1
|
Martín-Alonso S, Álvarez M, Nevot M, Martínez MÁ, Menéndez-Arias L. Defective Strand-Displacement DNA Synthesis Due to Accumulation of Thymidine Analogue Resistance Mutations in HIV-2 Reverse Transcriptase. ACS Infect Dis 2020; 6:1140-1153. [PMID: 32129987 DOI: 10.1021/acsinfecdis.9b00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Retroviral reverse transcriptases (RTs) have the ability to carry out strand displacement DNA synthesis in the absence of accessory proteins. Although studies with RTs and other DNA polymerases suggest that fingers subdomain residues participate in strand displacement, molecular determinants of this activity are still unknown. A mutant human immunodeficiency virus type 2 (HIV-2) RT (M41L/D67N/K70R/S215Y) with low strand displacement activity was identified after screening a panel of purified enzymes, including several antiretroviral drug-resistant HIV-1 and HIV-2 RTs. In HIV-1, resistance to zidovudine and other thymidine analogues is conferred by different combinations of M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q (designated as thymidine analogue resistance-associated mutations (TAMs)). However, those changes are rarely selected in HIV-2. We show that the strand displacement activity of HIV-2ROD mutants M41L/S215Y and D67N/K70R was only slightly reduced compared to the wild-type RT. In contrast, mutants D67N/K70R/S215Y and M41L/D67N/K70R/S215Y were the most defective RTs in reactions carried out with nicked and gapped substrates. Moreover, these enzymes showed the lowest nucleotide incorporation rates in assays carried out with strand displacement substrates. Unlike in HIV-2, substitutions M41L/T215Y and D67N/K70R/T215Y/K219Q had no effect on the strand displacement activity of HIV-1BH10 RT. The strand displacement efficiencies of HIV-2ROD RTs were consistent with the lower replication capacity of HIV-2 strains bearing the four major TAMs in their RT. Our results highlight the role of the fingers subdomain in strand displacement. These findings might be important for the development of strand-displacement defective RTs.
Collapse
Affiliation(s)
- Samara Martín-Alonso
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| | - María Nevot
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Miguel Á. Martínez
- Laboratori de Retrovirologia, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biologı́a Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Cientı́ficas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco-UAM, 28049 Madrid, Spain
| |
Collapse
|
2
|
Guo JM, Ba MY, Yang Y, Yao CS, Yu M, Shi JG, Guo Y. Discovery of a semi-synthesized cyclolignan as a potent HIV-1 non-nucleoside reverse transcriptase inhibitor. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:76-85. [PMID: 29281889 DOI: 10.1080/10286020.2017.1417266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are essential components of highly active antiretroviral therapy (HAART) for human immunodeficiency virus type 1 (HIV-1) infection. In this study, we identified (+)-(7'S,8S,8'S)-3',4,4',5,5'-pentamethoxy-2,7'-cyclolignan (SG-1), a cyclolignan semi-synthesized from Machilus robusta and M. wangchiana extracts, as a potent NNRTI. SG-1 displayed anti-HIV-1 activity with an IC50 of 0.77 μmol/L by inhibiting reverse transcriptase (RT) RNA-dependent DNA polymerase activity through a direct binding. It had synergistic effects when combined with tenofovir/lamivudine or zidovudine/lamivudine. The pharmacodynamics properties of SG-1 render it a valuable lead for the development of novel NNRTIs.
Collapse
Affiliation(s)
- Jia-Mei Guo
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ming-Yu Ba
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ying Yang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Chun-Suo Yao
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Miao Yu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Jian-Gong Shi
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ying Guo
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
3
|
Bueno MTD, Reyes D, Llano M. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends. Viruses 2017; 9:v9090259. [PMID: 28914817 PMCID: PMC5618025 DOI: 10.3390/v9090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022] Open
Abstract
Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3′ processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3′ processed linear HIV-1 cDNA from exonucleolytic degradation.
Collapse
Affiliation(s)
- Murilo T D Bueno
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Daniel Reyes
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| |
Collapse
|
4
|
Li A, Li J, Johnson KA. HIV-1 Reverse Transcriptase Polymerase and RNase H (Ribonuclease H) Active Sites Work Simultaneously and Independently. J Biol Chem 2016; 291:26566-26585. [PMID: 27777303 DOI: 10.1074/jbc.m116.753160] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/20/2016] [Indexed: 01/15/2023] Open
Abstract
HIV reverse transcriptase plays a central role in viral replication and requires coordination of both polymerase and RNase H activities. Although this coordination is crucial in viral replication, whether a DNA/RNA hybrid can simultaneously engage both active sites has yet to be determined as structural and kinetic analyses have provided contradictory results. Single nucleotide incorporation and RNase H cleavage were examined using presteady-state kinetics with global data analysis. The results revealed three interconverting reverse transcriptase-DNA/RNA species; 43% were active for both sites simultaneously, 27% showed only polymerase activity, and the remaining 30% were nonproductive. Our data clearly demonstrated that the DNA/RNA hybrid could contact both active sites simultaneously, although the single nucleotide incorporation (105 s-1) was ∼5-fold faster than the cleavage (23 s-1). By using a series of primers with different lengths, we found that a string of at least 4-6 nucleotides downstream of the cleaving site was required for efficient RNA cleavage. This was corroborated by our observations that during processive nucleotide incorporation, sequential rounds of RNA cleavage occurred each time after ∼6 nucleotides were incorporated. More importantly, during processive primer extension, pyrophosphate (PPi) release was rate-limiting so that the average rate of nucleotide incorporation (∼28 s-1) was comparable with that of net RNA cleavage (∼27 nucleotides(s)). Although polymerization is efficient and processive, RNase H is inefficient and periodic. This combination allows the two catalytic centers of HIVRT to work simultaneously at similar speeds without being tightly coupled.
Collapse
Affiliation(s)
- An Li
- From the The University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| | - Jiawen Li
- From the The University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| | - Kenneth A Johnson
- From the The University of Texas at Austin, Institute for Cell and Molecular Biology, Department of Molecular Biosciences, Austin, Texas 78712
| |
Collapse
|
5
|
|
6
|
Olivares I, Sánchez-Jiménez C, Vieira CR, Toledano V, Gutiérrez-Rivas M, López-Galíndez C. Evidence of ongoing replication in a human immunodeficiency virus type 1 persistently infected cell line. J Gen Virol 2013; 94:944-954. [PMID: 23288426 DOI: 10.1099/vir.0.046573-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) persistently infected cell lines are characterized by the continuous viral production without cytopathic effect. However, it is not completely clear if this production is contributed only by viral transcription or also by new cycles of viral replication. We studied an HIV-1 persistently infected cell line, designated H61-D, providing evidence of new replication cycles as sustained by: (i) a decrease in viral production, measured by p24 protein, after treatment of the culture with 3'-azydo-3'-deoxythymydine; (ii) detection of new integration events in the course of cell culture, and (iii) finding of two-long-terminal repeat circles in the cells. H61-D cells were not infected by cell-free virus, but infection was possible by co-culture with another productive-infected cell line. In conclusion, ongoing viral replication is taking place in H61-D persistent cells and new infections are mediated by a cell-to-cell spread mechanism.
Collapse
Affiliation(s)
- Isabel Olivares
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Carmen Sánchez-Jiménez
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Catarina Reis Vieira
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Víctor Toledano
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mónica Gutiérrez-Rivas
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cecilio López-Galíndez
- Servicio de Virologia Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
7
|
Thermostable HIV-1 group O reverse transcriptase variants with the same fidelity as murine leukaemia virus reverse transcriptase. Biochem J 2011; 436:599-607. [DOI: 10.1042/bj20101852] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Wild-type HIV-1 group O RT (reverse transcriptase) shows increased thermostability in comparison with HIV-1 group M subtype B RT and MLV (murine leukaemia virus) RT. However, its utility in the amplification of RNA targets is limited by the reduced accuracy of lentiviral RTs compared with oncoretroviral RTs (i.e. MLV RT). The effects of the mutations K65R, R78A and K65R/V75I on the fidelity of HIV-1 group O RTs were studied using gel-based and M13mp2 lacZ forward-mutation fidelity assays. Forward-mutation assays demonstrated that mutant RTs K65R, R78A and K65R/V75I showed >9-fold increased accuracy in comparison with the wild-type enzyme and were approximately two times more faithful than the MLV RT. Compared with MLV RT, all of the tested HIV-1 group O RT variants showed decreased frameshift fidelity. However, K65R RT showed a higher tendency to introduce one-nucleotide deletions in comparison with other HIV-1 group O RT variants. R78A had a destabilizing effect on the RT, either in the presence or absence of V75I. At temperatures above 52 °C, K65R and K65R/V75I retained similar levels of DNA polymerase activity to the wild-type HIV-1 group O RT, but were more efficient than HIV-1 group M subtype B and MLV RTs. K65R, K65R/V75I and R78A RTs showed decreased misinsertion and mispair extension fidelity in comparison with the wild-type enzyme for most base pairs studied. These assays revealed that nucleotide selection is mainly governed by kpol (pol is polymerization) in the case of K65R, whereas both kpol and Kd affect nucleotide discrimination in the case of K65R/V75I.
Collapse
|
8
|
Scarth B, McCormick S, Götte M. Effects of mutations F61A and A62V in the fingers subdomain of HIV-1 reverse transcriptase on the translocational equilibrium. J Mol Biol 2010; 405:349-60. [PMID: 21056575 DOI: 10.1016/j.jmb.2010.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/30/2010] [Accepted: 10/08/2010] [Indexed: 01/20/2023]
Abstract
Changes of the translocational status of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) can affect susceptibility to antiretroviral drugs. The pyrophosphate analogue phosphonoformic acid (PFA) binds specifically to and traps the pretranslocated complex of HIV-1 RT, while nucleotide-competing RT inhibitors trap the posttranslocated conformation. Here, we attempted to assess the potential role of residues in the fingers subdomain as determinants of polymerase translocation. The fingers can exist in open and closed conformations; however, the relationship between such conformational changes and the translocation status of HIV-1 RT remains elusive. We focused on substitution F61A and the neighboring A62V that is frequently associated with drug-resistance-conferring mutations. The proximity of these residues to the nucleic acid substrate suggested a possible role in translocation for these amino acid changes. We employed site-specific footprinting, binding assays, and DNA-synthesis inhibition experiments to study F61A and A62V, alone and against a background of known drug-resistance mutations. We demonstrate that F61A causes a strong bias to the posttranslocational state, while A62V shows a subtle bias toward pretranslocation regardless of the mutational background. Increases in the population of pretranslocated complexes were accompanied by increases in PFA activity, while F61A is literally resistant to PFA. Our data shed light on equilibria between pre- and posttranslocated complexes with the fingers subdomain in its open or closed conformations. We propose that a binary, pretranslocated complex in a closed conformation is stabilized with A62V and destabilized with F61A.
Collapse
Affiliation(s)
- Brian Scarth
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Herschhorn A, Hizi A. Retroviral reverse transcriptases. Cell Mol Life Sci 2010; 67:2717-47. [PMID: 20358252 PMCID: PMC11115783 DOI: 10.1007/s00018-010-0346-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 02/22/2010] [Accepted: 03/08/2010] [Indexed: 12/22/2022]
Abstract
Reverse transcription is a critical step in the life cycle of all retroviruses and related retrotransposons. This complex process is performed exclusively by the retroviral reverse transcriptase (RT) enzyme that converts the viral single-stranded RNA into integration-competent double-stranded DNA. Although all RTs have similar catalytic activities, they significantly differ in several aspects of their catalytic properties, their structures and subunit composition. The RT of human immunodeficiency virus type-1 (HIV-1), the virus causing acquired immunodeficiency syndrome (AIDS), is a prime target for the development of antiretroviral drug therapy of HIV-1/AIDS carriers. Therefore, despite the fundamental contributions of other RTs to the understanding of RTs and retrovirology, most recent RT studies are related to HIV-1 RT. In this review we summarize the basic properties of different RTs. These include, among other topics, their structures, enzymatic activities, interactions with both viral and host proteins, RT inhibition and resistance to antiretroviral drugs.
Collapse
Affiliation(s)
- Alon Herschhorn
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
10
|
Menéndez-Arias L. Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 2009; 1:1137-65. [PMID: 21994586 PMCID: PMC3185545 DOI: 10.3390/v1031137] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022] Open
Abstract
Retroviruses are RNA viruses that replicate through a DNA intermediate, in a process catalyzed by the viral reverse transcriptase (RT). Although cellular polymerases and host factors contribute to retroviral mutagenesis, the RT errors play a major role in retroviral mutation. RT mutations that affect the accuracy of the viral polymerase have been identified by in vitro analysis of the fidelity of DNA synthesis, by using enzymological (gel-based) and genetic assays (e.g., M13mp2 lacZ forward mutation assays). For several amino acid substitutions, these observations have been confirmed in cell culture using viral vectors. This review provides an update on studies leading to the identification of the major components of the fidelity center in retroviral RTs.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" [Consejo Superior de Investigaciones Científicas (CSIC) & Universidad Autónoma de Madrid], Campus de Cantoblanco, 28049 Madrid, Spain; E-Mail: ; Tel.: +34 91 196 4494
| |
Collapse
|
11
|
Schultz SJ, Zhang M, Champoux JJ. Preferred sequences within a defined cleavage window specify DNA 3' end-directed cleavages by retroviral RNases H. J Biol Chem 2009; 284:32225-38. [PMID: 19778906 DOI: 10.1074/jbc.m109.043158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The RNase H activity of reverse transcriptase carries out three types of cleavage termed internal, RNA 5' end-directed, and DNA 3' end-directed. Given the strong association between the polymerase domain of reverse transcriptase and a DNA 3' primer terminus, we asked whether the distance from the primer terminus is paramount for positioning DNA 3' end-directed cleavages or whether preferred sequences and/or a cleavage window are important as they are for RNA 5' end-directed cleavages. Using the reverse transcriptases of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV), we determined the effects of sequence, distance, and substrate end structure on DNA 3' end-directed cleavages. Utilizing sequence-matched substrates, our analyses showed that DNA 3' end-directed cleavages share the same sequence preferences as RNA 5' end-directed cleavages, but the sites must fall in a narrow window between the 15th and 20th nucleotides from the recessed end for HIV-1 reverse transcriptase and between the 17th and 20th nucleotides for M-MuLV. Substrates with an RNA 5' end recessed by 1 (HIV-1) or 2-3 (M-MuLV) bases on a longer DNA could accommodate both types of end-directed cleavage, but further recession of the RNA 5' end excluded DNA 3' end-directed cleavages. For HIV-1 RNase H, the inclusion of the cognate dNTP enhanced DNA 3' end-directed cleavages at the 17th and 18th nucleotides. These data demonstrate that all three modes of retroviral RNase H cleavage share sequence determinants that may be useful in designing assays to identify inhibitors of retroviral RNases H.
Collapse
Affiliation(s)
- Sharon J Schultz
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
12
|
Champoux JJ, Schultz SJ. Ribonuclease H: properties, substrate specificity and roles in retroviral reverse transcription. FEBS J 2009; 276:1506-16. [PMID: 19228195 DOI: 10.1111/j.1742-4658.2009.06909.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Retroviral reverse transcriptases possess both a DNA polymerase and an RNase H activity. The linkage with the DNA polymerase activity endows the retroviral RNases H with unique properties not found in the cellular counterparts. In addition to the typical endonuclease activity on a DNA/RNA hybrid, cleavage by the retroviral enzymes is also directed by both DNA 3' recessed and RNA 5' recessed ends, and by certain nucleotide sequence preferences in the vicinity of the cleavage site. This spectrum of specificities enables retroviral RNases H to carry out a series of cleavage reactions during reverse transcription that degrade the viral RNA genome after minus-strand synthesis, precisely generate the primer for the initiation of plus strands, facilitate the initiation of plus-strand synthesis and remove both plus- and minus-strand primers after they have been extended.
Collapse
Affiliation(s)
- James J Champoux
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
13
|
Ehteshami M, Scarth BJ, Tchesnokov EP, Dash C, Le Grice SFJ, Hallenberger S, Jochmans D, Götte M. Mutations M184V and Y115F in HIV-1 reverse transcriptase discriminate against "nucleotide-competing reverse transcriptase inhibitors". J Biol Chem 2008; 283:29904-11. [PMID: 18728003 DOI: 10.1074/jbc.m804882200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Indolopyridones are potent inhibitors of reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1). Although the structure of these compounds differs from established nucleoside analogue RT inhibitors (NRTIs), previous studies suggest that the prototype compound INDOPY-1 may bind in close proximity to the polymerase active site. NRTI-associated mutations that are clustered around the active site confer decreased, e.g. M184V and Y115F, or increased, e.g. K65R, susceptibility to INDOPY-1. Here we have studied the underlying biochemical mechanism. RT enzymes containing the isolated mutations M184V and Y115F cause 2-3-fold increases in IC(50) values, while the combination of the two mutations causes a >15-fold increase. K65R can partially counteract these effects. Binding studies revealed that the M184V change reduces the affinity to INDOPY-1, while Y115F facilitates binding of the natural nucleotide substrate and the combined effects enhance the ability of the enzyme to discriminate against the inhibitor. Studies with other strategic mutations at residues Phe-61 and Ala-62, as well as the use of chemically modified templates shed further light on the putative binding site of the inhibitor and ternary complex formation. An abasic site residue at position n, i.e. opposite the 3'-end of the primer, prevents binding of INDOPY-1, while an abasic site at the adjacent position n+1 has no effect. Collectively, our findings provide strong evidence to suggest that INDOPY-1 can compete with natural deoxynucleoside triphosphates (dNTPs). We therefore propose to refer to members of this class of compounds as "nucleotide-competing RT inhibitors" (NcRTIs).
Collapse
Affiliation(s)
- Maryam Ehteshami
- Department of Microbiology & Immunology, McGill University, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Schultz SJ, Champoux JJ. RNase H activity: structure, specificity, and function in reverse transcription. Virus Res 2008; 134:86-103. [PMID: 18261820 DOI: 10.1016/j.virusres.2007.12.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/20/2023]
Abstract
This review compares the well-studied RNase H activities of human immunodeficiency virus, type 1 (HIV-1) and Moloney murine leukemia virus (MoMLV) reverse transcriptases. The RNase H domains of HIV-1 and MoMLV are structurally very similar, with functions assigned to conserved subregions like the RNase H primer grip and the connection subdomain, as well as to distinct features like the C-helix and loop in MoMLV RNase H. Like cellular RNases H, catalysis by the retroviral enzymes appears to involve a two-metal ion mechanism. Unlike cellular RNases H, the retroviral RNases H display three different modes of cleavage: internal, DNA 3' end-directed, and RNA 5' end-directed. All three modes of cleavage appear to have roles in reverse transcription. Nucleotide sequence is an important determinant of cleavage specificity with both enzymes exhibiting a preference for specific nucleotides at discrete positions flanking an internal cleavage site as well as during tRNA primer removal and plus-strand primer generation. RNA 5' end-directed and DNA 3' end-directed cleavages show similar sequence preferences at the positions closest to a cleavage site. A model for how RNase H selects cleavage sites is presented that incorporates both sequence preferences and the concept of a defined window for allowable cleavage from a recessed end. Finally, the RNase H activity of HIV-1 is considered as a target for anti-virals as well as a participant in drug resistance.
Collapse
Affiliation(s)
- Sharon J Schultz
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
15
|
Paulson BA, Zhang M, Schultz SJ, Champoux JJ. Substitution of alanine for tyrosine-64 in the fingers subdomain of M-MuLV reverse transcriptase impairs strand displacement synthesis and blocks viral replication in vivo. Virology 2007; 366:361-76. [PMID: 17532359 PMCID: PMC2045069 DOI: 10.1016/j.virol.2007.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 11/28/2022]
Abstract
A distinctive property of reverse transcriptase is the ability to carry out strand displacement synthesis in the absence of accessory proteins such as helicases or single-strand DNA binding proteins. Structure-function studies indicate that the fingers subdomain in HIV-1 reverse transcriptase contacts the template strand downstream of the primer terminus and is involved in strand displacement synthesis. Based on structural comparisons to the HIV-1 enzyme, we made single amino acid substitutions at the Tyr-64 and Leu-99 positions in the fingers subdomain of the M-MuLV reverse transcriptase to ask whether this subdomain has a similar role in displacement synthesis. In vitro assays comparing non-displacement versus displacement synthesis revealed that substitution of alanine at Tyr-64 generated a reverse transcriptase that was impaired in its capacity to carry out DNA and RNA displacement synthesis without affecting polymerase processivity or RNase H activity. However, substitution of Tyr-64 with phenylalanine and a variety of substitutions at position Leu-99 had no specific effect on displacement synthesis. The Y64A substitution prevented viral replication in vivo, and Y64A virus generated reduced levels of reverse transcription intermediates at all steps beyond the synthesis of minus strong stop DNA. The role of the fingers subdomain and in particular the possible contributions of the Tyr-64 residue in displacement synthesis are discussed.
Collapse
Affiliation(s)
- Benjamin A Paulson
- Department of Microbiology, School of Medicine, Box 357242, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|