1
|
Shen K, Din AU, Sinha B, Zhou Y, Qian F, Shen B. Translational informatics for human microbiota: data resources, models and applications. Brief Bioinform 2023; 24:7152256. [PMID: 37141135 DOI: 10.1093/bib/bbad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of human intestinal microbiology and diverse microbiome-related studies and investigations, a large amount of data have been generated and accumulated. Meanwhile, different computational and bioinformatics models have been developed for pattern recognition and knowledge discovery using these data. Given the heterogeneity of these resources and models, we aimed to provide a landscape of the data resources, a comparison of the computational models and a summary of the translational informatics applied to microbiota data. We first review the existing databases, knowledge bases, knowledge graphs and standardizations of microbiome data. Then, the high-throughput sequencing techniques for the microbiome and the informatics tools for their analyses are compared. Finally, translational informatics for the microbiome, including biomarker discovery, personalized treatment and smart healthcare for complex diseases, are discussed.
Collapse
Affiliation(s)
- Ke Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Ahmad Ud Din
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Baivab Sinha
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Yi Zhou
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuliang Qian
- Center for Systems Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| |
Collapse
|
2
|
Draft Genome Sequence of the Lignocellulolytic and Thermophilic Bacterium Thermobacillus xylanilyticus XE. Microbiol Resour Announc 2022; 11:e0093421. [PMID: 35258325 PMCID: PMC9022518 DOI: 10.1128/mra.00934-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium able to use several lignocelluloses as its main carbon source. This draft genome sequence gives insight into the genomic potential of this bacterium and provides new resources to understand the enzymatic mechanisms used by the bacterium during lignocellulose degradation and will allow the identification of robust lignocellulolytic enzymes.
Collapse
|
3
|
González JM, Hernández L, Manzano I, Pedrós-Alió C. Functional annotation of orthologs in metagenomes: a case study of genes for the transformation of oceanic dimethylsulfoniopropionate. ISME JOURNAL 2019; 13:1183-1197. [PMID: 30643200 DOI: 10.1038/s41396-019-0347-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/22/2018] [Accepted: 12/25/2018] [Indexed: 11/09/2022]
Abstract
Dimethylsulfoniopropionate (DMSP) is produced mainly by phytoplankton and bacteria. It is relatively abundant and ubiquitous in the marine environment, where bacterioplankton make use of it readily as both carbon and sulfur sources. In one transformation pathway, part of the molecule becomes dimethylsulfide (DMS), which escapes into the atmosphere and plays an important role in the sulfur exchange between oceans and atmosphere. Through its other dominant catabolic pathway, bacteria are able to use it as sulfur source. During the past few years, a number of genes involved in its transformation have been characterized. Identifying genes in taxonomic groups not amenable to conventional methods of cultivation is challenging. Indeed, functional annotation of genes in environmental studies is not straightforward, considering that particular taxa are not well represented in the available sequence databases. Furthermore, many genes belong to families of paralogs with similar sequences but perhaps different functions. In this study, we develop in silico approaches to infer protein function of an environmentally important gene (dmdA) that carries out the first step in the sulfur assimilation from DMSP. The method combines a set of tools to annotate a targeted gene in genome databases and metagenome assemblies. The method will be useful to identify genes that carry out key biochemical processes in the environment.
Collapse
Affiliation(s)
- José M González
- Department of Microbiology, University of La Laguna, La Laguna, Spain.
| | - Laura Hernández
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Iris Manzano
- Department of Microbiology, University of La Laguna, La Laguna, Spain
| | - Carlos Pedrós-Alió
- Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
4
|
Complete Genome Sequence of the Industrial Fast-Acidifying Strain Streptococcus thermophilus N4L. Microbiol Resour Announc 2018; 7:MRA01029-18. [PMID: 30533920 PMCID: PMC6256512 DOI: 10.1128/mra.01029-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022] Open
Abstract
Streptococcus thermophilus is one of the most used dairy starters for the production of yogurt and cheese. We report here the complete genome sequence of the industrial strain S. thermophilus N4L, which is used in dairy technology for its fast-acidifying phenotype. Streptococcus thermophilus is one of the most used dairy starters for the production of yogurt and cheese. We report here the complete genome sequence of the industrial strain S. thermophilus N4L, which is used in dairy technology for its fast-acidifying phenotype.
Collapse
|
5
|
Complete and Draft Genome Sequences of Nine Lactobacillus sakei Strains Selected from the Three Known Phylogenetic Lineages and Their Main Clonal Complexes. GENOME ANNOUNCEMENTS 2018; 6:6/16/e00082-18. [PMID: 29674528 PMCID: PMC5908949 DOI: 10.1128/genomea.00082-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here the complete and draft genome sequences of nine Lactobacillus sakei strains, selected from the entire range of clonal complexes from the three known lineages of the species. The strains were chosen to provide a wide view of pangenomic and plasmidic diversity for this important foodborne species.
Collapse
|
6
|
Argemi X, Martin V, Loux V, Dahyot S, Lebeurre J, Guffroy A, Martin M, Velay A, Keller D, Riegel P, Hansmann Y, Paul N, Prévost G. Whole-Genome Sequencing of Seven Strains of Staphylococcus lugdunensis Allows Identification of Mobile Genetic Elements. Genome Biol Evol 2017; 9:3746526. [PMID: 28444231 PMCID: PMC5425232 DOI: 10.1093/gbe/evx077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2017] [Indexed: 12/17/2022] Open
Abstract
Coagulase negative staphylococci are normal inhabitant of the human skin flora that account for an increasing number of infections, particularly hospital-acquired infections. Staphylococcus lugdunensis has emerged as a most virulent species causing various infections with clinical characteristics close to what clinicians usually observe with Staphylococcus aureus and both bacteria share more than 70% of their genome. Virulence of S. aureus relies on a large repertoire of virulence factors, many of which are encoded on mobile genetic elements. S. lugdunensis also bears various putative virulence genes but only one complete genome with extensive analysis has been published with one prophage sequence (φSL2) and a unique plasmid was previously described. In this study, we performed de novo sequencing, whole genome assembly and annotation of seven strains of S. lugdunensis from VISLISI clinical trial. We searched for the presence of virulence genes and mobile genetics elements using bioinformatics tools. We identified four new prophages, named φSL2 to φSL4, belonging to the Siphoviridae class and five plasmids, named pVISLISI_1 to pVISLISI_5. Three plasmids are homologous to known plasmids that include, amongst others, one S. aureus plasmid. The two other plasmids were not described previously. This study provides a new context for the study of S. lugdunensis virulence suggesting the occurrence of several genetic recombination’ with other staphylococci.
Collapse
Affiliation(s)
- Xavier Argemi
- Hôpitaux Universitaires, Maladies Infectieuses et Tropicales, Strasbourg, France.,Université de Strasbourg, CHRU de Strasbourg, VBP EA7290, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut de bactériologie, Hôpitaux Universitaires de Strasbourg, France
| | - Véronique Martin
- INRA - Unité Mathématiques et Informatique Appliquées, du Genome à l'Environnement (MaIAGE), Jouy-en Josas, France
| | - Valentin Loux
- INRA - Unité Mathématiques et Informatique Appliquées, du Genome à l'Environnement (MaIAGE), Jouy-en Josas, France
| | - Sandrine Dahyot
- Laboratoire GRAM EA2656, Université de Rouen - IRIB UFR Médecine-Pharmacie Batiment Recherche, Rouen, France
| | - Jérémie Lebeurre
- Laboratoire GRAM EA2656, Université de Rouen - IRIB UFR Médecine-Pharmacie Batiment Recherche, Rouen, France
| | - Aurélien Guffroy
- Service d'Immunologie Clinique et de Médecine Interne, Centre National de Référence des Maladies Auto-immunes Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,CNRS UPR 3572, Immunopathologie et Chimie Thérapeutique/Equipe, Tolérance Cellulaire B et Auto-immunité, Laboratoire d'excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Mickael Martin
- Service d'Immunologie Clinique et de Médecine Interne, Centre National de Référence des Maladies Auto-immunes Rares, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,CNRS UPR 3572, Immunopathologie et Chimie Thérapeutique/Equipe, Tolérance Cellulaire B et Auto-immunité, Laboratoire d'excellence Medalis, Institute of Molecular and Cellular Biology (IBMC), Strasbourg, France
| | - Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg, Strasbourg, France.,2-INSERM, UMR_S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Daniel Keller
- Université de Strasbourg, CHRU de Strasbourg, VBP EA7290, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut de bactériologie, Hôpitaux Universitaires de Strasbourg, France
| | - Philippe Riegel
- Université de Strasbourg, CHRU de Strasbourg, VBP EA7290, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut de bactériologie, Hôpitaux Universitaires de Strasbourg, France
| | - Yves Hansmann
- Hôpitaux Universitaires, Maladies Infectieuses et Tropicales, Strasbourg, France.,Université de Strasbourg, CHRU de Strasbourg, VBP EA7290, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut de bactériologie, Hôpitaux Universitaires de Strasbourg, France
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gilles Prévost
- Université de Strasbourg, CHRU de Strasbourg, VBP EA7290, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut de bactériologie, Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
7
|
Christo-Foroux E, Vallaeys T, Loux V, Dassa E, Deutscher J, Wandersman C, Livernois A, Hot C, Criscuolo A, Dauga C, Clermont D, Chesneau O. Manual and expert annotation of the nearly complete genome sequence of Staphylococcus sciuri strain ATCC 29059: A reference for the oxidase-positive staphylococci that supports the atypical phenotypic features of the species group. Syst Appl Microbiol 2017; 40:401-410. [PMID: 28890241 DOI: 10.1016/j.syapm.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022]
Abstract
Staphylococcus sciuri is considered to be one of the most ancestral species in the natural history of the Staphylococcus genus that consists of 48 validly described species. It belongs to the basal group of oxidase-positive and novobiocin-resistant staphylococci that diverged from macrococci approximately 250 million years ago. Contrary to other groups, the S. sciuri species group has not developed host-specific colonization strategies. Genome analysis of S. sciuri ATCC 29059 provides here the first genetic basis for atypical traits that would support the switch between the free-living style and the infective state in animals and humans. From among the most remarkable features, it was noticed in this extensive study that there were a number of phosphoenolpyruvate:carbohydrate phosphotransferase systems (PTS), almost twice as many as any other staphylococci, and the co-occurrence of mevalonate and non-mevalonate pathways for isoprenoid synthesis. The sequenced strain was devoid of the main virulence factors present in Staphylococcus aureus, although it exhibited numerous heme and iron acquisition systems, as well as crt and aldH genes necessary for gold pigment synthesis. The sensing and signaling networks, exemplified by a large and typical repertoire of two-component regulatory systems and a complete panel of master regulators, such as agr, rex, mgrA, rot, sarA and sarR genes, depict the background in which S. aureus virulence genes were later acquired. An additional sigma factor, a distinct set of electron transducer elements and many gene operons similar to those found in Bacillus spp. would constitute the most visible remnant links with Bacillaceae organisms.
Collapse
Affiliation(s)
- Eugene Christo-Foroux
- Département de Microbiologie, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Tatiana Vallaeys
- Département de Biologie Ecologie, Université de Montpellier, CC 13002, Place Eugène Bataillon, 34095 Montpellier, France.
| | - Valentin Loux
- MaIAGE, INRA, Université Paris-Saclay, Domaine de Vilvert, 78352 Jouy-en-Josas, France.
| | - Elie Dassa
- Département de Microbiologie, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Josef Deutscher
- CNRS, UMR 8261 Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Université Paris Diderot, Sorbonne-Paris-Cité, 13 rue Pierre et Marie Curie, Paris, France.
| | - Cécile Wandersman
- Département de Microbiologie, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Aurélien Livernois
- Département de Microbiologie, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France; Département de Biologie Ecologie, Université de Montpellier, CC 13002, Place Eugène Bataillon, 34095 Montpellier, France
| | - Chloe Hot
- Département de Microbiologie, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Alexis Criscuolo
- Hub, Center for Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Catherine Dauga
- International Group of Data Analysis (IGDA), Center for Bioinformatics, Biostatistics and Integrative Biology (C3BI), Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Dominique Clermont
- Collection de l'Institut Pasteur (CIP), Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| | - Olivier Chesneau
- Département de Microbiologie, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
8
|
do Carmo FLR, Rabah H, Huang S, Gaucher F, Deplanche M, Dutertre S, Jardin J, Le Loir Y, Azevedo V, Jan G. Propionibacterium freudenreichii Surface Protein SlpB Is Involved in Adhesion to Intestinal HT-29 Cells. Front Microbiol 2017; 8:1033. [PMID: 28642747 PMCID: PMC5462946 DOI: 10.3389/fmicb.2017.01033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/23/2017] [Indexed: 12/16/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium traditionally used as a cheese ripening starter and more recently for its probiotic abilities based on the release of beneficial metabolites. In addition to these metabolites (short-chain fatty acids, vitamins, and bifidogenic factor), P. freudenreichii revealed an immunomodulatory effect confirmed in vivo by the ability to protect mice from induced acute colitis. This effect is, however, highly strain-dependent. Local action of metabolites and of immunomodulatory molecules is favored by the ability of probiotics to adhere to the host cells. This property depends on key surface compounds, still poorly characterized in propionibacteria. In the present study, we showed different adhesion rates to cultured human intestinal cells, among strains of P. freudenreichii. The most adhesive one was P. freudenreichii CIRM-BIA 129, which is known to expose surface-layer proteins. We evidenced here the involvement of these proteins in adhesion to cultured human colon cells. We then aimed at deciphering the mechanisms involved in adhesion. Adhesion was inhibited by antibodies raised against SlpB, one of the surface-layer proteins in P. freudenreichii CIRM-BIA 129. Inactivation of the corresponding gene suppressed adhesion, further evidencing the key role of slpB product in cell adhesion. This work confirms the various functions fulfilled by surface-layer proteins, including probiotic/host interactions. It opens new perspectives for the understanding of probiotic determinants in propionibacteria, and for the selection of the most efficient strains within the P. freudenreichii species.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Houem Rabah
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Pôle Agronomique OuestRennes, France
| | - Song Huang
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow UniversitySuzhou, China
| | - Floriane Gaucher
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Martine Deplanche
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Stéphanie Dutertre
- Microscopy Rennes Imaging Center, Biosit - UMS CNRS 3480/US, INSERM 018, University of Rennes 1Rennes, France
| | - Julien Jardin
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Yves Le Loir
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| | - Vasco Azevedo
- Federal University of Minas Gerais - Instituto de Ciências BiológicasBelo Horizonte, Brazil
| | - Gwénaël Jan
- Science et Technologie du Lait et de l'Oeuf, Institut National de la Recherche Agronomique, Agrocampus OuestRennes, France
| |
Collapse
|
9
|
Complete Genome Sequence of Flavobacteriumpsychrophilum Strain OSU THCO2-90, Used for Functional Genetic Analysis. GENOME ANNOUNCEMENTS 2017; 5:5/8/e01665-16. [PMID: 28232446 PMCID: PMC5323625 DOI: 10.1128/genomea.01665-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the complete annotated genome sequence of Flavobacterium psychrophilum OSU THCO2-90, isolated from Coho salmon (Oncorhynchus kisutch) in Oregon. The genome consists of a circular chromosome with 2,343 predicted open reading frames. This strain has proved to be a valuable tool for functional genomics.
Collapse
|
10
|
Draft Genome Sequences of 18 Psychrotolerant and 2 Thermotolerant Strains Representative of Particular Ecotypes in the Bacillus cereus Group. GENOME ANNOUNCEMENTS 2017; 5:5/5/e01568-16. [PMID: 28153905 PMCID: PMC5289691 DOI: 10.1128/genomea.01568-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria from the Bacillus cereus group exhibit genetic and physiological diversity through different ecotypes. Here, we present the draft genome sequences of 20 bacterial strains belonging to the contrasted psychrotolerant and thermotolerant ecotypes.
Collapse
|
11
|
Complete Genome Sequence of Lactococcus lactis subsp. lactis A12, a Strain Isolated from Wheat Sourdough. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00692-16. [PMID: 27634985 PMCID: PMC5026425 DOI: 10.1128/genomea.00692-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the complete genome sequence of Lactococcus lactis subsp. lactis strain A12, a strain isolated from sourdough. The circular chromosome and the four plasmids reveal genes involved in carbohydrate metabolism that are potentially required for the persistence of this strain in such a complex ecosystem.
Collapse
|
12
|
Mhedbi-Hajri N, Yahiaoui N, Mondy S, Hue N, Pélissier F, Faure D, Dessaux Y. Transcriptome analysis revealed that a quorum sensing system regulates the transfer of the pAt megaplasmid in Agrobacterium tumefaciens. BMC Genomics 2016; 17:661. [PMID: 27543103 PMCID: PMC4992315 DOI: 10.1186/s12864-016-3007-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/10/2016] [Indexed: 12/02/2022] Open
Abstract
Background Agrobacterium tumefaciens strain P4 is atypical, as the strain is not pathogenic and produces a for this species unusual quorum sensing signal, identified as N-(3-hydroxy-octanoyl)-homoserine lactone (3OH,C8-HSL). Results By sequence analysis and cloning, a functional luxI-like gene, named cinI, has been identified on the At plasmid of A. tumefaciens strain P4. Insertion mutagenesis in the cinI gene and transcriptome analyses permitted the identification of 32 cinI-regulated genes in this strain, most of them encoding proteins responsible for the conjugative transfer of pAtP4. Among these genes were the avhB genes that encode a type 4 secretion system (T4SS) involved in the formation of the conjugation apparatus, the tra genes that encode the DNA transfer and replication (Dtr) machinery and cinI and two luxR orthologs. These last two genes, cinR and cinX, exhibit an unusual organization, with the cinI gene surrounded by the two luxR orthologs. Conjugation experiments confirmed that the conjugative transfer of pAtP4 is regulated by 3OH,C8-HSL. Root colonization experiments indicated that the quorum sensing regulation of the conjugation of the pAtP4 does not confer a gain or a loss of fitness to the bacterial host in the tomato plant rhizosphere. Conclusion This work is the first identification of the occurrence of a quorum sensing regulation of the pAt conjugation phenomenon in Agrobacterium. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3007-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Mhedbi-Hajri
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France
| | - Noura Yahiaoui
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France.,Present address: CIRAD, 7 chemin de l'IRAT, ligne Paradis, 97410, Saint Pierre de la Réunion, France
| | - Samuel Mondy
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France.,Present address: UMR1347 Agroécologie, INRA, Centre de Dijon, 17 rue Sully, BP 86510, 21065, Dijon, CEDEX, France
| | - Nathalie Hue
- Institut de chimie des substances naturelles, CNRS, Avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Franck Pélissier
- Institut de chimie des substances naturelles, CNRS, Avenue de la terrasse, 91198, Gif sur Yvette, France
| | - Denis Faure
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France
| | - Yves Dessaux
- Institut for integrative biology of the cell, CEA, CNRS, Université Paris-sud, Université Paris-Saclay, 91198, Gif sur Yvette, CEDEX, France.
| |
Collapse
|
13
|
Genomic Comparative Study of Bovine Mastitis Escherichia coli. PLoS One 2016; 11:e0147954. [PMID: 26809117 PMCID: PMC4725725 DOI: 10.1371/journal.pone.0147954] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes.
Collapse
|
14
|
Falentin H, Deutsch SM, Loux V, Hammani A, Buratti J, Parayre S, Chuat V, Barbe V, Aury JM, Jan G, Le Loir Y. Permanent draft genome sequence of the probiotic strain Propionibacterium freudenreichii CIRM-BIA 129 (ITG P20). Stand Genomic Sci 2016; 11:6. [PMID: 26779303 PMCID: PMC4714504 DOI: 10.1186/s40793-015-0120-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/03/2015] [Indexed: 11/25/2022] Open
Abstract
Propionibacterium freudenreichii belongs to the class Actinobacteria (Gram positive with a high GC content). This “Generally Recognized As Safe” (GRAS) species is traditionally used as (i) a starter for Swiss-type cheeses where it is responsible for holes and aroma production, (ii) a vitamin B12 and propionic acid producer in white biotechnologies, and (iii) a probiotic for use in humans and animals because of its bifidogenic and anti-inflammatory properties. Until now, only strain CIRM-BIA1T had been sequenced, annotated and become publicly available. Strain CIRM-BIA129 (commercially available as ITG P20) has considerable anti-inflammatory potential. Its gene content was compared to that of CIRM-BIA1 T. This strain contains 2384 genes including 1 ribosomal operon, 45 tRNA and 30 pseudogenes.
Collapse
Affiliation(s)
- Hélène Falentin
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France ; AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France
| | - Stéphanie-Marie Deutsch
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France ; AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France
| | - Valentin Loux
- INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - Amal Hammani
- INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - Julien Buratti
- INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - Sandrine Parayre
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France ; AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France
| | - Victoria Chuat
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France ; AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France
| | - Valérie Barbe
- CEA Genoscope CNRS and université d'Evry, 91 006 Evry, France
| | - Jean-Marc Aury
- CEA Genoscope CNRS and université d'Evry, 91 006 Evry, France
| | - Gwenaël Jan
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France ; AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France
| | - Yves Le Loir
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France ; AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, 35000 Rennes, France
| |
Collapse
|
15
|
Ambroset C, Coluzzi C, Guédon G, Devignes MD, Loux V, Lacroix T, Payot S, Leblond-Bourget N. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration. Front Microbiol 2016; 6:1483. [PMID: 26779141 PMCID: PMC4701971 DOI: 10.3389/fmicb.2015.01483] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent.
Collapse
Affiliation(s)
- Chloé Ambroset
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Charles Coluzzi
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Gérard Guédon
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Marie-Dominique Devignes
- Laboratoire Lorrain de Recherche en Informatique et ses Applications, Faculté des Sciences et Technologies, Université de Lorraine, UMR 7503Vandœuvre-lès-Nancy, France; CNRS, Laboratoire Lorrain de Recherche en Informatique et ses Applications, UMR 7503Vandśuvre-lès-Nancy, France
| | - Valentin Loux
- UR 1404 Mathématiques et Informatique Appliquées du Génome à l'Environnement, Institut National de la Recherche Agronomique Jouy-en-Josas, France
| | - Thomas Lacroix
- UR 1404 Mathématiques et Informatique Appliquées du Génome à l'Environnement, Institut National de la Recherche Agronomique Jouy-en-Josas, France
| | - Sophie Payot
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| | - Nathalie Leblond-Bourget
- DynAMic, Faculté des Sciences et Technologies, Université de Lorraine, UMR 1128Vandœuvre-lès-Nancy, France; DynAMic, Institut National de la Recherche Agronomique, UMR 1128Vandœuvre-lès-Nancy, France
| |
Collapse
|
16
|
de Freitas R, Madec MN, Chuat V, Maillard MB, Mukdsi MCA, Falentin H, de Carvalho AF, Valence F, Thierry A. New insights about phenotypic heterogeneity within Propionibacterium freudenreichii argue against its division into subspecies. ACTA ACUST UNITED AC 2015; 95:465-477. [PMID: 26097645 PMCID: PMC4471392 DOI: 10.1007/s13594-015-0229-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023]
Abstract
Propionibacterium freudenreichii is widely used in Swiss-type cheese manufacture, where it contributes to flavour and eye development. It is currently divided into two subspecies, according to the phenotype for lactose fermentation and nitrate reduction (lac+/nit− and lac−/nit+ for P. freudenreichii subsp. shermanii and subsp. freudenreichii, respectively). However, the existence of unclassifiable strains (lac+/nit+ and lac−/nit−) has also been reported. The aim of this study was to revisit the relevance of the subdivision of P. freudenreichii into subspecies, by confirming the existence of unclassifiable strains. Relevant conditions to test the ability of P. freudenreichii for lactose fermentation and nitrate reduction were first determined, by using 10 sequenced strains, in which the presence or absence of the lactose and nitrate genomic islands were known. We also determined whether the subdivision based on lac/nit phenotype was related to other phenotypic properties of interest in cheese manufacture, in this case, the production of aroma compounds, analysed by gas chromatography-mass spectrometry, for a total of 28 strains. The results showed that a too short incubation time can lead to false negative for lactose fermentation and nitrate reduction. They confirmed the existence of four lac/nit phenotypes instead of the two expected, thus leading to 13 unclassifiable strains out of the 28 characterized (7 lac+/nit+ and 6 lac−/nit−). The production of the 15 aroma compounds detected in all cultures varied more within a lac/nit phenotype (up to 20 times) than between them. Taken together, these results demonstrate that the division of P. freudenreichii into two subspecies does not appear to be relevant.
Collapse
Affiliation(s)
- Rosangela de Freitas
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG Brazil ; INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France
| | - Marie-Noelle Madec
- INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France
| | - Victoria Chuat
- INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France
| | - Marie-Bernadette Maillard
- INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France
| | - María C Abeijón Mukdsi
- INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (4000), Tucumán, Argentina
| | - Hélène Falentin
- INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France
| | | | - Florence Valence
- INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France
| | - Anne Thierry
- INRA, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France ; AGROCAMPUS OUEST, UMR1253 Science et Technologie du Lait et de l'OEuf, 35042 Rennes, France
| |
Collapse
|
17
|
Loux V, Mariadassou M, Almeida S, Chiapello H, Hammani A, Buratti J, Gendrault A, Barbe V, Aury JM, Deutsch SM, Parayre S, Madec MN, Chuat V, Jan G, Peterlongo P, Azevedo V, Le Loir Y, Falentin H. Mutations and genomic islands can explain the strain dependency of sugar utilization in 21 strains of Propionibacterium freudenreichii. BMC Genomics 2015; 16:296. [PMID: 25886522 PMCID: PMC4437456 DOI: 10.1186/s12864-015-1467-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/27/2015] [Indexed: 01/11/2023] Open
Abstract
Background Propionibacterium freudenreichii (PF) is an actinobacterium used in cheese technology and for its probiotic properties. PF is also extremely adaptable to several ecological niches and can grow on a variety of carbon and nitrogen sources. The aim of this work was to discover the genetic basis for strain-dependent traits related to its ability to use specific carbon sources. High-throughput sequencing technologies were ideal for this purpose as they have the potential to decipher genomic diversity at a moderate cost. Results 21 strains of PF were sequenced and the genomes were assembled de novo. Scaffolds were ordered by comparison with the complete reference genome CIRM-BIA1, obtained previously using traditional Sanger sequencing. Automatic functional annotation and manual curation were performed. Each gene was attributed to either the core genome or an accessory genome. The ability of the 21 strains to degrade 50 different sugars was evaluated. Thirty-three sugars were degraded by none of the sequenced strains whereas eight sugars were degraded by all of them. The corresponding genes were present in the core genome. Lactose, melibiose and xylitol were only used by some strains. In this case, the presence/absence of genes responsible for carbon uptake and degradation correlated well with the phenotypes, with the exception of xylitol. Furthermore, the simultaneous presence of these genes was in line the metabolic pathways described previously in other species. We also considered the genetic origin (transduction, rearrangement) of the corresponding genomic islands. Ribose and gluconate were degraded to a greater or lesser extent (quantitative phenotype) by some strains. For these sugars, the phenotypes could not be explained by the presence/absence of a gene but correlated with the premature appearance of a stop codon interrupting protein synthesis and preventing the catabolism of corresponding carbon sources. Conclusion These results illustrate (i) the power of correlation studies to discover the genetic basis of binary strain-dependent traits, and (ii) the plasticity of PF chromosomes, probably resulting from horizontal transfers, duplications, transpositions and an accumulation of mutations. Knowledge of the genetic basis of nitrogen and sugar degradation opens up new strategies for the screening of PF strain collections to enable optimum cheese starter, probiotic and white biotechnology applications. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1467-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valentin Loux
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Mahendra Mariadassou
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Sintia Almeida
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,Sciences, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil.
| | - Hélène Chiapello
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Amal Hammani
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Julien Buratti
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Annie Gendrault
- INRA Mathématique Informatique et Génome, France Institute of Biological, Jouy en Josas, 78352, France.
| | - Valérie Barbe
- CEA Genoscope CNRS and université d'Evry, Evry, 91006, France.
| | - Jean-Marc Aury
- CEA Genoscope CNRS and université d'Evry, Evry, 91006, France.
| | - Stéphanie-Marie Deutsch
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Sandrine Parayre
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Marie-Noëlle Madec
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Victoria Chuat
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Gwenaël Jan
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | | | - Vasco Azevedo
- Sciences, Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil.
| | - Yves Le Loir
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| | - Hélène Falentin
- INRA, UMR 1253, Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France. .,AGROCAMPUS OUEST, UMR1253, UMR Science et Technologie du Lait et de l'Oeuf, Rennes, 35000, France.
| |
Collapse
|
18
|
Genome Sequences of Two Bovine Mastitis-Causing Escherichia coli Strains. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00259-15. [PMID: 25858841 PMCID: PMC4392153 DOI: 10.1128/genomea.00259-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli is one of the main pathogenic agents causing inflammatory infections in the bovine udder. Here, we report the draft genome sequences of two strains isolated from different cases of clinical mastitis.
Collapse
|
19
|
Passerini D, Vuillemin M, Ufarté L, Morel S, Loux V, Fontagné-Faucher C, Monsan P, Remaud-Siméon M, Moulis C. Inventory of the GH70 enzymes encoded byLeuconostoc citreumNRRL B-1299 - identification of three novel α-transglucosylases. FEBS J 2015; 282:2115-30. [DOI: 10.1111/febs.13261] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Delphine Passerini
- Université de Toulouse; Institut National des Sciences Appliquées (INSA); Université Paul Sabatier (UPS); Institut National Polytechnique (INP); Laboratoire d'Ingénierie des Systémes biologiques et des Procédés (LISBP); Toulouse France
- Centre National de la Recherche Scientifique; UMR5504; Toulouse France
- Institut National de la Recherche Agronomique; UMR792 Ingénierie des Systèmes Biologiques et des Procédés; Toulouse France
| | - Marlène Vuillemin
- Université de Toulouse; Institut National des Sciences Appliquées (INSA); Université Paul Sabatier (UPS); Institut National Polytechnique (INP); Laboratoire d'Ingénierie des Systémes biologiques et des Procédés (LISBP); Toulouse France
- Centre National de la Recherche Scientifique; UMR5504; Toulouse France
- Institut National de la Recherche Agronomique; UMR792 Ingénierie des Systèmes Biologiques et des Procédés; Toulouse France
| | - Lisa Ufarté
- Université de Toulouse; Institut National des Sciences Appliquées (INSA); Université Paul Sabatier (UPS); Institut National Polytechnique (INP); Laboratoire d'Ingénierie des Systémes biologiques et des Procédés (LISBP); Toulouse France
- Centre National de la Recherche Scientifique; UMR5504; Toulouse France
- Institut National de la Recherche Agronomique; UMR792 Ingénierie des Systèmes Biologiques et des Procédés; Toulouse France
| | - Sandrine Morel
- Université de Toulouse; Institut National des Sciences Appliquées (INSA); Université Paul Sabatier (UPS); Institut National Polytechnique (INP); Laboratoire d'Ingénierie des Systémes biologiques et des Procédés (LISBP); Toulouse France
- Centre National de la Recherche Scientifique; UMR5504; Toulouse France
- Institut National de la Recherche Agronomique; UMR792 Ingénierie des Systèmes Biologiques et des Procédés; Toulouse France
| | - Valentin Loux
- Institut National de la Recherche Agronomique; UMR1077 Mathématique; Informatique et Génome; Jouy-en-Josas France
| | - Catherine Fontagné-Faucher
- Laboratoire de Biologie Appliquée à l'Agroalimentaire et à l'Environnement; Institut Universitaire de Technologie - Université Paul Sabatier; Auch France
| | - Pierre Monsan
- Université de Toulouse; Institut National des Sciences Appliquées (INSA); Université Paul Sabatier (UPS); Institut National Polytechnique (INP); Laboratoire d'Ingénierie des Systémes biologiques et des Procédés (LISBP); Toulouse France
- Centre National de la Recherche Scientifique; UMR5504; Toulouse France
- Institut National de la Recherche Agronomique; UMR792 Ingénierie des Systèmes Biologiques et des Procédés; Toulouse France
| | - Magali Remaud-Siméon
- Université de Toulouse; Institut National des Sciences Appliquées (INSA); Université Paul Sabatier (UPS); Institut National Polytechnique (INP); Laboratoire d'Ingénierie des Systémes biologiques et des Procédés (LISBP); Toulouse France
- Centre National de la Recherche Scientifique; UMR5504; Toulouse France
- Institut National de la Recherche Agronomique; UMR792 Ingénierie des Systèmes Biologiques et des Procédés; Toulouse France
| | - Claire Moulis
- Université de Toulouse; Institut National des Sciences Appliquées (INSA); Université Paul Sabatier (UPS); Institut National Polytechnique (INP); Laboratoire d'Ingénierie des Systémes biologiques et des Procédés (LISBP); Toulouse France
- Centre National de la Recherche Scientifique; UMR5504; Toulouse France
- Institut National de la Recherche Agronomique; UMR792 Ingénierie des Systèmes Biologiques et des Procédés; Toulouse France
| |
Collapse
|
20
|
Amari M, Valérie G, Robert H, Morel S, Moulis C, Gabriel B, Remaud-Siméon M, Fontagné-Faucher C. Overview of the glucansucrase equipment of Leuconostoc citreum LBAE-E16 and LBAE-C11, two strains isolated from sourdough. FEMS Microbiol Lett 2015; 362:1-8. [DOI: 10.1093/femsle/fnu024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties. J Proteomics 2015; 113:447-61. [DOI: 10.1016/j.jprot.2014.07.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/19/2014] [Accepted: 07/16/2014] [Indexed: 02/07/2023]
|
22
|
de sa Peixoto P, Roiland C, Thomas D, Briard-Bion V, Le Guellec R, Parayre S, Deutsch SM, Jan G, Guyomarc'h F. Recrystallized S-layer protein of a probiotic Propionibacterium: structural and nanomechanical changes upon temperature or pH shifts probed by solid-state NMR and AFM. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 31:199-208. [PMID: 25479375 DOI: 10.1021/la503735z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface protein layers (S layers) are common constituents of the bacterial cell wall and originate from the assembly of strain-dependent surface layer proteins (Slps). These proteins are thought to play important roles in the bacteria's biology and to have very promising technological applications as biomaterials or as part of cell-host cross-talk in probiotic mechanism. The SlpA from Propionibacterium freudenreichii PFCIRM 118 strain was isolated and recrystallized to investigate organization and assembly of the protein using atomic force microscopy and solid-state (1)H and (13)C-nuclear magnetic resonance. SlpA was found to form hexagonal p1 monolayer lattices where the protein exhibited high proportions of disordered regions and of bound water. The lattice structure was maintained, but softened, upon mild heating or acidification, probably in relation with the increasing mobilities of the disordered protein regions. These results gave structural insights on the mobile protein regions exposed by S layer films, upon physiologically relevant changes of their environmental conditions.
Collapse
Affiliation(s)
- Paulo de sa Peixoto
- INRA-AGROCAMPUS OUEST UMR 1253 Science et Technologie du Lait et de l'Œuf, 35042 Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lacroix T, Loux V, Gendrault A, Hoebeke M, Gibrat JF. Insyght: navigating amongst abundant homologues, syntenies and gene functional annotations in bacteria, it's that symbol! Nucleic Acids Res 2014; 42:gku867. [PMID: 25249626 PMCID: PMC4245967 DOI: 10.1093/nar/gku867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 11/14/2022] Open
Abstract
High-throughput techniques have considerably increased the potential of comparative genomics whilst simultaneously posing many new challenges. One of those challenges involves efficiently mining the large amount of data produced and exploring the landscape of both conserved and idiosyncratic genomic regions across multiple genomes. Domains of application of these analyses are diverse: identification of evolutionary events, inference of gene functions, detection of niche-specific genes or phylogenetic profiling. Insyght is a comparative genomic visualization tool that combines three complementary displays: (i) a table for thoroughly browsing amongst homologues, (ii) a comparator of orthologue functional annotations and (iii) a genomic organization view designed to improve the legibility of rearrangements and distinctive loci. The latter display combines symbolic and proportional graphical paradigms. Synchronized navigation across multiple species and interoperability between the views are core features of Insyght. A gene filter mechanism is provided that helps the user to build a biologically relevant gene set according to multiple criteria such as presence/absence of homologues and/or various annotations. We illustrate the use of Insyght with scenarios. Currently, only Bacteria and Archaea are supported. A public instance is available at http://genome.jouy.inra.fr/Insyght. The tool is freely downloadable for private data set analysis.
Collapse
Affiliation(s)
- Thomas Lacroix
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Valentin Loux
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Annie Gendrault
- INRA, UR 1077 Mathématique Informatique et Génome, 78352 Jouy-en-Josas, France
| | - Mark Hoebeke
- CNRS, UPMC, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | |
Collapse
|
24
|
Abstract
Leuconostoc citreum belongs to the group of lactic acid bacteria and plays an important role in fermented foods of plant origin. Here, we report the complete genome of the Leuconostoc citreum strain NRRL B-742, isolated in 1954 for its capacity to produce dextran.
Collapse
|
25
|
Dugat T, Loux V, Marthey S, Moroldo M, Lagrée AC, Boulouis HJ, Haddad N, Maillard R. Comparative genomics of first available bovine Anaplasma phagocytophilum genome obtained with targeted sequence capture. BMC Genomics 2014; 15:973. [PMID: 25400116 PMCID: PMC4239370 DOI: 10.1186/1471-2164-15-973] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/30/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Anaplasma phagocytophilum is a zoonotic and obligate intracellular bacterium transmitted by ticks. In domestic ruminants, it is the causative agent of tick-borne fever, which causes significant economic losses in Europe. As A. phagocytophilum is difficult to isolate and cultivate, only nine genome sequences have been published to date, none of which originate from a bovine strain.Our goals were to; 1/ develop a sequencing methodology which efficiently circumvents the difficulties associated with A. phagocytophilum isolation and culture; 2/ describe the first genome of a bovine strain; and 3/ compare it with available genomes, in order to both explore key genomic features at the species level, and to identify candidate genes that could be specific to bovine strains. RESULTS DNA was extracted from a bovine blood sample infected by A. phagocytophilum. Following a whole genome capture approach, A. phagocytophilum DNA was enriched 197-fold in the sample and then sequenced using Illumina technology. In total, 58.9% of obtained reads corresponded to the A. phagocytophilum genome, covering 85.3% of the HZ genome. Then by performing comparisons with nine previously-sequenced A. phagocytophilum genomes, we determined the core genome of these ten strains. Following analysis, 1281 coding DNA sequences, including 1001 complete sequences, were detected in the A. phagocytophilum bovine genome, of which four appeared to be unique to the bovine isolate. These four coding DNA sequences coded for "hypothetical proteins of unknown function" and require further analysis. We also identified nine proteins common to both European domestic ruminants tested. CONCLUSION Using a whole genome capture approach, we have sequenced the first A. phagocytophilum genome isolated from a cow. To the best of our knowledge, this is the first time that this method has been used to selectively enrich pathogenic bacterial DNA from samples also containing host DNA. The four proteins unique to the A. phagocytophilum bovine genome could be involved in host tropism, therefore their functions need to be explored.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nadia Haddad
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR ENVA Anses UPEC USC INRA, Maisons-Alfort, France.
| | | |
Collapse
|
26
|
Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis subsp. lactis TOMSC161, Isolated from a Nonscalded Curd Pressed Cheese. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01121-14. [PMID: 25377704 PMCID: PMC4223455 DOI: 10.1128/genomea.01121-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactococcus lactis is a lactic acid bacterium used in the production of many fermented foods, such as dairy products. Here, we report the genome sequence of L. lactis subsp. lactis TOMSC161, isolated from nonscalded curd pressed cheese. This genome sequence provides information in relation to dairy environment adaptation.
Collapse
|
27
|
Genome Sequence of Lactobacillus delbrueckii subsp. lactis CNRZ327, a Dairy Bacterium with Anti-Inflammatory Properties. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00328-14. [PMID: 25035318 PMCID: PMC4102855 DOI: 10.1128/genomea.00328-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain.
Collapse
|
28
|
El Kafsi H, Binesse J, Loux V, Buratti J, Boudebbouze S, Dervyn R, Kennedy S, Galleron N, Quinquis B, Batto JM, Moumen B, Maguin E, van de Guchte M. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genomics 2014; 15:407. [PMID: 24884896 PMCID: PMC4082628 DOI: 10.1186/1471-2164-15-407] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/14/2014] [Indexed: 11/10/2022] Open
Abstract
Background Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. Results Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. Conclusions The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-407) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
SearchDOGS bacteria, software that provides automated identification of potentially missed genes in annotated bacterial genomes. J Bacteriol 2014; 196:2030-42. [PMID: 24659774 DOI: 10.1128/jb.01368-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We report the development of SearchDOGS Bacteria, software to automatically detect missing genes in annotated bacterial genomes by combining BLAST searches with comparative genomics. Having successfully applied the approach to yeast genomes, we redeveloped SearchDOGS to function as a standalone, downloadable package, requiring only a set of GenBank annotation files as input. The software automatically generates a homology structure using reciprocal BLAST and a synteny-based method; this is followed by a scan of the entire genome of each species for unannotated genes. Results are provided in a HTML interface, providing coordinates, BLAST results, syntenic location, omega values (Ka/Ks, where Ks is the number of synonymous substitutions per synonymous site and Ka is the number of nonsynonymous substitutions per nonsynonymous site) for protein conservation estimates, and other information for each candidate gene. Using SearchDOGS Bacteria, we identified 155 gene candidates in the Shigella boydii sb227 genome, including 56 candidates of length < 60 codons. SearchDOGS Bacteria has two major advantages over currently available annotation software. First, it outperforms current methods in terms of sensitivity and is highly effective at identifying small or highly diverged genes. Second, as a freely downloadable package, it can be used with unpublished or confidential data.
Collapse
|
30
|
The secreted esterase of Propionibacterium freudenreichii has a major role in cheese lipolysis. Appl Environ Microbiol 2013; 80:751-6. [PMID: 24242250 DOI: 10.1128/aem.03640-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Free fatty acids are important flavor compounds in cheese. Propionibacterium freudenreichii is the main agent of their release through lipolysis in Swiss cheese. Our aim was to identify the esterase(s) involved in lipolysis by P. freudenreichii. We targeted two previously identified esterases: one secreted esterase, PF#279, and one putative cell wall-anchored esterase, PF#774. To evaluate their role in lipolysis, we constructed overexpression and knockout mutants of P. freudenreichii CIRM-BIA1(T) for each corresponding gene. The sequences of both genes were also compared in 21 wild-type strains. All strains were assessed for their lipolytic activity on milk fat. The lipolytic activity observed matched data previously reported in cheese, thus validating the relevance of the method used. The mutants overexpressing PF#279 or PF#774 released four times more fatty acids than the wild-type strain, demonstrating that both enzymes are lipolytic esterases. However, inactivation of the pf279 gene induced a 75% reduction in the lipolytic activity compared to that of the wild-type strain, whereas inactivation of the pf774 gene did not modify the phenotype. Two of the 21 wild-type strains tested did not display any detectable lipolytic activity. Interestingly, these two strains exhibited the same single-nucleotide deletion at the beginning of the pf279 gene sequence, leading to a premature stop codon, whereas they harbored a pf774 gene highly similar to that of the other strains. Taken together, these results clearly demonstrate that PF#279 is the main lipolytic esterase in P. freudenreichii and a key agent of Swiss cheese lipolysis.
Collapse
|
31
|
Barbier P, Lunazzi A, Fujiwara-Nagata E, Avendaño-Herrera R, Bernardet JF, Touchon M, Duchaud E. From the Flavobacterium genus to the phylum Bacteroidetes: genomic analysis of dnd gene clusters. FEMS Microbiol Lett 2013; 348:26-35. [PMID: 23965156 DOI: 10.1111/1574-6968.12239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/12/2013] [Accepted: 08/18/2013] [Indexed: 01/19/2023] Open
Abstract
Phosphorothioate modification of DNA and the corresponding DNA degradation (Dnd) phenotype that occurs during gel electrophoresis are caused by dnd genes. Although widely distributed among Bacteria and Archaea, dnd genes have been found in only very few, taxonomically unrelated, bacterial species so far. Here, we report the presence of dnd genes and their associated Dnd phenotype in two Flavobacterium species. Comparison with dnd gene clusters previously described led us to report a noncanonical genetic organization and to identify a gene likely encoding a hybrid DndE protein. Hence, we showed that dnd genes are also present in members of the family Flavobacteriaceae, a bacterial group occurring in a variety of habitats with an interesting diversity of lifestyle. Two main types of genomic organization of dnd loci were uncovered probably denoting their spreading in the phylum Bacteroidetes via distinct genetic transfer events.
Collapse
Affiliation(s)
- Paul Barbier
- INRA, Virologie et Immunologie Moléculaires UR892, Jouy-en-Josas, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Draft Genome Sequence of Lactobacillus pasteurii CRBIP 24.76
T. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00660-13. [PMID: 23969061 PMCID: PMC3751616 DOI: 10.1128/genomea.00660-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of the type strain Lactobacillus pasteurii CRBIP 24.76, which is closely related to L. gigeriorum CRBIP 24.85T, isolated from a chicken crop. The total length of the 29 contigs is about 1.9 Mb, with a G+C content of 40% and 1,946 coding sequences.
Collapse
|
33
|
Draft Genome Sequence of Lactobacillus hominis Strain CRBIP 24.179
T
, Isolated from Human Intestine. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00662-13. [PMID: 23969062 PMCID: PMC3751617 DOI: 10.1128/genomea.00662-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of the strain Lactobacillus hominis CRBIP 24.179T, isolated from a human clinical sample. The total length of the 28 contigs is about 1.9 Mb, with a G+C content of 37% and 1,983 coding sequences.
Collapse
|
34
|
Draft Genome Sequences of Lactobacillus equicursoris CIP 110162
T
and
Lactobacillus
sp. Strain CRBIP 24.137, Isolated from Thoroughbred Racehorse Feces and Human Urine, Respectively. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00663-13. [PMID: 23969063 PMCID: PMC3751618 DOI: 10.1128/genomea.00663-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequences of strain Lactobacillus equicursoris CIP 110162T, isolated from racehorse breed feces, and Lactobacillus sp. strain CRBIP 24.137, isolated from human urine; the two strains are closely related. The total lengths of the 116 and 62 scaffolds are about 2.157 and 2.358 Mb, with G+C contents of 46 and 45% and 2,279 and 2,342 coding sequences (CDSs), respectively.
Collapse
|
35
|
Draft Genome Sequences of Five Strains of Lactobacillus acidophilus, Strain CIP 76.13T, Isolated from Humans, Strains CIRM-BIA 442 and CIRM-BIA 445, Isolated from Dairy Products, and Strains DSM 20242 and DSM 9126 of Unknown Origin. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00658-13. [PMID: 23969059 PMCID: PMC3751614 DOI: 10.1128/genomea.00658-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactobacillus acidophilus is a natural inhabitant of mammalian gastrointestinal systems and is used in dairy and pharmaceutical products. Five draft genome sequences, covering 1,995,790 nucleotides (nt) on average, are divided into 19 to 34 scaffolds covering 1,995 to 2,053 genes. The draft genome sequences were compared to the sequence of the L. acidophilus NCFM dairy strain.
Collapse
|
36
|
The carbohydrate metabolism signature of lactococcus lactis strain A12 reveals its sourdough ecosystem origin. Appl Environ Microbiol 2013; 79:5844-52. [PMID: 23872564 DOI: 10.1128/aem.01560-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lactococcus lactis subsp. lactis strain A12 was isolated from sourdough. Combined genomic, transcriptomic, and phenotypic analyses were performed to understand its survival capacity in the complex sourdough ecosystem and its role in the microbial community. The genome sequence comparison of strain A12 with strain IL1403 (a derivative of an industrial dairy strain) revealed 78 strain-specific regions representing 23% of the total genome size. Most of the strain-specific genes were involved in carbohydrate metabolism and are potentially required for its persistence in sourdough. Phenotype microarray, growth tests, and analysis of glycoside hydrolase content showed that strain A12 fermented plant-derived carbohydrates, such as arabinose and α-galactosides. Strain A12 exhibited specific growth rates on raffinose that were as high as they were on glucose and was able to release sucrose and galactose outside the cell, providing soluble carbohydrates for sourdough microflora. Transcriptomic analysis identified genes specifically induced during growth on raffinose and arabinose and reveals an alternative pathway for raffinose assimilation to that used by other lactococci.
Collapse
|
37
|
Genome sequence of Staphylococcus equorum subsp. equorum Mu2, isolated from a French smear-ripened cheese. J Bacteriol 2012; 194:5141-2. [PMID: 22933766 DOI: 10.1128/jb.01038-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus equorum subsp. equorum is a member of the coagulase-negative staphylococcus group and is frequently isolated from fermented food products and from food-processing environments. It contributes to the formation of aroma compounds during the ripening of fermented foods, especially cheeses and sausages. Here, we report the draft genome sequence of Staphylococcus equorum subsp. equorum Mu2 to provide insights into its physiology and compare it with other Staphylococcus species.
Collapse
|
38
|
Draft Genome Sequence of Lactobacillus gigeriorum CRBIP 24.85
T
, Isolated from a Chicken Crop. J Bacteriol 2012; 194:5973. [DOI: 10.1128/jb.01427-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
We report the draft genome of the strain
Lactobacillus gigeriorum
CRBIP 24.85
T
, isolated from a chicken crop. The total length of the 60 scaffolds is about 1.9 Mb, with a GC content of 38% and 2,062 protein-coding sequences (CDS).
Collapse
|
39
|
Proux-Wéra E, Armisén D, Byrne KP, Wolfe KH. A pipeline for automated annotation of yeast genome sequences by a conserved-synteny approach. BMC Bioinformatics 2012; 13:237. [PMID: 22984983 PMCID: PMC3507789 DOI: 10.1186/1471-2105-13-237] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Yeasts are a model system for exploring eukaryotic genome evolution. Next-generation sequencing technologies are poised to vastly increase the number of yeast genome sequences, both from resequencing projects (population studies) and from de novo sequencing projects (new species). However, the annotation of genomes presents a major bottleneck for de novo projects, because it still relies on a process that is largely manual. RESULTS Here we present the Yeast Genome Annotation Pipeline (YGAP), an automated system designed specifically for new yeast genome sequences lacking transcriptome data. YGAP does automatic de novo annotation, exploiting homology and synteny information from other yeast species stored in the Yeast Gene Order Browser (YGOB) database. The basic premises underlying YGAP's approach are that data from other species already tells us what genes we should expect to find in any particular genomic region and that we should also expect that orthologous genes are likely to have similar intron/exon structures. Additionally, it is able to detect probable frameshift sequencing errors and can propose corrections for them. YGAP searches intelligently for introns, and detects tRNA genes and Ty-like elements. CONCLUSIONS In tests on Saccharomyces cerevisiae and on the genomes of Naumovozyma castellii and Tetrapisispora blattae newly sequenced with Roche-454 technology, YGAP outperformed another popular annotation program (AUGUSTUS). For S. cerevisiae and N. castellii, 91-93% of YGAP's predicted gene structures were identical to those in previous manually curated gene sets. YGAP has been implemented as a webserver with a user-friendly interface at http://wolfe.gen.tcd.ie/annotation.
Collapse
Affiliation(s)
- Estelle Proux-Wéra
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
40
|
Complete genome sequence of Flavobacterium indicum GPSTA100-9T, isolated from warm spring water. J Bacteriol 2012; 194:3024-5. [PMID: 22582381 DOI: 10.1128/jb.00420-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the complete annotated genome sequence of Flavobacterium indicum CIP 109464(T) (= GPTSA100-9(T)), isolated from warm spring water in Assam, India. The genome sequence of F. indicum revealed a number of interesting features and genes in relation to its environmental lifestyle.
Collapse
|
41
|
Genome sequence of the persistent Salmonella enterica subsp. enterica serotype Senftenberg strain SS209. J Bacteriol 2012; 194:2385-6. [PMID: 22493197 DOI: 10.1128/jb.00255-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salmonella enterica subsp. enterica serotype Senftenberg is an emerging serotype in poultry production which has been found to persist in animals and the farm environment. We report the genome sequence and annotation of the SS209 strain of S. Senftenberg, isolated from a hatchery, which was identified as persistent in broiler chickens.
Collapse
|
42
|
Genome sequence of the invasive Salmonella enterica subsp. enterica serotype enteritidis strain LA5. J Bacteriol 2012; 194:2387-8. [PMID: 22493198 DOI: 10.1128/jb.00256-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serotype Enteritidis is one of the major causes of gastroenteritis in humans due to consumption of poultry derivatives. Here we report the whole-genome sequence and annotation, including the virulence plasmid, of S. Enteritidis LA5, which is a chicken isolate used by numerous laboratories in virulence studies.
Collapse
|
43
|
Genome sequences of three Leuconostoc citreum strains, LBAE C10, LBAE C11, and LBAE E16, isolated from wheat sourdoughs. J Bacteriol 2012; 194:1610-1. [PMID: 22374948 DOI: 10.1128/jb.06789-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leuconostoc citreum is a key microorganism in fermented foods of plant origin. Here we report the draft genome sequence for three strains of Leuconostoc citreum, LBAE C10, LBAE C11, and LBAE E16, which have been isolated from traditional French wheat sourdoughs.
Collapse
|
44
|
Genome sequence of Weissella confusa LBAE C39-2, isolated from a wheat sourdough. J Bacteriol 2012; 194:1608-9. [PMID: 22374947 DOI: 10.1128/jb.06788-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Weissella confusa is a rod-shaped heterofermentative lactic acid bacterium from the family of Leuconostocaceae. Here we report the draft genome sequence of the strain W. confusa LBAE C39-2 isolated from a traditional French wheat sourdough.
Collapse
|
45
|
Genome sequence of Corynebacterium casei UCMA 3821, isolated from a smear-ripened cheese. J Bacteriol 2012; 194:738-9. [PMID: 22247534 DOI: 10.1128/jb.06496-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium casei is one of the most prevalent species present on the surfaces of smear-ripened cheeses, where it contributes to the production of the desired organoleptic properties. Here, we report the draft genome sequence of Corynebacterium casei UCMA 3821 to provide insights into its physiology.
Collapse
|
46
|
Complete genome sequence of the pigmented Streptococcus thermophilus strain JIM8232. J Bacteriol 2011; 193:5581-2. [PMID: 21914889 DOI: 10.1128/jb.05404-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is a dairy species commonly used in the manufacture of cheese and yogurt. Here, we report the complete sequence of S. thermophilus strain JIM8232, isolated from milk and which produces a yellow pigment, an atypical trait for this bacterium.
Collapse
|
47
|
Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl Environ Microbiol 2011; 77:7656-62. [PMID: 21926215 DOI: 10.1128/aem.05625-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Flavobacterium occur in a variety of ecological niches and represent an interesting diversity of lifestyles. Flavobacterium branchiophilum is the main causative agent of bacterial gill disease, a severe condition affecting various cultured freshwater fish species worldwide, in particular salmonids in Canada and Japan. We report here the complete genome sequence of strain FL-15 isolated from a diseased sheatfish (Silurus glanis) in Hungary. The analysis of the F. branchiophilum genome revealed putative mechanisms of pathogenicity strikingly different from those of the other, closely related fish pathogen Flavobacterium psychrophilum, including the first cholera-like toxin in a non-Proteobacteria and a wealth of adhesins. The comparison with available genomes of other Flavobacterium species revealed a small genome size, large differences in chromosome organization, and fewer rRNA and tRNA genes, in line with its more fastidious growth. In addition, horizontal gene transfer shaped the evolution of F. branchiophilum, as evidenced by its virulence factors, genomic islands, and CRISPR (clustered regularly interspaced short palindromic repeats) systems. Further functional analysis should help in the understanding of host-pathogen interactions and in the development of rational diagnostic tools and control strategies in fish farms.
Collapse
|
48
|
RAPYD — Rapid Annotation Platform for Yeast Data. J Biotechnol 2011; 155:118-26. [DOI: 10.1016/j.jbiotec.2010.10.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/13/2010] [Accepted: 10/22/2010] [Indexed: 01/07/2023]
|
49
|
Complete genome sequence of the commensal Streptococcus salivarius strain JIM8777. J Bacteriol 2011; 193:5024-5. [PMID: 21742871 DOI: 10.1128/jb.05390-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The commensal bacterium Streptococcus salivarius is a prevalent species of the human oropharyngeal tract with an important role in oral ecology. Here, we report the complete 2.2-Mb genome sequence and annotation of strain JIM8777, which was recently isolated from the oral cavity of a healthy, dentate infant.
Collapse
|
50
|
Complete genome sequence of the clinical Streptococcus salivarius strain CCHSS3. J Bacteriol 2011; 193:5041-2. [PMID: 21742894 DOI: 10.1128/jb.05416-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus salivarius is a commensal species commonly found in the human oral cavity and digestive tract, although it is also associated with human infections such as meningitis, endocarditis, and bacteremia. Here, we report the complete sequence of S. salivarius strain CCHSS3, isolated from human blood.
Collapse
|