm of trophozoites, schizonts, and gametocytes. In conclusion, thiostrepton derivatives represent promising candidates for malaria therapy by dually acting on two independent targets, the parasite proteasome and the apicoplast, with the capacity to eliminate both intraerythrocytic asexual and transmission stages of the parasite.
Collapse
|
26
|
Pandit B, Bhat UG, Gartel AL. Proteasome inhibitory activity of thiazole antibiotics. Cancer Biol Ther 2011; 11:43-7. [PMID: 21119308 DOI: 10.4161/cbt.11.1.13854] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Thiopeptides are sulfur containing highly modified macrocyclic antibiotics with a central pyridine/tetrapyridine/dehydropiperidine ring with up to three thiazole substituents on positions 2, 3 and 6. Thiazole antibiotics with central pyridine nucleus have a macrocyclic loop connecting thiazole rings at position 2 and 3 described as ring A. In addition antibiotics with central tetrahydropyridine nucleus have a quinaldic acid macrocycle also connected to thiazole on position 2 described as ring B. We have demonstrated before that thiazole antibiotics thiostrepton and Siomycin A act as proteasome inhibitors in mammalian tumor cells. Here we decided to test whether other known thiazole antibiotics such as berninamycin, micrococcin P1 and P2, thiocillin and YM-266183 (lacking the quinaldic acid ring B) demonstrate this activity. We found that none of them act as proteasome inhibitors. Moreover, structural modification of thiostrepton to thiostrepton methyl ester (with open B ring) also did not demonstrate this activity. These data suggest that B ring of thiostrepton and Siomycin A that is absent in other thiazole antibiotics determines the proteasome inhibitory activity of these drugs.
Collapse
Affiliation(s)
- Bulbul Pandit
- Department of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | | | | |
Collapse
|
27
|
Schoof S, Pradel G, Aminake MN, Ellinger B, Baumann S, Potowski M, Najajreh Y, Kirschner M, Arndt HD. Antiplasmodial thiostrepton derivatives: proteasome inhibitors with a dual mode of action. Angew Chem Int Ed Engl 2010; 49:3317-21. [PMID: 20358566 DOI: 10.1002/anie.200906988] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sebastian Schoof
- Technische Universität Dortmund, Fakultät Chemie, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang H, Wang Z, Shen Y, Wang P, Jia X, Zhao L, Zhou P, Gong R, Li Z, Yang Y, Chen D, Murchie AIH, Xu Y. Crystal Structure of the Nosiheptide-Resistance Methyltransferase of Streptomyces actuosus. Biochemistry 2010; 49:6440-50. [DOI: 10.1021/bi1005915] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huirong Yang
- Cancer Institute, Shanghai Cancer Center, Fudan University, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Zhe Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Shen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ping Wang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Xu Jia
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Zhao
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Chemistry, Fudan University, Han-Dan Road, Shanghai 200433, China
| | - Pei Zhou
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rui Gong
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Ze Li
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Ying Yang
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| | - Dongrong Chen
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Alastair I. H. Murchie
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- Department of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanhui Xu
- Cancer Institute, Shanghai Cancer Center, Fudan University, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, 130 Dong-An Road, Shanghai 200032, China
- School of Life Sciences, Fudan University, 220 Han-Dan Road, Shanghai 200433, China
| |
Collapse
|
29
|
Baumann S, Schoof S, Bolten M, Haering C, Takagi M, Shin-ya K, Arndt HD. Molecular Determinants of Microbial Resistance to Thiopeptide Antibiotics. J Am Chem Soc 2010; 132:6973-81. [DOI: 10.1021/ja909317n] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sascha Baumann
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany, and Biomedicinal Information Research Center (BIRC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Sebastian Schoof
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany, and Biomedicinal Information Research Center (BIRC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Marcel Bolten
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany, and Biomedicinal Information Research Center (BIRC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Claudia Haering
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany, and Biomedicinal Information Research Center (BIRC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Motoki Takagi
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany, and Biomedicinal Information Research Center (BIRC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kazuo Shin-ya
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany, and Biomedicinal Information Research Center (BIRC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hans-Dieter Arndt
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany, and Biomedicinal Information Research Center (BIRC), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
30
|
Schoof S, Pradel G, Aminake M, Ellinger B, Baumann S, Potowski M, Najajreh Y, Kirschner M, Arndt HD. Antiplasmodiale Thiostreptonderivate - Proteasominhibitoren mit einem dualen Wirkmechanismus. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Ravindranathan S, Oberstrass FC, Allain FHT. Increase in backbone mobility of the VTS1p-SAM domain on binding to SRE-RNA. J Mol Biol 2009; 396:732-46. [PMID: 20004205 DOI: 10.1016/j.jmb.2009.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 01/14/2023]
Abstract
The sterile alpha motif (SAM) domain of VTS1p, a posttranscriptional gene regulator, belongs to a family of SAM domains conserved from yeast to humans. Even though SAM domains were originally classified as protein-protein interaction domains, recently, it was shown that the yeast VTS1p-SAM and the SAM domain of its Drosophila homolog Smaug can specifically recognize RNA hairpins termed Smaug recognition element (SRE). Structural studies of the SRE-RNA complex of VTS1p-SAM revealed that the SAM domain primarily recognizes the shape of the RNA fold induced by the Watson-Crick base-pairing in the RNA pentaloop. Only the central G nucleotide is specifically recognized. The VTS1p-SAM domain recognizes SRE-RNAs with a CNGGN pentaloop where N is any nucleotide. The C1-G4 base pair in the wild type can be replaced by any pair of nucleotides that can form base pairs even though the binding affinity is greatest with a pyrimidine in position 1 and a purine in position 4. The interaction thus combines elements of sequence-specific and non-sequence-specific recognitions. The lack of structural rearrangements in either partner following binding is rather intriguing, suggesting that molecular dynamics may play an important role in imparting relaxed specificity with respect to the exact combination of nucleotides in the loop, except for the central nucleotide. In this work, we extend our previous studies of SRE-RNA interaction with VTS1p, by comparing the dynamics of the VTS1p-SAM domain both in its free form and when bound to SRE-RNA. The 15N relaxation studies of backbone dynamics suggest the presence of a dynamic interaction interface, with residues associated with specific G3 recognition becoming more rigid on RNA binding while other regions attain increased flexibility. The results parallel the observations from our studies of dynamics changes in SRE-RNA upon binding to VTS1p-SAM and shows that molecular dynamics could play a crucial role in modulating binding affinity and possibly contribute to the free energy of the interaction through an entropy-driven mechanism.
Collapse
|
32
|
Starosta AL, Qin H, Mikolajka A, Leung GYC, Schwinghammer K, Chen DYK, Cooperman BS, Wilson DN. Identification of distinct thiopeptide-antibiotic precursor lead compounds using translation machinery assays. CHEMISTRY & BIOLOGY 2009; 16:1087-96. [PMID: 19875082 PMCID: PMC3117328 DOI: 10.1016/j.chembiol.2009.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/06/2009] [Accepted: 09/10/2009] [Indexed: 11/20/2022]
Abstract
Most thiopeptide antibiotics target the translational machinery: thiostrepton (ThS) and nosiheptide (NoS) target the ribosome and inhibit translation factor function, whereas GE2270A/T binds to the elongation factor EF-Tu and prevents ternary complex formation. We have used several in vitro translational machinery assays to screen a library of thiopeptide antibiotic precursor compounds and identified four families of precursor compounds that are either themselves inhibitory or are able to relieve the inhibitory effects of ThS, NoS, or GE2270T. Some of these precursors represent distinct compounds with respect to their ability to bind to ribosomes. The results not only provide insight into the mechanism of action of thiopeptide compounds but also demonstrate the potential of such assays for identifying lead compounds that might be missed using conventional inhibitory screening protocols.
Collapse
Affiliation(s)
- Agata L. Starosta
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - Haiou Qin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Aleksandra Mikolajka
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - Gulice Y. C. Leung
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08 Singapore 138667
| | - Kathrin Schwinghammer
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| | - David Y.-K. Chen
- Chemical Synthesis Laboratory@Biopolis, Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, The Helios Block, #03–08 Singapore 138667
| | - Barry S. Cooperman
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Daniel N. Wilson
- Gene Center and Department of Chemistry and Biochemistry
- Center for Integrated Protein Science Munich (CiPSM), University of Munich, LMU, Feodor Lynen Str. 25, 81377, Munich, Germany
| |
Collapse
|
33
|
Lu JY, Riedrich M, Mikyna M, Arndt HD. Aza-Wittig-Reaktionen in der Synthese des A-Rings von Nosiheptid. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200903477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Lu JY, Riedrich M, Mikyna M, Arndt HD. Aza-Wittig-Supported Synthesis of the A Ring of Nosiheptide. Angew Chem Int Ed Engl 2009; 48:8137-40. [DOI: 10.1002/anie.200903477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
|
36
|
|
37
|
Schoof S, Arndt HD. d-Cysteine occurrence in thiostrepton may not necessitate an epimerase. Chem Commun (Camb) 2009:7113-5. [DOI: 10.1039/b912733j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Hall KB. RNA in motion. Curr Opin Chem Biol 2008; 12:612-8. [PMID: 18957331 DOI: 10.1016/j.cbpa.2008.09.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/05/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
Abstract
Although RNA duplex regions are highly structured and inflexible, other elements of an RNA molecule are capable of dynamic motions. These flexible regions are the sites of interactions with small molecules, proteins, and other RNAs, yet there are few descriptions of these regions that include the timescale and amplitude of their motions. No one technique is sufficient to accurately describe these motions, but the combination of in vitro methods, particularly NMR relaxation methods, and more robust in silico methods, is beginning to yield the type of data that can be used to understand RNA function. Very few RNAs have been described by both techniques, and here one such RNA and one RNA:protein complex are reviewed.
Collapse
Affiliation(s)
- Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
39
|
Demirci H, Gregory ST, Dahlberg AE, Jogl G. Multiple-site trimethylation of ribosomal protein L11 by the PrmA methyltransferase. Structure 2008; 16:1059-66. [PMID: 18611379 DOI: 10.1016/j.str.2008.03.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/24/2008] [Accepted: 03/28/2008] [Indexed: 10/21/2022]
Abstract
Ribosomal protein L11 is a universally conserved component of the large subunit, and plays a significant role during initiation, elongation, and termination of protein synthesis. In Escherichia coli, the lysine methyltransferase PrmA trimethylates the N-terminal alpha-amino group and the epsilon-amino groups of Lys3 and Lys39. Here, we report four PrmA-L11 complex structures in different orientations with respect to the PrmA active site. Two structures capture the L11 N-terminal alpha-amino group in the active site in a trimethylated post-catalytic state and in a dimethylated state with bound S-adenosyl-L-homocysteine. Two other structures show L11 in a catalytic orientation to modify Lys39 and in a noncatalytic orientation. The comparison of complex structures in different orientations with a minimal substrate recognition complex shows that the binding mode remains conserved in all L11 orientations, and that substrate orientation is brought about by the unusual interdomain flexibility of PrmA.
Collapse
Affiliation(s)
- Hasan Demirci
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
40
|
Kwok JMM, Myatt SS, Marson CM, Coombes RC, Constantinidou D, Lam EWF. Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol Cancer Ther 2008; 7:2022-32. [PMID: 18645012 DOI: 10.1158/1535-7163.mct-08-0188] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elevated expression or activity of the transcription factor forkhead box M1 (FOXM1) is associated with the development and progression of many malignancies, including breast cancer. In this study, we show that the thiazole antibiotic thiostrepton selectively induces cell cycle arrest and cell death in breast cancer cells through down-regulating FOXM1 expression. Crucially, our data show that thiostrepton treatment reduced FOXM1 expression in a time- and dose-dependent manner, independent of de novo protein synthesis and predominantly at transcriptional and gene promoter levels. Our results indicate that thiostrepton can induce cell death through caspase-dependent intrinsic and extrinsic apoptotic pathways as well as through caspase-independent death mechanisms, as observed in MCF-7 cells, which are deficient of caspase-3 and caspase-7. Cell cycle analysis showed that thiostrepton induced cell cycle arrest at G(1) and S phases and cell death, concomitant with FOXM1 repression in breast cancer cells. Furthermore, thiostrepton also shows efficacy in repressing breast cancer cell migration, metastasis, and transformation, which are all downstream functional attributes of FOXM1. We also show that overexpression of a constitutively active FOXM1 mutant, DeltaN-FOXM1, can abrogate the antiproliferative effects of thiostrepton. Interestingly, thiostrepton has no affect on FOXM1 expression and proliferation of the untransformed MCF-10A breast epithelial cells. Collectively, our data show that FOXM1 is one of the primary cellular targets of thiostrepton in breast cancer cells and that thiostrepton may represent a novel lead compound for targeted therapy of breast cancer with minimal toxicity against noncancer cells.
Collapse
Affiliation(s)
- Jimmy M-M Kwok
- Cancer Research-UK Labs, Department of Oncology, MRC Cyclotron Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Zhang C, Occi J, Masurekar P, Barrett JF, Zink DL, Smith S, Onishi R, Ha S, Salazar O, Genilloud O, Basilio A, Vicente F, Gill C, Hickey EJ, Dorso K, Motyl M, Singh SB. Isolation, structure, and antibacterial activity of philipimycin, a thiazolyl peptide discovered from Actinoplanes philippinensis MA7347. J Am Chem Soc 2008; 130:12102-10. [PMID: 18698773 DOI: 10.1021/ja803183u] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial resistance to antibiotics, particularly to multiple drug resistant antibiotics, is becoming cause for significant concern. The only really viable course of action is to discover new antibiotics with novel mode of actions. Thiazolyl peptides are a class of natural products that are architecturally complex potent antibiotics but generally suffer from poor solubility and pharmaceutical properties. To discover new thiazolyl peptides potentially with better desired properties, we designed a highly specific assay with a pair of thiazomycin sensitive and resistant strains of Staphylococcus aureus, which led to the discovery of philipimycin, a new thiazolyl peptide glycoside. It was isolated along with an acid-catalyzed degradation product by bioassay-guided fractionation. Structure of both compounds was elucidated by extensive application of 2D NMR, 1D TOCSY, and HRESIFT-MS/MS. Both compounds showed strong antibacterial activities against gram-positive bacteria including MRSA and exhibited MIC values ranging from 0.015 to 1 microg/mL. Philipimycin was significantly more potent than the degradation product. Both compounds showed selective inhibition of protein synthesis, indicating that they targeted the ribosome. Philipimycin was effective in vivo in a mouse model of S. aureus infection exhibiting an ED50 value of 8.4 mg/kg. The docking studies of philipimycin suggested that a part of the molecule interacts with the ribosome and another part with Pro23, Pro22, and Pro26 of L11 protein, which helped in explaining the differential of activities between the sensitive and resistant strains. The design and execution of the bioassay, the isolation, structure, in vitro and in vivo antibacterial activity, and docking studies of philipimycin and its degradation product are described.
Collapse
Affiliation(s)
- Chaowei Zhang
- Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oberstrass FC, Allain FHT, Ravindranathan S. Changes in Dynamics of SRE-RNA on Binding to the VTS1p-SAM Domain Studied by 13C NMR Relaxation. J Am Chem Soc 2008; 130:12007-20. [DOI: 10.1021/ja8023115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Florian C. Oberstrass
- Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zürich, Switzerland, and Central NMR Facility, National Chemical Laboratory, Pune 411008, India
| | - Frédéric H.-T. Allain
- Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zürich, Switzerland, and Central NMR Facility, National Chemical Laboratory, Pune 411008, India
| | - Sapna Ravindranathan
- Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zürich, Switzerland, and Central NMR Facility, National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
43
|
Baumann S, Schoof S, Harkal SD, Arndt HD. Mapping the binding site of thiopeptide antibiotics by proximity-induced covalent capture. J Am Chem Soc 2008; 130:5664-6. [PMID: 18380436 DOI: 10.1021/ja710608w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proximity-induced covalent capture (PICC) has been established for the investigation of ligand binding to composite protein/oligonucleotide target complexes. The RNA-induced attachment of the thiopeptides Thiostrepton and Nosiheptide to engineered Cys mutants of the ribosomal protein L11 was highly position selective and allowed mapping of their binding site at amino acid resolution.
Collapse
Affiliation(s)
- Sascha Baumann
- Fakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | | | | | | |
Collapse
|
44
|
Harms JM, Wilson DN, Schluenzen F, Connell SR, Stachelhaus T, Zaborowska Z, Spahn CM, Fucini P. Translational Regulation via L11: Molecular Switches on the Ribosome Turned On and Off by Thiostrepton and Micrococcin. Mol Cell 2008; 30:26-38. [DOI: 10.1016/j.molcel.2008.01.009] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/21/2007] [Accepted: 01/09/2008] [Indexed: 11/17/2022]
|
45
|
Haiser HJ, Karginov FV, Hannon GJ, Elliot MA. Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res 2008; 36:732-41. [PMID: 18084030 PMCID: PMC2241913 DOI: 10.1093/nar/gkm1096] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/12/2022] Open
Abstract
The ability to sense and respond to environmental and physiological signals is critical for the survival of the soil-dwelling Gram-positive bacterium Streptomyces coelicolor. Nutrient deprivation triggers the onset of a complex morphological differentiation process that involves the raising of aerial hyphae and formation of spore chains, and coincides with the production of a diverse array of clinically relevant antibiotics and other secondary metabolites. These processes are tightly regulated; however, the genes and signals involved have not been fully elucidated. Here, we report a novel tRNA cleavage event that follows the same temporal regulation as morphological and physiological differentiation, and is growth medium dependent. All tRNAs appear to be susceptible to cleavage; however, there appears to be a bias towards increased cleavage of those tRNAs that specify highly utilized codons. In contrast to what has been observed in eukaryotes, accumulation of tRNA halves in S. coelicolor is not significantly affected by amino acid starvation, and is also not affected by induction of the stringent response or inhibition of ribosome function. Mutants defective in aerial development and antibiotic production exhibit altered tRNA cleavage profiles relative to wild-type strains.
Collapse
Affiliation(s)
- Henry J. Haiser
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada and Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Howard Hughes Medical Institute, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Fedor V. Karginov
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada and Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Howard Hughes Medical Institute, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Gregory J. Hannon
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada and Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Howard Hughes Medical Institute, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Marie A. Elliot
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada and Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Howard Hughes Medical Institute, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
46
|
Zhou HX, Qin S, Tjong H. Modeling Protein–Protein and Protein–Nucleic Acid Interactions: Structure, Thermodynamics, and Kinetics. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2008. [DOI: 10.1016/s1574-1400(08)00004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
García-Marcos A, Morreale A, Guarinos E, Briones E, Remacha M, Ortiz AR, Ballesta JPG. In vivo assembling of bacterial ribosomal protein L11 into yeast ribosomes makes the particles sensitive to the prokaryotic specific antibiotic thiostrepton. Nucleic Acids Res 2007; 35:7109-17. [PMID: 17940088 PMCID: PMC2175356 DOI: 10.1093/nar/gkm773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic ribosomal stalk protein L12 and its bacterial orthologue L11 play a central role on ribosomal conformational changes during translocation. Deletion of the two genes encoding L12 in Saccharomyces cerevisiae resulted in a very slow-growth phenotype. Gene RPL12B, but not the RPL12A, cloned in centromeric plasmids fully restored control protein level and the growth rate when expressed in a L12-deprived strain. The same strain has been transformed to express Escherichia coli protein EcL11 under the control of yeast RPL12B promoter. The bacterial protein has been found in similar amounts in washed ribosomes from the transformed yeast strain and from control E. coli cells, however, EcL11 was unable to restore the defective acidic protein stalk composition caused by the absence of ScL12 in the yeast ribosome. Protein EcL11 induced a 10% increase in L12-defective cell growth rate, although the in vitro polymerizing capacity of the EcL11-containing ribosomes is restored in a higher proportion, and, moreover, the particles became partially sensitive to the prokaryotic specific antibiotic thiostrepton. Molecular dynamic simulations using modelled complexes support the correct assembly of bacterial L11 into the yeast ribosome and confirm its direct implication of its CTD in the binding of thiostrepton to ribosomes.
Collapse
Affiliation(s)
- Alberto García-Marcos
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid and Consejo Superior de investigaciones Científicas, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Kavran JM, Steitz TA. Structure of the base of the L7/L12 stalk of the Haloarcula marismortui large ribosomal subunit: analysis of L11 movements. J Mol Biol 2007; 371:1047-59. [PMID: 17599351 DOI: 10.1016/j.jmb.2007.05.091] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/24/2007] [Accepted: 05/30/2007] [Indexed: 11/16/2022]
Abstract
Initiation factors, elongation factors, and release factors all interact with the L7/L12 stalk of the large ribosomal subunit during their respective GTP-dependent cycles on the ribosome. Electron density corresponding to the stalk is not present in previous crystal structures of either 50 S subunits or 70 S ribosomes. We have now discovered conditions that result in a more ordered factor-binding center in the Haloarcula marismortui (H.ma) large ribosomal subunit crystals and consequently allows the visualization of the full-length L11, the N-terminal domain (NTD) of L10 and helices 43 and 44 of 23 S rRNA. The resulting model is currently the most complete reported structure of a L7/L12 stalk in the context of a ribosome. This region contains a series of intermolecular interfaces that are smaller than those typically seen in other ribonucleoprotein interactions within the 50 S subunit. Comparisons of the L11 NTD position between the current structure, which is has an NTD splayed out with respect to previous structures, and other structures of ribosomes in different functional states demonstrates a dynamic range of L11 NTD movements. We propose that the L11 NTD moves through three different relative positions during the translational cycle: apo-ribosome, factor-bound pre-GTP hydrolysis and post-GTP hydrolysis. These positions outline a pathway for L11 NTD movements that are dependent on the specific nucleotide state of the bound ligand. These three states are represented by the orientations of the L11 NTD relative to the ribosome and suggest that L11 may play a more specialized role in the factor binding cycle than previously appreciated.
Collapse
Affiliation(s)
- Jennifer M Kavran
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|