1
|
Ho JJ, Cheng E, Wong CJ, St-Germain JR, Dunham WH, Raught B, Gingras AC, Brown GW. The BLM-TOP3A-RMI1-RMI2 proximity map reveals that RAD54L2 suppresses sister chromatid exchanges. EMBO Rep 2025:10.1038/s44319-025-00374-z. [PMID: 39870965 DOI: 10.1038/s44319-025-00374-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025] Open
Abstract
Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers. The pathology of Bloom Syndrome stems from the impaired activity of the BLM-TOP3A-RMI1-RMI2 (BTRR) complex which suppresses crossover recombination to prevent potentially deleterious genome rearrangements. We provide a comprehensive BTRR proximal proteome, revealing proteins that suppress crossover recombination. We find that RAD54L2, a SNF2-family protein, physically interacts with BLM and suppresses sister chromatid exchanges. RAD54L2 is important for recruitment of BLM to chromatin and requires an intact ATPase domain to promote non-crossover recombination. Thus, the BTRR proximity map identifies a regulator of recombination.
Collapse
Affiliation(s)
- Jung Jennifer Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Edith Cheng
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Cassandra J Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jonathan R St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wade H Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
2
|
Liu K, Wang M, Wang L, Wang X, Feng H, Dai Q, Zhang C, Yu H. RMI1 is essential for maintaining rice genome stability at high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1735-1750. [PMID: 39569466 DOI: 10.1111/tpj.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/22/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Heat is a critical environmental stress for plant survival. One of its harmful effects on the cells is the disruption of genome integrity. However, the mechanisms by which plants cope with heat-induced DNA damage remain largely unknown. RMI1, a component of the RTR (RECQ4-TOP3α-RMI1) complex, plays a pivotal role in maintaining genome stability. In this study, we identified the target gene RMI1 by characterizing a high-temperature-sensitive mutant. The growth and development of rmi1-1 seedlings carrying a non-frameshift mutation in RMI1 were hindered at 38°C. Abnormal mitotic chromosome behaviours ultimately led to the cell death of root tips. Additionally, the presence of chromosome fragments during anaphase I caused pollen abortion and sterility in rmi1-1 plants. Yeast two-hybrid assays revealed that the interactions between RMI1-1 and RECQ4 or TOP3α were weakened with increasing temperature and entirely ceased at 36°C. In contrast, the functional RMI1 maintained its interactions with RECQ4 or TOP3α under the same conditions. These results indicate that the non-frameshift mutation in RMI1 disrupts the formation of the RTR complex at high temperatures, leading to defects in DNA repair and increased sensitivity of rmi1-1 under heat stress. However, embryos of the rmi1-cr2 mutant with a frameshift mutation in RMI1 exhibited complete lethality. In addition, the overexpression of RMI1 enhanced the heat tolerance in rice. These findings provide insights into the molecular mechanisms that RMI1 responds to high temperatures by maintaining genome stability in rice.
Collapse
Affiliation(s)
- Kangwei Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Mengna Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lengjing Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaofeng Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Haiyang Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qiang Dai
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Chao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
3
|
Liang F, Rai R, Sodeinde T, Chang S. TRF2-RAP1 represses RAD51-dependent homology-directed telomere repair by promoting BLM-mediated D-loop unwinding and inhibiting BLM-DNA2-dependent 5'-end resection. Nucleic Acids Res 2024; 52:9695-9709. [PMID: 39082275 PMCID: PMC11381343 DOI: 10.1093/nar/gkae642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 09/10/2024] Open
Abstract
Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.
Collapse
Affiliation(s)
- Fengshan Liang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Rekha Rai
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Tori Sodeinde
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| | - Sandy Chang
- Departments of Laboratory Medicine, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
- Pathology, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar St., New Haven, CT 06520, USA
| |
Collapse
|
4
|
Gál Z, Boukoura S, Oxe KC, Badawi S, Nieto B, Korsholm LM, Geisler SB, Dulina E, Rasmussen AV, Dahl C, Lv W, Xu H, Pan X, Arampatzis S, Stratou DE, Galanos P, Lin L, Guldberg P, Bartek J, Luo Y, Larsen DH. Hyper-recombination in ribosomal DNA is driven by long-range resection-independent RAD51 accumulation. Nat Commun 2024; 15:7797. [PMID: 39242676 PMCID: PMC11379943 DOI: 10.1038/s41467-024-52189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Ribosomal DNA (rDNA) encodes the ribosomal RNA genes and represents an intrinsically unstable genomic region. However, the underlying mechanisms and implications for genome integrity remain elusive. Here, we use Bloom syndrome (BS), a rare genetic disease characterized by DNA repair defects and hyper-unstable rDNA, as a model to investigate the mechanisms leading to rDNA instability. We find that in Bloom helicase (BLM) proficient cells, the homologous recombination (HR) pathway in rDNA resembles that in nuclear chromatin; it is initiated by resection, replication protein A (RPA) loading and BRCA2-dependent RAD51 filament formation. However, BLM deficiency compromises RPA-loading and BRCA1/2 recruitment to rDNA, but not RAD51 accumulation. RAD51 accumulates at rDNA despite depletion of long-range resection nucleases and rDNA damage results in micronuclei when BLM is absent. In summary, our findings indicate that rDNA is permissive to RAD51 accumulation in the absence of BLM, leading to micronucleation and potentially global genomic instability.
Collapse
Affiliation(s)
- Zita Gál
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Stavroula Boukoura
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Kezia Catharina Oxe
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Sara Badawi
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Blanca Nieto
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Lea Milling Korsholm
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Ekaterina Dulina
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | | | - Christina Dahl
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Wei Lv
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Huixin Xu
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
| | - Xiaoguang Pan
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | | | | | - Panagiotis Galanos
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
| | - Per Guldberg
- Molecular Diagnostics, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, 5000, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Science for Life Laboratory, Stockholm, Sweden
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, 8000, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, 8200, Denmark
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Rath SK, Nyamsuren G, Tampe B, Yu DSW, Hulshoff MS, Schlösser D, Maamari S, Zeisberg M, Zeisberg EM. Loss of tet methyl cytosine dioxygenase 3 (TET3) enhances cardiac fibrosis via modulating the DNA damage repair response. Clin Epigenetics 2024; 16:119. [PMID: 39192299 DOI: 10.1186/s13148-024-01719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Cardiac fibrosis is the hallmark of all forms of chronic heart disease. Activation and proliferation of cardiac fibroblasts are the prime mediators of cardiac fibrosis. Existing studies show that ROS and inflammatory cytokines produced during fibrosis not only signal proliferative stimuli but also contribute to DNA damage. Therefore, as a prerequisite to maintain sustained proliferation in fibroblasts, activation of distinct DNA repair mechanism is essential. RESULT In this study, we report that TET3, a DNA demethylating enzyme, which has been shown to be reduced in cardiac fibrosis and to exert antifibrotic effects does so not only through its demethylating activity but also through maintaining genomic integrity by facilitating error-free homologous recombination (HR) repair of DNA damage. Using both in vitro and in vivo models of cardiac fibrosis as well as data from human heart tissue, we demonstrate that the loss of TET3 in cardiac fibroblasts leads to spontaneous DNA damage and in the presence of TGF-β to a shift from HR to the fast but more error-prone non-homologous end joining repair pathway. This shift contributes to increased fibroblast proliferation in a fibrotic environment. In vitro experiments showed TET3's recruitment to H2O2-induced DNA double-strand breaks (DSBs) in mouse cardiac fibroblasts, promoting HR repair. Overexpressing TET3 counteracted TGF-β-induced fibroblast proliferation and restored HR repair efficiency. Extending these findings to human cardiac fibrosis, we confirmed TET3 expression loss in fibrotic hearts and identified a negative correlation between TET3 levels, fibrosis markers, and DNA repair pathway alteration. CONCLUSION Collectively, our findings demonstrate TET3's pivotal role in modulating DDR and fibroblast proliferation in cardiac fibrosis and further highlight TET3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Sandip Kumar Rath
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Gunsmaa Nyamsuren
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - David Sung-Wen Yu
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Melanie S Hulshoff
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Denise Schlösser
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Sabine Maamari
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research, Partner Site Lower Saxony, Göttingen, Germany.
| |
Collapse
|
6
|
Bereda CC, Dewey EB, Nasr MA, Sekelsky J. Functions of the Bloom Syndrome Helicase N-terminal Intrinsically Disordered Region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589165. [PMID: 38659896 PMCID: PMC11042211 DOI: 10.1101/2024.04.12.589165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis. Blm orthologs have a well conserved and highly structured RecQ helicase domain, but more than half of the protein, particularly in the N-terminus, is predicted to be unstructured. Because this region is poorly conserved across multicellular organisms, we compared closely related species to identify regions of conservation, potentially indicating important functions. We deleted two of these Drosophila-conserved regions in D. melanogaster using CRISPR/Cas9 gene editing and assessed the effects on different Blm functions. Each deletion had distinct effects on different Blm activities. Deletion of either conserved region 1 (CR1) or conserved region 2 (CR2) compromised DSB repair through synthesis-dependent strand annealing and resulted in increased mitotic crossovers. In contrast, CR2 is critical for embryonic development but CR1 is not as important. CR1 deletion allows for proficient meiotic chromosome segregation but does lead to defects in meiotic crossover designation and patterning. Finally, deletion of CR2 does not lead to significant meiotic defects, indicating that while each region has overlapping functions, there are discreet roles facilitated by each. These results provide novel insights into functions of the N-terminal disordered region of Blm.
Collapse
Affiliation(s)
- Colleen C. Bereda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Evan B. Dewey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mohamed A. Nasr
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Chen J, Wu M, Yang Y, Ruan C, Luo Y, Song L, Wu T, Huang J, Yang B, Liu T. TFIP11 promotes replication fork reversal to preserve genome stability. Nat Commun 2024; 15:1262. [PMID: 38341452 PMCID: PMC10858868 DOI: 10.1038/s41467-024-45684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Replication fork reversal, a critical protective mechanism against replication stress in higher eukaryotic cells, is orchestrated via a series of coordinated enzymatic reactions. The Bloom syndrome gene product, BLM, a member of the highly conserved RecQ helicase family, is implicated in this process, yet its precise regulation and role remain poorly understood. In this study, we demonstrate that the GCFC domain-containing protein TFIP11 forms a complex with the BLM helicase. TFIP11 exhibits a preference for binding to DNA substrates that mimic the structure generated at stalled replication forks. Loss of either TFIP11 or BLM leads to the accumulation of the other protein at stalled forks. This abnormal accumulation, in turn, impairs RAD51-mediated fork reversal and slowing, sensitizes cells to replication stress-inducing agents, and enhances chromosomal instability. These findings reveal a previously unidentified regulatory mechanism that modulates the activities of BLM and RAD51 at stalled forks, thereby impacting genome integrity.
Collapse
Affiliation(s)
- Junliang Chen
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, 321000, Shaoxing, China
| | - Mingjie Wu
- The Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yulan Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Chunyan Ruan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yi Luo
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lizhi Song
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Wu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jun Huang
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Ting Liu
- Zhejiang Provincial Key Laboratory of Geriatrics and Geriatrics Institute of Zhejiang Province, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
- Department of Cell Biology, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
8
|
Loe TK, Lazzerini Denchi E, Tricola GM, Azeroglu B. ALTercations at telomeres: stress, recombination and extrachromosomal affairs. Biochem Soc Trans 2023; 51:1935-1946. [PMID: 37767563 DOI: 10.1042/bst20230265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Approximately 15% of human cancers depend on the alternative lengthening of telomeres (ALT) pathway to maintain telomeres and proliferate. Telomeres that are elongated using ALT display unique features raising the exciting prospect of tailored cancer therapies. ALT-mediated telomere elongation shares several features with recombination-based DNA repair. Strikingly, cells that use the ALT pathway display abnormal levels of replication stress at telomeres and accumulate abundant extrachromosomal telomeric DNA. In this review, we examine recent findings that shed light on the ALT mechanisms and the strategies currently available to suppress this telomere elongation mechanism.
Collapse
Affiliation(s)
- Taylor K Loe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, U.S.A
| | - Eros Lazzerini Denchi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Gianna M Tricola
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| | - Benura Azeroglu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, U.S.A
| |
Collapse
|
9
|
Altmannova V, Firlej M, Müller F, Janning P, Rauleder R, Rousova D, Schäffler A, Bange T, Weir JR. Biochemical characterisation of Mer3 helicase interactions and the protection of meiotic recombination intermediates. Nucleic Acids Res 2023; 51:4363-4384. [PMID: 36942481 PMCID: PMC10201424 DOI: 10.1093/nar/gkad175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023] Open
Abstract
Crossing over between homologs is critical for the stable segregation of chromosomes during the first meiotic division. Saccharomyces cerevisiae Mer3 (HFM1 in mammals) is a SF2 helicase and member of the ZMM group of proteins, that facilitates the formation of the majority of crossovers during meiosis. Here, we describe the structural organisation of Mer3 and using AlphaFold modelling and XL-MS we further characterise the previously described interaction with Mlh1-Mlh2. We find that Mer3 also forms a previously undescribed complex with the recombination regulating factors Top3 and Rmi1 and that this interaction is competitive with Sgs1BLM helicase. Using in vitro reconstituted D-loop assays we show that Mer3 inhibits the anti-recombination activity of Sgs1 helicase, but only in the presence of Dmc1. Thus we provide a mechanism whereby Mer3 interacts with a network of proteins to protect Dmc1 derived D-loops from dissolution.
Collapse
Affiliation(s)
- Veronika Altmannova
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Magdalena Firlej
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Rahel Rauleder
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Dorota Rousova
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Andreas Schäffler
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Tanja Bange
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
11
|
Ovejero S, Viziteu E, Dutrieux L, Devin J, Lin YL, Alaterre E, Jourdan M, Basbous J, Requirand G, Robert N, de Boussac H, Seckinger A, Hose D, Vincent L, Herbaux C, Constantinou A, Pasero P, Moreaux J. The BLM helicase is a new therapeutic target in multiple myeloma involved in replication stress survival and drug resistance. Front Immunol 2022; 13:983181. [PMID: 36569948 PMCID: PMC9780552 DOI: 10.3389/fimmu.2022.983181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic cancer characterized by accumulation of malignant plasma cells in the bone marrow. To date, no definitive cure exists for MM and resistance to current treatments is one of the major challenges of this disease. The DNA helicase BLM, whose depletion or mutation causes the cancer-prone Bloom's syndrome (BS), is a central factor of DNA damage repair by homologous recombination (HR) and genomic stability maintenance. Using independent cohorts of MM patients, we identified that high expression of BLM is associated with a poor outcome with a significant enrichment in replication stress signature. We provide evidence that chemical inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan to efficiently inhibit growth and promote cell death in HMCLs. Moreover, ML216 treatment re-sensitizes melphalan-resistant cell lines to this conventional therapeutic agent. Altogether, these data suggest that inhibition of BLM in combination with DNA damaging agents could be of therapeutic interest in the treatment of MM, especially in those patients with high BLM expression and/or resistance to melphalan.
Collapse
Affiliation(s)
- Sara Ovejero
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elena Viziteu
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Laure Dutrieux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Julie Devin
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Yea-Lih Lin
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Elina Alaterre
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Michel Jourdan
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jihane Basbous
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Guilhem Requirand
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
| | | | | | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Laure Vincent
- Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Charles Herbaux
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Hematology and Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Philippe Pasero
- Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, Montpellier, France,Institute of Human Genetics, UMR 9002 CNRS-UM, Montpellier, France,Department of Clinical Hematology, CHU Montpellier, Montpellier, France,*Correspondence: Jérôme Moreaux,
| |
Collapse
|
12
|
Li S, Mutchler A, Zhu X, So S, Epps J, Guan D, Zhao X, Xue X. Multi-faceted regulation of the sumoylation of the Sgs1 DNA helicase. J Biol Chem 2022; 298:102092. [PMID: 35654140 PMCID: PMC9243176 DOI: 10.1016/j.jbc.2022.102092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Homologous recombination repairs DNA breaks and sequence gaps via the production of joint DNA intermediates such as Holliday junctions. Dissolving Holliday junctions into linear DNA repair products requires the activity of the Sgs1 helicase in yeast and of its homologs in other organisms. Recent studies suggest that the functions of these conserved helicases are regulated by sumoylation; however, the mechanisms that promote their sumoylation are not well understood. Here, we employed in vitro sumoylation systems and cellular assays to determine the roles of DNA and the scaffold protein Esc2 in Sgs1 sumoylation. We show that DNA binding enhances Sgs1 sumoylation in vitro. In addition, we demonstrate the Esc2’s midregion (MR) with DNA-binding activity is required for Sgs1 sumoylation. Unexpectedly, we found that the sumoylation-promoting effect of Esc2-MR is DNA independent, suggesting a second function for this domain. In agreement with our biochemical data, we found the Esc2-MR domain, like its SUMO E2-binding C-terminal domain characterized in previous studies, is required for proficient sumoylation of Sgs1 and its cofactors, Top3 and Rmi1, in cells. Taken together, these findings provide evidence that while DNA binding enhances Sgs1 sumoylation, Esc2-based stimulation of this modification is mediated by two distinct domains.
Collapse
Affiliation(s)
- Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ashley Mutchler
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Xinji Zhu
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Stephen So
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - John Epps
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Danying Guan
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Xiaoyu Xue
- Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, TX 78666, USA; Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
13
|
Division of Labor by the HELQ, BLM, and FANCM Helicases during Homologous Recombination Repair in Drosophila melanogaster. Genes (Basel) 2022; 13:genes13030474. [PMID: 35328029 PMCID: PMC8951532 DOI: 10.3390/genes13030474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Repair of DNA double-strand breaks by homologous recombination (HR) requires a carefully orchestrated sequence of events involving many proteins. One type of HR, synthesis-dependent strand annealing (SDSA), proceeds via the formation of a displacement loop (D-loop) when RAD51-coated single-stranded DNA invades a homologous template. The 3' end of the single-stranded DNA is extended by DNA synthesis. In SDSA, the D-loop is then disassembled prior to strand annealing. While many helicases can unwind D-loops in vitro, how their action is choreographed in vivo remains to be determined. To clarify the roles of various DNA helicases during SDSA, we used a double-strand gap repair assay to study the outcomes of homologous recombination repair in Drosophila melanogaster lacking the BLM, HELQ, and FANCM helicases. We found that the absence of any of these three helicases impairs gap repair. In addition, flies lacking both BLM and HELQ or HELQ and FANCM had more severe SDSA defects than the corresponding single mutants. In the absence of BLM, a large percentage of repair events were accompanied by flanking deletions. Strikingly, these deletions were mostly abolished in the blm helq and blm fancm double mutants. Our results suggest that the BLM, HELQ, and FANCM helicases play distinct roles during SDSA, with HELQ and FANCM acting early to promote the formation of recombination intermediates that are then processed by BLM to prevent repair by deletion-prone mechanisms.
Collapse
|
14
|
Harami GM, Pálinkás J, Seol Y, Kovács ZJ, Gyimesi M, Harami-Papp H, Neuman KC, Kovács M. The toposiomerase IIIalpha-RMI1-RMI2 complex orients human Bloom's syndrome helicase for efficient disruption of D-loops. Nat Commun 2022; 13:654. [PMID: 35115525 PMCID: PMC8813930 DOI: 10.1038/s41467-022-28208-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 01/12/2022] [Indexed: 01/05/2023] Open
Abstract
Homologous recombination (HR) is a ubiquitous and efficient process that serves the repair of severe forms of DNA damage and the generation of genetic diversity during meiosis. HR can proceed via multiple pathways with different outcomes that may aid or impair genome stability and faithful inheritance, underscoring the importance of HR quality control. Human Bloom's syndrome (BLM, RecQ family) helicase plays central roles in HR pathway selection and quality control via unexplored molecular mechanisms. Here we show that BLM's multi-domain structural architecture supports a balance between stabilization and disruption of displacement loops (D-loops), early HR intermediates that are key targets for HR regulation. We find that this balance is markedly shifted toward efficient D-loop disruption by the presence of BLM's interaction partners Topoisomerase IIIα-RMI1-RMI2, which have been shown to be involved in multiple steps of HR-based DNA repair. Our results point to a mechanism whereby BLM can differentially process D-loops and support HR control depending on cellular regulatory mechanisms.
Collapse
Affiliation(s)
- Gábor M Harami
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.
| | - János Pálinkás
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Yeonee Seol
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Zoltán J Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Máté Gyimesi
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary
| | - Hajnalka Harami-Papp
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.,Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mihály Kovács
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary. .,MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Pázmány P. s. 1/c, H-1117, Budapest, Hungary.
| |
Collapse
|
15
|
Vines AJ, Cox K, Leland BA, King MC. Homology-directed repair involves multiple strand invasion cycles in fission yeast. Mol Biol Cell 2022; 33:ar30. [PMID: 35080989 PMCID: PMC9250353 DOI: 10.1091/mbc.e20-07-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in time and space is not well understood. Here, we develop a microscopy-based assay in living fission yeast to determine the dynamics and kinetics of an engineered, site-specific interhomologue repair event. We observe highly efficient homology search and homology-directed repair in this system. Surprisingly, the initial distance between the DSB and the donor sequence does not correlate with the duration of repair. Instead, we observe that repair often involves multiple site-specific and Rad51-dependent colocalization events between the DSB and donor sequence. Upon loss of the RecQ helicase Rqh1 (BLM in humans) we observe rapid repair possibly involving a single strand invasion event, suggesting that multiple strand invasion cycles antagonized by Rqh1 could reflect ongoing SDSA. However, failure to colocalize with the donor sequence and execute repair is also more likely in rqh1Δ cells, possibly reflecting erroneous strand invasion. This work has implications for the molecular etiology of Bloom syndrome, caused by mutations in BLM and characterized by aberrant sister chromatid crossovers and inefficient repair.
Collapse
Affiliation(s)
- Amanda J Vines
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Kenneth Cox
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Bryan A Leland
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| |
Collapse
|
16
|
Ruchert JM, Brady MM, McMahan S, Lacey KJ, Latta LC, Sekelsky J, Stoffregen EP. Blm helicase facilitates rapid replication of repetitive DNA sequences in early Drosophila development. Genetics 2022; 220:iyab169. [PMID: 34849849 PMCID: PMC8733427 DOI: 10.1093/genetics/iyab169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/18/2021] [Indexed: 11/12/2022] Open
Abstract
The absence of functional BLM DNA helicase, a member of the RecQ family of helicases, is responsible for the rare human disorder Bloom Syndrome, which results in developmental abnormalities, DNA repair defects, genomic instability, and a predisposition to cancer. In Drosophila melanogaster, the orthologous Blm protein is essential during early development when the embryo is under the control of maternal gene products. We show that lack of functional maternal Blm during the syncytial cell cycles of Drosophila embryonic development results in severe nuclear defects and lethality. Amongst the small fraction of embryos from Blm mutant mothers that survive to adulthood, a prominent sex-bias favors the class that inherits less repetitive DNA content, which serves as an endogenous source of replication stress. This selection against repetitive DNA content reflects a role for Blm in facilitating replication through repetitive sequences during the rapid S-phases of syncytial cell cycles. During these syncytial cycles, Blm is not required for complex DNA double-strand break repair; however, the progeny sex-bias resulting from the absence of maternal Blm is exacerbated by repetitive DNA sequences and by the slowing of replication fork progression, suggesting that the essential role for Blm during this stage is to manage replication fork stress brought about by impediments to fork progression. Additionally, our data suggest that Blm is only required to manage this replication stress during embryonic development, and likely only during the early, rapid syncytial cell cycles, and not at later developmental stages. These results provide novel insights into Blm function throughout development.
Collapse
Affiliation(s)
- Jolee M Ruchert
- Physical, Life, Movement & Sport Sciences, Lewis-Clark State College, Lewiston, ID 83501, USA
| | - Morgan M Brady
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susan McMahan
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karly J Lacey
- Physical, Life, Movement & Sport Sciences, Lewis-Clark State College, Lewiston, ID 83501, USA
| | - Leigh C Latta
- Physical, Life, Movement & Sport Sciences, Lewis-Clark State College, Lewiston, ID 83501, USA
| | - Jeff Sekelsky
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric P Stoffregen
- Physical, Life, Movement & Sport Sciences, Lewis-Clark State College, Lewiston, ID 83501, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- SPIRE Postdoctoral Fellowship Program, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Wu C, Chang Y, Chen J, Su Y, Li L, Chen Y, Li Y, Wu J, Huang J, Zhao F, Wang W, Yin H, Wang S, Jin M, Lou Z, Zhu WG, Luo K, Zhang J, Yuan J. USP37 regulates DNA damage response through stabilizing and deubiquitinating BLM. Nucleic Acids Res 2021; 49:11224-11240. [PMID: 34606619 PMCID: PMC8565321 DOI: 10.1093/nar/gkab842] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/16/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37-BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.
Collapse
Affiliation(s)
- Chenming Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China,Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Yiming Chang
- Jinzhou Medical University, Jinzhou 121001, China
| | - Junliang Chen
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yang Su
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yuping Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yunhui Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinhuan Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wenrui Wang
- Department of Biotechnology, Bengbu Medical College, Anhui 233030, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Shunli Wang
- Department of Pathology,Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Mingpeng Jin
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Zhang
- Correspondence may also be addressed to Jie Zhang. Tel: +86 21 13917090488;
| | - Jian Yuan
- To whom correspondence should be addressed. Tel: +86 21 13818233596;
| |
Collapse
|
18
|
Rall-Scharpf M, Friedl TWP, Biechonski S, Denkinger M, Milyavsky M, Wiesmüller L. Sex-specific differences in DNA double-strand break repair of cycling human lymphocytes during aging. Aging (Albany NY) 2021; 13:21066-21089. [PMID: 34506302 PMCID: PMC8457596 DOI: 10.18632/aging.203519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.
Collapse
Affiliation(s)
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Michael Denkinger
- Institute for Geriatric Research Unit, Agaplesion Bethesda Hospital, Ulm University, Ulm, Germany
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
19
|
Prakash R, Sandoval T, Morati F, Zagelbaum JA, Lim PX, White T, Taylor B, Wang R, Desclos ECB, Sullivan MR, Rein HL, Bernstein KA, Krawczyk PM, Gautier J, Modesti M, Vanoli F, Jasin M. Distinct pathways of homologous recombination controlled by the SWS1-SWSAP1-SPIDR complex. Nat Commun 2021; 12:4255. [PMID: 34253720 PMCID: PMC8275761 DOI: 10.1038/s41467-021-24205-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Homology-directed repair (HDR), a critical DNA repair pathway in mammalian cells, is complex, leading to multiple outcomes with different impacts on genomic integrity. However, the factors that control these different outcomes are often not well understood. Here we show that SWS1-SWSAP1-SPIDR controls distinct types of HDR. Despite their requirement for stable assembly of RAD51 recombinase at DNA damage sites, these proteins are not essential for intra-chromosomal HDR, providing insight into why patients and mice with mutations are viable. However, SWS1-SWSAP1-SPIDR is critical for inter-homolog HDR, the first mitotic factor identified specifically for this function. Furthermore, SWS1-SWSAP1-SPIDR drives the high level of sister-chromatid exchange, promotes long-range loss of heterozygosity often involved with cancer initiation, and impels the poor growth of BLM helicase-deficient cells. The relevance of these genetic interactions is evident as SWSAP1 loss prolongs Blm-mutant embryo survival, suggesting a possible druggable target for the treatment of Bloom syndrome.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Thomas Sandoval
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Morati
- Cancer Research Center of Marseille, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Jennifer A Zagelbaum
- Department of Genetics and Development and Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Pei-Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Travis White
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brett Taylor
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raymond Wang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emilie C B Desclos
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Meghan R Sullivan
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hayley L Rein
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kara A Bernstein
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Przemek M Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jean Gautier
- Department of Genetics and Development and Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS, Inserm, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France
| | - Fabio Vanoli
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Ababou M. Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab 2021; 133:35-48. [PMID: 33736941 DOI: 10.1016/j.ymgme.2021.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
Autosomal hereditary recessive diseases characterized by genetic instability are often associated with cancer predisposition. Bloom syndrome (BS), a rare genetic disorder, with <300 cases reported worldwide, combines both. Indeed, patients with Bloom's syndrome are 150 to 300 times more likely to develop cancers than normal individuals. The wide spectrum of cancers developed by BS patients suggests that early initial events occur in BS cells which may also be involved in the initiation of carcinogenesis in the general population and these may be common to several cancers. BS is caused by mutations of both copies of the BLM gene, encoding the RecQ BLM helicase. This review discusses the different aspects of BS and the different cellular functions of BLM in genome surveillance and maintenance through its major roles during DNA replication, repair, and transcription. BLM's activities are essential for the stabilization of centromeric, telomeric and ribosomal DNA sequences, and the regulation of innate immunity. One of the key objectives of this work is to establish a link between BLM functions and the main clinical phenotypes observed in BS patients, as well as to shed new light on the correlation between the genetic instability and diseases such as immunodeficiency and cancer. The different potential implications of the BLM helicase in the tumorigenic process and the use of BLM as new potential target in the field of cancer treatment are also debated.
Collapse
Affiliation(s)
- Mouna Ababou
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco; Genomic Center of Human Pathologies, Faculty of medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| |
Collapse
|
21
|
Panday A, Willis NA, Elango R, Menghi F, Duffey EE, Liu ET, Scully R. FANCM regulates repair pathway choice at stalled replication forks. Mol Cell 2021; 81:2428-2444.e6. [PMID: 33882298 DOI: 10.1016/j.molcel.2021.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023]
Abstract
Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Erin E Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Mendez-Dorantes C, Tsai LJ, Jahanshir E, Lopezcolorado FW, Stark JM. BLM has Contrary Effects on Repeat-Mediated Deletions, based on the Distance of DNA DSBs to a Repeat and Repeat Divergence. Cell Rep 2021; 30:1342-1357.e4. [PMID: 32023454 PMCID: PMC7085117 DOI: 10.1016/j.celrep.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Repeat-mediated deletions (RMDs) often involve repetitive elements (e.g., short interspersed elements) with sequence divergence that is separated by several kilobase pairs (kbps). We have examined RMDs induced by DNA double-strand breaks (DSBs) under varying conditions of repeat sequence divergence (identical versus 1% and 3% divergent) and DSB/repeat distance (16 bp–28.4 kbp). We find that the BLM helicase promotes RMDs with long DSB/repeat distances (e.g., 28.4 kbp), which is consistent with a role in extensive DSB end resection, because the resection nucleases EXO1 and DNA2 affect RMDs similarly to BLM. In contrast, BLM suppresses RMDs with sequence divergence and intermediate (e.g., 3.3 kbp) DSB/repeat distances, which supports a role in heteroduplex rejection. The role of BLM in heteroduplex rejection is not epistatic with MSH2 and is independent of the annealing factor RAD52. Accordingly, the role of BLM on RMDs is substantially affected by DSB/repeat distance and repeat sequence divergence. Mendez-Dorantes et al. identify the BLM helicase as a key regulator of repeat-mediated deletions (RMDs). BLM, EXO1, and DNA2 mediate RMDs with remarkably long DNA break/repeat distances. BLM suppresses RMDs with sequence divergence that is optimal with a long non-homologous tail and is independent of MSH2 and RAD52.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
24
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- znbp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
25
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
26
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
27
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021. [DOI: 10.3389/fcell.2021.640755 order by 1-- azli] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
28
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
29
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
30
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
31
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
32
|
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund–Thomson syndrome (RTS), Baller–Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
|
33
|
Lu H, Davis AJ. Human RecQ Helicases in DNA Double-Strand Break Repair. Front Cell Dev Biol 2021; 9:640755. [PMID: 33718381 PMCID: PMC7947261 DOI: 10.3389/fcell.2021.640755] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
RecQ DNA helicases are a conserved protein family found in bacteria, fungus, plants, and animals. These helicases play important roles in multiple cellular functions, including DNA replication, transcription, DNA repair, and telomere maintenance. Humans have five RecQ helicases: RECQL1, Bloom syndrome protein (BLM), Werner syndrome helicase (WRN), RECQL4, and RECQL5. Defects in BLM and WRN cause autosomal disorders: Bloom syndrome (BS) and Werner syndrome (WS), respectively. Mutations in RECQL4 are associated with three genetic disorders, Rothmund-Thomson syndrome (RTS), Baller-Gerold syndrome (BGS), and RAPADILINO syndrome. Although no genetic disorders have been reported due to loss of RECQL1 or RECQL5, dysfunction of either gene is associated with tumorigenesis. Multiple genetically independent pathways have evolved that mediate the repair of DNA double-strand break (DSB), and RecQ helicases play pivotal roles in each of them. The importance of DSB repair is supported by the observations that defective DSB repair can cause chromosomal aberrations, genomic instability, senescence, or cell death, which ultimately can lead to premature aging, neurodegeneration, or tumorigenesis. In this review, we will introduce the human RecQ helicase family, describe in detail their roles in DSB repair, and provide relevance between the dysfunction of RecQ helicases and human diseases.
Collapse
Affiliation(s)
- Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Anthony J. Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
34
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
35
|
Shorrocks AMK, Jones SE, Tsukada K, Morrow CA, Belblidia Z, Shen J, Vendrell I, Fischer R, Kessler BM, Blackford AN. The Bloom syndrome complex senses RPA-coated single-stranded DNA to restart stalled replication forks. Nat Commun 2021; 12:585. [PMID: 33500419 PMCID: PMC7838300 DOI: 10.1038/s41467-020-20818-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.
Collapse
Affiliation(s)
- Ann-Marie K Shorrocks
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Samuel E Jones
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Kaima Tsukada
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Carl A Morrow
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Zoulikha Belblidia
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Johanna Shen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06520, USA
| | - Iolanda Vendrell
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew N Blackford
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
36
|
Bythell-Douglas R, Deans AJ. A Structural Guide to the Bloom Syndrome Complex. Structure 2020; 29:99-113. [PMID: 33357470 DOI: 10.1016/j.str.2020.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The Bloom syndrome complex is a DNA damage repair machine. It consists of several protein components which are functional in isolation, but interdependent in cells for the maintenance of accurate homologous recombination. Mutations to any of the genes encoding these proteins cause numerous physical and developmental markers as well as phenotypes of genome instability, infertility, and cancer predisposition. Here we review the published structural and biochemical data on each of the components of the complex: the helicase BLM, the type IA topoisomerase TOP3A, and the OB-fold-containing RMI and RPA subunits. We describe how each component contributes to function, interacts with each other, and the DNA that it manipulates/repairs.
Collapse
Affiliation(s)
- Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia.
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, 3056, Australia; Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, 3056, Australia.
| |
Collapse
|
37
|
Awate S, Sommers JA, Datta A, Nayak S, Bellani MA, Yang O, Dunn CA, Nicolae CM, Moldovan GL, Seidman MM, Cantor SB, Brosh RM. FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links. Nucleic Acids Res 2020; 48:9161-9180. [PMID: 32797166 DOI: 10.1093/nar/gkaa660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.
Collapse
Affiliation(s)
- Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sumeet Nayak
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher A Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
38
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
39
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
40
|
Grigaitis R, Ranjha L, Wild P, Kasaciunaite K, Ceppi I, Kissling V, Henggeler A, Susperregui A, Peter M, Seidel R, Cejka P, Matos J. Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis. Dev Cell 2020; 53:706-723.e5. [DOI: 10.1016/j.devcel.2020.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
41
|
Jain CK, Mukhopadhyay S, Ganguly A. RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy. Anticancer Agents Med Chem 2020; 20:1311-1326. [PMID: 32418530 DOI: 10.2174/1871520620666200518082433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/08/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Replication fork reversal and restart has gained immense interest as a central response mechanism to replication stress following DNA damage. Although the exact mechanism of fork reversal has not been elucidated precisely, the involvement of diverse pathways and different factors has been demonstrated, which are central to this phenomenon. RecQ helicases known for their vital role in DNA repair and maintaining genome stability has recently been implicated in the restart of regressed replication forks. Through interaction with vital proteins like Poly (ADP) ribose polymerase 1 (PARP1), these helicases participate in the replication fork reversal and restart phenomenon. Most therapeutic agents used for cancer chemotherapy act by causing DNA damage in replicating cells and subsequent cell death. These DNA damages can be repaired by mechanisms involving fork reversal as the key phenomenon eventually reducing the efficacy of the therapeutic agent. Hence the factors contributing to this repair process can be good selective targets for developing more efficient chemotherapeutic agents. In this review, we have discussed in detail the role of various proteins in replication fork reversal and restart with special emphasis on RecQ helicases. Involvement of other proteins like PARP1, recombinase rad51, SWI/SNF complex has also been discussed. Since RecQ helicases play a central role in the DNA damage response following chemotherapeutic treatment, we propose that targeting these helicases can emerge as an alternative to available intervention strategies. We have also summarized the current research status of available RecQ inhibitors and siRNA based therapeutic approaches that targets RecQ helicases. In summary, our review gives an overview of the DNA damage responses involving replication fork reversal and provides new directions for the development of more efficient and sustainable chemotherapeutic approaches.
Collapse
Affiliation(s)
- Chetan K Jain
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Swagata Mukhopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
42
|
Abstract
The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.
Collapse
Affiliation(s)
- Anna H Bizard
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
43
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
44
|
Xue C, Daley JM, Xue X, Steinfeld J, Kwon Y, Sung P, Greene EC. Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res 2019; 47:11225-11237. [PMID: 31544923 PMCID: PMC6868385 DOI: 10.1093/nar/gkz810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/12/2022] Open
Abstract
Bloom helicase (BLM) and its orthologs are essential for the maintenance of genome integrity. BLM defects represent the underlying cause of Bloom Syndrome, a rare genetic disorder that is marked by strong cancer predisposition. BLM deficient cells accumulate extensive chromosomal aberrations stemming from dysfunctions in homologous recombination (HR). BLM participates in several HR stages and helps dismantle potentially harmful HR intermediates. However, much remains to be learned about the molecular mechanisms of these BLM-mediated regulatory effects. Here, we use DNA curtains to directly visualize the activity of BLM helicase on single molecules of DNA. Our data show that BLM is a robust helicase capable of rapidly (∼70-80 base pairs per second) unwinding extensive tracts (∼8-10 kilobases) of double-stranded DNA (dsDNA). Importantly, we find no evidence for BLM activity on single-stranded DNA (ssDNA) that is bound by replication protein A (RPA). Likewise, our results show that BLM can neither associate with nor translocate on ssDNA that is bound by the recombinase protein RAD51. Moreover, our data reveal that the presence of RAD51 also blocks BLM translocation on dsDNA substrates. We discuss our findings within the context of potential regulator roles for BLM helicase during DNA replication and repair.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - James M Daley
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Justin Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
45
|
Kaur H, Gn K, Lichten M. Unresolved Recombination Intermediates Cause a RAD9-Dependent Cell Cycle Arrest in Saccharomyces cerevisiae. Genetics 2019; 213:805-818. [PMID: 31562181 PMCID: PMC6827386 DOI: 10.1534/genetics.119.302632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the conserved Sgs1-Top3-Rmi1 helicase-decatenase regulates homologous recombination by limiting accumulation of recombination intermediates that are crossover precursors. In vitro studies have suggested that this may be due to dissolution of double-Holliday junction joint molecules by Sgs1-driven convergent junction migration and Top3-Rmi1 mediated strand decatenation. To ask whether dissolution occurs in vivo, we conditionally depleted Sgs1 and/or Rmi1 during return to growth (RTG), a procedure where recombination intermediates formed during meiosis are resolved when cells resume the mitotic cell cycle. Sgs1 depletion during RTG delayed joint molecule resolution, but, ultimately, most were resolved and cells divided normally. In contrast, Rmi1 depletion resulted in delayed and incomplete joint molecule resolution, and most cells did not divide. rad9 ∆ mutation restored cell division in Rmi1-depleted cells, indicating that the DNA damage checkpoint caused this cell cycle arrest. Restored cell division in Rmi1-depleted rad9 ∆ cells frequently produced anucleate cells, consistent with the suggestion that persistent recombination intermediates prevented chromosome segregation. Our findings indicate that Sgs1-Top3-Rmi1 acts in vivo, as it does in vitro, to promote recombination intermediate resolution by dissolution. They also indicate that, in the absence of Top3-Rmi1 activity, unresolved recombination intermediates persist and activate the DNA damage response, which is usually thought to be activated by much earlier DNA damage-associated lesions.
Collapse
Affiliation(s)
- Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Krishnaprasad Gn
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
46
|
Abstract
Homologous Recombination (HR) is a high-fidelity process with a range of biologic functions from generation of genetic diversity to repair of DNA double-strand breaks (DSBs). In mammalian cells, BRCA2 facilitates the polymerization of RAD51 onto ssDNA to form a presynaptic nucleoprotein filament. This filament can then strand invade a homologous dsDNA to form the displacement loop (D-loop) structure leading to the eventual DSB repair. Here, we have found that RAD51 in stoichiometric excess over ssDNA can cause D-loop disassembly in vitro; furthermore, we show that this RAD51 activity is countered by BRCA2. These results demonstrate that BRCA2 may have a previously unexpected activity: regulation of HR at a post-synaptic stage by modulating RAD51-mediated D-loop dissociation. Our in vitro results suggest a mechanistic underpinning of homeostasis between RAD51 and BRCA2, which is an important factor of HR in mammalian cells.
Collapse
|
47
|
Jalan M, Oehler J, Morrow CA, Osman F, Whitby MC. Factors affecting template switch recombination associated with restarted DNA replication. eLife 2019; 8:41697. [PMID: 30667359 PMCID: PMC6358216 DOI: 10.7554/elife.41697] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination helps ensure the timely completion of genome duplication by restarting collapsed replication forks. However, this beneficial function is not without risk as replication restarted by homologous recombination is prone to template switching (TS) that can generate deleterious genome rearrangements associated with diseases such as cancer. Previously we established an assay for studying TS in Schizosaccharomyces pombe (Nguyen et al., 2015). Here, we show that TS is detected up to 75 kb downstream of a collapsed replication fork and can be triggered by head-on collision between the restarted fork and RNA Polymerase III transcription. The Pif1 DNA helicase, Pfh1, promotes efficient restart and also suppresses TS. A further three conserved helicases (Fbh1, Rqh1 and Srs2) strongly suppress TS, but there is no change in TS frequency in cells lacking Fml1 or Mus81. We discuss how these factors likely influence TS.
Collapse
Affiliation(s)
- Manisha Jalan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith Oehler
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carl A Morrow
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Fekret Osman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Matthew C Whitby
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Marsolier-Kergoat MC, Khan MM, Schott J, Zhu X, Llorente B. Mechanistic View and Genetic Control of DNA Recombination during Meiosis. Mol Cell 2019; 70:9-20.e6. [PMID: 29625041 DOI: 10.1016/j.molcel.2018.02.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/07/2017] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
Abstract
Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.
Collapse
Affiliation(s)
- Marie-Claude Marsolier-Kergoat
- CEA/DRF, I2BC/UMR 9198, SBIGeM, Gif-sur-Yvette, France; CNRS-UMR 7206, Éco-anthropologie et Ethnobiologie, Musée de l'Homme, 17, Place du Trocadéro et du 11 Novembre, Paris, France.
| | - Md Muntaz Khan
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Jonathan Schott
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, NY, USA
| | - Bertrand Llorente
- Cancer Research Center of Marseille, CNRS UMR7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France.
| |
Collapse
|
49
|
Wang H, Li S, Zhang H, Wang Y, Hao S, Wu X. BLM prevents instability of structure-forming DNA sequences at common fragile sites. PLoS Genet 2018; 14:e1007816. [PMID: 30496191 PMCID: PMC6289451 DOI: 10.1371/journal.pgen.1007816] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Genome instability often arises at common fragile sites (CFSs) leading to cancer-associated chromosomal rearrangements. However, the underlying mechanisms of how CFS protection is achieved is not well understood. We demonstrate that BLM plays an important role in the maintenance of genome stability of structure-forming AT-rich sequences derived from CFSs (CFS-AT). BLM deficiency leads to increased DSB formation and hyper mitotic recombination at CFS-AT and induces instability of the plasmids containing CFS-AT. We further showed that BLM is required for suppression of CFS breakage upon oncogene expression. Both helicase activity and ATR-mediated phosphorylation of BLM are important for preventing genetic instability at CFS-AT sequences. Furthermore, the role of BLM in protecting CFS-AT is not epistatic to that of FANCM, a translocase that is involved in preserving CFS stability. Loss of BLM helicase activity leads to drastic decrease of cell viability in FANCM deficient cells. We propose that BLM and FANCM utilize different mechanisms to remove DNA secondary structures forming at CFS-AT on replication forks, thereby preventing DSB formation and maintaining CFS stability. Common fragile sites (CFSs) are large chromosomal regions which are more prone to breakage than other places in the genome. They are a part of normal chromosome structure and are present in all human beings, but are also hotspots for chromosomal rearrangement during oncogenesis. Understanding how CFSs are protected to prevent genome instability is thus extremely important for revealing the mechanism underlying cancer development. We found that Bloom syndrome protein BLM is involved in resolving DNA secondary structures that arise at AT-rich sequences in CFSs, suggesting a critical function of BLM in protecting CFSs. We also found that this BLM function is distinct from the role of Fanconi anemia protein FANCM in protecting CFSs, and loss of both BLM and FANCM activities leads to cell death. These studies reveal important mechanisms of the maintenance of CFS stability in mammalian cells.
Collapse
Affiliation(s)
- Hailong Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Huimin Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ya Wang
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Shuailin Hao
- Beijing Key Laboratory of DNA Damage Response and College of Life Science, Capital Normal University, Beijing, China
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Fanconi Anaemia-Like Mph1 Helicase Backs up Rad54 and Rad5 to Circumvent Replication Stress-Driven Chromosome Bridges. Genes (Basel) 2018; 9:genes9110558. [PMID: 30453647 PMCID: PMC6266064 DOI: 10.3390/genes9110558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination (HR) is a preferred mechanism to deal with DNA replication impairments. However, HR synapsis gives rise to joint molecules (JMs) between the nascent sister chromatids, challenging chromosome segregation in anaphase. Joint molecules are resolved by the actions of several structure-selective endonucleases (SSEs), helicases and topoisomerases. Previously, we showed that yeast double mutants for the Mus81-Mms4 and Yen1 SSEs lead to anaphase bridges (ABs) after replication stress. Here, we have studied the role of the Mph1 helicase in preventing these anaphase aberrations. Mph1, the yeast ortholog of Fanconi anaemia protein M (FANCM), is involved in the removal of the D-loop, the first JM to arise in canonical HR. Surprisingly, the absence of Mph1 alone did not increase ABs; rather, it blocked cells in G2. Interestingly, in the search for genetic interactions with functionally related helicases and translocases, we found additive effects on the G2 block and post-G2 aberrations between mph1Δ and knockout mutants for Srs2, Rad54 and Rad5. Based on these interactions, we suggest that Mph1 acts coordinately with these helicases in the non-canonical HR-driven fork regression mechanism to bypass stalled replication forks.
Collapse
|