1
|
Almaghrabi M, Musa A, Aljohani AKB, Ahmed HEA, Alsulaimany M, Miski SF, Mostafa EM, Hussein S, Parambi DGT, Ghoneim MM, Elgammal WE, Halawa AH, Hammad A, El-Agrody AM. Introducing of novel class of pyrano[2,3- c]pyrazole-5-carbonitrile analogs with potent antimicrobial activity, DNA gyrase inhibition, and prominent pharmacokinetic and CNS toxicity profiles supported by molecular dynamic simulation. J Biomol Struct Dyn 2024; 42:9529-9546. [PMID: 37661733 DOI: 10.1080/07391102.2023.2252088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Microbiological DNA gyrase is recognized as an exceptional microbial target for the innovative development of low-resistant and more effective antimicrobial drugs. Hence, we introduced a one-pot facile synthesis of a novel pyranopyrazole scaffold bearing different functionalities; substituted aryl ring, nitrile, and hydroxyl groups. All new analogs were characterized with full spectroscopic data. The antimicrobial screening for all analogs was assessed against standard strains of Gm + ve and Gm-ve through in vitro considers. The screened compounds displayed very promising MIC/MBC values against some of the bacterial strains with broad or selective antibacterial effects. Of these, 4j biphenyl analog showed 0.5-2/2-8 µg/mL MIC/MBC for suppression and killing of Gm + ve and Gm-ve strains. Moreover, the antimicrobial screening was assessed for the most potent analogs against certain highly resistant microbial strains. Consequently, DNA gyrase supercoiling assay was done for all analogs using ciprofloxacin as reference positive control. Obviously, the results showed a different activity profile with potent analog 4j with IC50 value 6.29 µg/mL better than reference drug 10.2 µg/mL. Additionally, CNS toxicity testing was done using the HiB5 cell line for attenuation of GABA/NMDA expression to both 4j and ciprofloxacin compounds that revealed better neurotransmitter modulation by novel scaffold. Importantly, docking and dynamic simulations were performed for the most active 4j analog to investigate its interaction with DNA binding sites, which supported the in vitro observations and compound stability with binding pocket. Finally, a novel scaffold pyranopyrazole was introduced as a DNA gyrase inhibitor with prominent antibacterial efficacy and low CNS side effect toxicity better than quinolones.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Samar F Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Shaimaa Hussein
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Walid E Elgammal
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Ali Hammad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
2
|
Abd El-Haleem A, Ammar U, Masci D, El-Ansary S, Abdel Rahman D, Abou-Elazm F, El-Dydamony N. Discovery of Benzopyrone-Based Candidates as Potential Antimicrobial and Photochemotherapeutic Agents through Inhibition of DNA Gyrase Enzyme B: Design, Synthesis, In Vitro and In Silico Evaluation. Pharmaceuticals (Basel) 2024; 17:1197. [PMID: 39338359 PMCID: PMC11434840 DOI: 10.3390/ph17091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial DNA gyrase is considered one of the validated targets for antibacterial drug discovery. Benzopyrones have been reported as promising derivatives that inhibit bacterial DNA gyrase B through competitive binding into the ATP binding site of the B subunit. In this study, we designed and synthesized twenty-two benzopyrone-based derivatives with different chemical features to assess their antimicrobial and photosensitizing activities. The antimicrobial activity was evaluated against B. subtilis, S. aureus, E. coli, and C. albicans. Compounds 6a and 6b (rigid tetracyclic-based derivatives), 7a-7f (flexible-linker containing benzopyrones), and 8a-8f (rigid tricyclic-based compounds) exhibited promising results against B. subtilis, S. aureus, and E. coli strains. Additionally, these compounds demonstrated photosensitizing activities against the B. subtilis strain. Both in silico molecular docking and in vitro DNA gyrase supercoiling inhibitory assays were performed to study their potential mechanisms of action. Compounds 8a-8f exhibited the most favorable binding interactions, engaging with key regions within the ATP binding site of the DNA gyrase B domain. Moreover, compound 8d displayed the most potent IC50 value (0.76 μM) compared to reference compounds (novobiocin = 0.41 μM and ciprofloxacin = 2.72 μM). These results establish a foundation for structure-based optimization targeting DNA gyrase inhibition with antibacterial activity.
Collapse
Affiliation(s)
- Akram Abd El-Haleem
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| | - Usama Ammar
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, 9 Sighthill Court, Edinburgh EH11 4BN, UK
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Sohair El-Ansary
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Doaa Abdel Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatma Abou-Elazm
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt;
| | - Nehad El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| |
Collapse
|
3
|
Khazaal MT, Faraag AHI, El-Hendawy HH. In vitro and in silico studies of enterobactin-inspired Ciprofloxacin and Fosfomycin first generation conjugates on the antibiotic resistant E. coli OQ866153. BMC Microbiol 2024; 24:95. [PMID: 38519885 PMCID: PMC10958948 DOI: 10.1186/s12866-024-03248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/03/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The emergence of antimicrobial resistance in bacterial pathogens is a growing concern worldwide due to its impact on the treatment of bacterial infections. The "Trojan Horse" strategy has been proposed as a potential solution to overcome drug resistance caused by permeability issues. OBJECTIVE The objective of our research was to investigate the bactericidal activity and mechanism of action of the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin against the antibiotic-resistant Escherichia coli strain OQ866153. METHODOLOGY Enterobactin, a mixed ligand of E. coli OQ866153, was conjugated with Ciprofloxacin and Fosfomycin individually to aid active absorption via specific enterobactin binding proteins (FepABCDG). The effectiveness of the conjugates was assessed by measuring their bactericidal activity against E. coli OQ866153, as well as their ability to inhibit DNA gyrase enzyme and biofilm formation. RESULTS The Fe+3-enterobactin-Ciprofloxacin conjugate effectively inhibited the DNA gyrase enzyme (Docking score = -8.597 kcal/mol) and resulted in a lower concentration (25 μg/ml) required to eliminate supercoiled DNA plasmids compared to the parent drug (35 μg/ml; Docking score = -6.264 kcal/mol). The Fe+3-Enterobactin-Fosfomycin conjugate showed a higher inhibition percentage (100%) of biofilm formation compared to Fosfomycin (21.58%) at a concentration of 2 mg/ml, with docking scores of -5.481 and -3.756 kcal/mol against UDP-N acetylglucosamine 1-carboxyvinyltransferase MurA. CONCLUSION The findings of this study suggest that the "Trojan Horse" strategy using enterobactin conjugated with Ciprofloxacin and Fosfomycin can effectively overcome permeability issues caused by efflux proteins and enhance the bactericidal activity of these drugs against antibiotic-resistant strains of E. coli.
Collapse
Affiliation(s)
- Mohamed T Khazaal
- Botany and Microbiology Department, Faculty of Science, Helwan University, HelwanCairo, 11795, Egypt
| | - Ahmed H I Faraag
- Botany and Microbiology Department, Faculty of Science, Helwan University, HelwanCairo, 11795, Egypt.
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt.
| | - Hoda H El-Hendawy
- Botany and Microbiology Department, Faculty of Science, Helwan University, HelwanCairo, 11795, Egypt.
| |
Collapse
|
4
|
Kolbeck PJ, Tišma M, Analikwu BT, Vanderlinden W, Dekker C, Lipfert J. Supercoiling-dependent DNA binding: quantitative modeling and applications to bulk and single-molecule experiments. Nucleic Acids Res 2024; 52:59-72. [PMID: 38000393 PMCID: PMC10783501 DOI: 10.1093/nar/gkad1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
DNA stores our genetic information and is ubiquitous in applications, where it interacts with binding partners ranging from small molecules to large macromolecular complexes. Binding is modulated by mechanical strains in the molecule and can change local DNA structure. Frequently, DNA occurs in closed topological forms where topology and supercoiling add a global constraint to the interplay of binding-induced deformations and strain-modulated binding. Here, we present a quantitative model with a straight-forward numerical implementation of how the global constraints introduced by DNA topology modulate binding. We focus on fluorescent intercalators, which unwind DNA and enable direct quantification via fluorescence detection. Our model correctly describes bulk experiments using plasmids with different starting topologies, different intercalators, and over a broad range of intercalator and DNA concentrations. We demonstrate and quantitatively model supercoiling-dependent binding in a single-molecule assay, where we directly observe the different intercalator densities going from supercoiled to nicked DNA. The single-molecule assay provides direct access to binding kinetics and DNA supercoil dynamics. Our model has broad implications for the detection and quantification of DNA, including the use of psoralen for UV-induced DNA crosslinking to quantify torsional tension in vivo, and for the modulation of DNA binding in cellular contexts.
Collapse
Affiliation(s)
- Pauline J Kolbeck
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Miloš Tišma
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Brian T Analikwu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Willem Vanderlinden
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics and Center for NanoScience, LMU Munich, Amalienstrasse 54, 80799 Munich, Germany
- Soft Condensed Matter and Biophysics, Department of Physics and Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
5
|
Dinh Thanh N, Ngoc Toan V, Thi Kim Giang N, Thi Kim Van H, Son Hai D, Minh Tri N, Ngoc Toan D. Synthesis, biological and molecular modelling for 1,3,4-thiadiazole sulfonyl thioureas: bacterial and fungal activity. RSC Med Chem 2023; 14:2751-2767. [PMID: 38107183 PMCID: PMC10718584 DOI: 10.1039/d3md00508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 12/19/2023] Open
Abstract
Some substituted thioureas (6a-i) containing a 1,3,4-thiadiazole ring were synthesized by the reaction of the corresponding substituted 2-amino-1,3,4-thiadiazoles 3a-i with p-toluenesulfonyl isocyanate in a one-pot procedure. The antibacterial and antifungal activities of these sulfonyl thioureas were estimated using a minimum inhibitory concentration protocol. Almost all the thioureas exhibited remarkable antimicrobial activity. Amongst the studied compounds, thioureas 6a, 6c, 6h, and 6i were better inhibitors against the bacterium S. aureus, with MIC values of 0.78-3.125 μg mL-1. These compounds were also tested for their inhibition against S. aureus enzymes, including enzymes of DNA gyrase, DNA topoisomerase IV (Topo IV), and dihydrofolate reductase. Amongst the compounds, 6h was a strong inhibitor, with IC50 values of 1.22, 53.78, and 0.23, respectively. Induced fit docking calculations were performed to observe the binding efficiency and steric interactions of these compounds. The obtained results showed that compound 6h was compatible with the active sites of S. aureus DNA gyrase 2XCS. This ligand interacted with residues ASP1083 (chain D), MET1121 (chain B), ARG1122 (chain D), and also with HOH2035, HOH2089, HOH2110, HOH2162. Molecular dynamics simulation in a water solvent system showed that the active interactions with residues ASP083 and MET1121 (chain B), along with ASP1083, MET1121, and ARG1122 (chain D), played an important role in stabilizing complex 6h/2XCS in the active pocket.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
| | - Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of New Technology, Military Institute of Science and Technology (Ministry of Military) 17 Hoang Sam, Cau Giay Ha Noi Viet Nam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Faculty of Chemical Technology, Viet Tri University of Industry Tien Kien, Lam Thao Phu Tho Viet Nam
| | - Do Son Hai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong, Cau Giay Ha Noi Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Viet Nam
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Viet Nam
| |
Collapse
|
6
|
Dias M, Chapagain T, Leng F. A Fluorescence-Based, T5 Exonuclease-Amplified DNA Cleavage Assay for Discovering Bacterial DNA Gyrase Poisons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562555. [PMID: 37904923 PMCID: PMC10614890 DOI: 10.1101/2023.10.16.562555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Fluoroquinolones (FQs) are potent antibiotics of clinical significance, known for their unique mechanism of action as gyrase poisons, which stabilize gyrase-DNA cleavage complexes and convert gyrase into a DNA-damaging machinery. Unfortunately, FQ resistance has emerged, and these antibiotics can cause severe side effects. Therefore, discovering novel gyrase poisons with different chemical scaffolds is essential. The challenge lies in efficiently identifying them from compound libraries containing thousands or millions of drug-like compounds, as high-throughput screening (HTS) assays are currently unavailable. Here we report a novel fluorescence-based, T5 exonuclease-amplified DNA cleavage assay for gyrase poison discovery. This assay capitalizes on recent findings showing that multiple gyrase molecules can simultaneously bind to a plasmid DNA molecule, forming multiple gyrase-DNA cleavage complexes on the same plasmid. These gyrase-DNA cleavage complexes, stabilized by a gyrase poison, can be captured using sarkosyl. Proteinase K digestion results in producing small DNA fragments. T5 exonuclease, selectively digesting linear and nicked DNA, can fully digest the fragmented linear DNA molecules and, thus, "amplify" the decrease in fluorescence signal of the DNA cleavage products after SYBR Green staining. This fluorescence-based, T5 exonuclease-amplified DNA cleavage HTS assay is validated using a 50-compound library, making it suitable for screening large compound libraries.
Collapse
|
7
|
Quimque MTJ, Go AD, Lim JAK, Vidar WS, Macabeo APG. Mycobacterium tuberculosis Inhibitors Based on Arylated Quinoline Carboxylic Acid Backbones with Anti- Mtb Gyrase Activity. Int J Mol Sci 2023; 24:11632. [PMID: 37511390 PMCID: PMC10380224 DOI: 10.3390/ijms241411632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
New antitubercular agents with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new arylated quinoline carboxylic acids (QCAs) having activity against replicating and non-replicating Mycobacterium tuberculosis (Mtb), the causative agent of TB. Thus, the synthesis, characterization, and in vitro screening (MABA and LORA) of 48 QCAs modified with alkyl, aryl, alkoxy, halogens, and nitro groups in the quinoline ring led to the discovery of two QCA derivatives, 7i and 7m, adorned with C-2 2-(naphthalen-2-yl)/C-6 1-butyl and C-2 22-(phenanthren-3-yl)/C-6 isopropyl, respectively, as the best Mtb inhibitors. DNA gyrase inhibition was shown to be exhibited by both, with QCA 7m illustrating better activity up to a 1 μM test concentration. Finally, a docking model for both compounds with Mtb DNA gyrase was developed, and it showed a good correlation with in vitro results.
Collapse
Affiliation(s)
- Mark Tristan J Quimque
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
- Chemistry Department, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Tibanga, Iligan City 9200, Philippines
| | - Adrian D Go
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Justin Allen K Lim
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Warren S Vidar
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| | - Allan Patrick G Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (Rm. 410), Research Center for the Natural and Applied Sciences, University of Santo Tomas, Espana Blvd., Manila 1015, Philippines
| |
Collapse
|
8
|
Thanh ND, Lan PH, Hai DS, Anh HH, Giang NTK, Van HTK, Toan VN, Tri NM, Toan DN. Thiourea derivatives containing 4-arylthiazoles and d-glucose moiety: design, synthesis, antimicrobial activity evaluation, and molecular docking/dynamics simulations. RSC Med Chem 2023; 14:1114-1130. [PMID: 37360390 PMCID: PMC10285754 DOI: 10.1039/d3md00010a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/15/2023] [Indexed: 06/28/2023] Open
Abstract
Some substituted glucose-conjugated thioureas containing 1,3-thiazole ring, 4a-h, were synthesized by the reaction of the corresponding substituted 2-amino-4-phenyl-1,3-thiazoles 2a-h with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isocyanate. The antibacterial and antifungal activities of these thiazole-containing thioureas were estimated using a minimum inhibitory concentration protocol. Among these compounds, 4c, 4g, and 4h were better inhibitors with MIC = 0.78-3.125 μg mL-1. These three compounds were also tested for their ability to inhibit S. aureus enzymes, including DNA gyrase, DNA topoisomerase IV (Topo IV), and dihydrofolate reductase, and compound 4h was found to be a strong inhibitor with IC50 = 1.25 ± 0.12, 67.28 ± 1.21, and 0.13 ± 0.05 μM, respectively. Induced-fit docking and MM-GBSA calculations were performed to observe the binding efficiencies and steric interactions of these compounds. The obtained results showed that compound 4h is compatible with the active site of S. aureus DNA gyrase 2XCS with four H-bond interactions with residues Ala1118, Met1121, and F:DC11 and also three interactions with F:DG10 (two interactions) and F:DC11 (one interaction). Molecular dynamics simulation in a water solvent system showed that ligand 4h had active interactions with enzyme 2XCS through residues Ala1083, Glu1088, Ala1118, Gly1117, and Met1121.
Collapse
Affiliation(s)
- Nguyen Dinh Thanh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
| | - Pham Hong Lan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong Cau Giay Ha Noi Vietnam
| | - Do Son Hai
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong Cau Giay Ha Noi Vietnam
| | - Hoang Huu Anh
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam 47 Pham Van Dong Cau Giay Ha Noi Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry Tien Kien Lam Thao Phu Tho Vietnam
| | - Vu Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of New Technology, Military Institute of Science and Technology (Ministry of Military) 17 Hoang Sam Cau Giay Ha Noi Vietnam
| | - Nguyen Minh Tri
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Institute of New Technology, Military Institute of Science and Technology (Ministry of Military) 17 Hoang Sam Cau Giay Ha Noi Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, University of Science (Vietnam National University, Hanoi) 19 Le Thanh Tong Ha Noi Vietnam
- Faculty of Chemistry, Thai Nguyen University of Education 20 Luong Ngoc Quyen Thai Nguyen Vietnam
| |
Collapse
|
9
|
Skok Ž, Durcik M, Zajec Ž, Gramec Skledar D, Bozovičar K, Pišlar A, Tomašič T, Zega A, Peterlin Mašič L, Kikelj D, Zidar N, Ilaš J. ATP-competitive inhibitors of human DNA topoisomerase IIα with improved antiproliferative activity based on N-phenylpyrrolamide scaffold. Eur J Med Chem 2023; 249:115116. [PMID: 36689894 DOI: 10.1016/j.ejmech.2023.115116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023]
Abstract
ATP-competitive inhibitors of human DNA topoisomerase II show potential for becoming the successors of topoisomerase II poisons, the clinically successful anticancer drugs. Based on our recent screening hits, we designed, synthesized and biologically evaluated new, improved series of N-phenylpyrrolamide DNA topoisomerase II inhibitors. Six structural classes were prepared to systematically explore the chemical space of N-phenylpyrrolamide based inhibitors. The most potent inhibitor, 47d, had an IC50 value of 0.67 μM against DNA topoisomerase IIα. Compound 53b showed exceptional activity on cancer cell lines with IC50 values of 130 nM against HepG2 and 140 nM against MCF-7 cancer cell lines. The reported compounds have no structurally similarity to published structures, they are metabolically stable, have reasonable solubility and thus can serve as promising leads in the development of anticancer ATP-competitive inhibitors of human DNA topoisomerase IIα.
Collapse
Affiliation(s)
- Žiga Skok
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Živa Zajec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Darja Gramec Skledar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Krištof Bozovičar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Anja Pišlar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Anamarija Zega
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Bocian W, Naumczuk B, Urbanowicz M, Sitkowski J, Bednarek E, Wiktorska K, Pogorzelska A, Wielgus E, Kozerski L. Insight on the Interaction between the Camptothecin Derivative and DNA Oligomer Mimicking the Target of Topo I Inhibitors. Molecules 2022; 27:molecules27206946. [PMID: 36296539 PMCID: PMC9612166 DOI: 10.3390/molecules27206946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The understanding of the mechanism of Topo I inhibition by organic ligands is a crucial source of information that has led to the design of more effective and safe pharmaceuticals in oncological chemotherapy. The vast number of inhibitors that have been studied in this respect over the last decades have enabled the creation of a concept of an ‘interfacial inhibitor’, thereby describing the machinery of Topo I inhibition. The central module of action of this machinery is the interface of a Topo I/DNA/inhibitor ternary complex. Most of the ‘interfacial inhibitors’ are primarily kinetic inhibitors that form molecular complexes with an “on–off” rate timing; therefore, all of the contacts between the inhibitor and both the enzyme and the DNA are essential to keep the complex stable and reduce the “off rate”. To test this hypothesis, we designed the compound using a C-9-(N-(2′-hydroxyethyl)amino)methyl substituent in an SN38 core, with a view that a flexible substituent may bind inside the nick of a model of the DNA and stabilize the complex, leading to a reduction in the “off rate” of a ligand in a potential ternary complex in vivo. Using docking analysis and molecular dynamics, free energy calculations on the level of the MM-PBSA and MM-GBSA model, here we presented the in silico-calculated structure of a ternary complex involving the studied compound 1. This confirmed our suggestion that compound 1 is situated in a groove of the nicked DNA model in a few conformations. The number of hydrogen bonds between the components of a ternary complex was established, which strengthens the complex and supports our view. The docking analysis and free energy calculations for the receptor structures which were obtained in the MD simulations of the ternary complex 1/DNA/Topo I show that the binding constant is stronger than it was for similar complexes with TPT, CPT, and SN38, which are commonly considered as strong Topo I inhibitors. The binary complex structure 1/DNA was calculated and compared with the experimental results of a complex that was in a solution. The analysis of the cross-peaks in NOESY spectra allowed us to assign the dipolar interactions between the given protons in the calculated structures. A DOSY experiment in the solution confirmed the strong binding of a ligand in a binary complex, having a Ka of 746 mM−1, which was compared with a Ka of 3.78 mM−1 for TPT. The MALDI-ToF MS showed the presence of the biohybrid, thus evidencing the occurrence of DNA alkylation by compound 1. Because of it having a strong molecular complex, alkylation is the most efficient way to reduce the “on–off” timing as it acts as a tool that causes the cog to brake in a working gear, and this is this activity we want to highlight in our contribution. Finally, the Topo I inhibition test showed a lower IC50 of the studied compound than it did for CPT and SN38.
Collapse
Affiliation(s)
| | - Beata Naumczuk
- National Medicines Institute, 00-725 Warsaw, Poland
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-8514371 (ext. 318)
| | | | | | | | | | | | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Science, 90-363 Lodz, Poland
| | | |
Collapse
|
11
|
Alfonso EE, Deng Z, Boaretto D, Hood BL, Vasile S, Smith LH, Chambers JW, Chapagain P, Leng F. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacol Transl Sci 2022; 5:932-944. [PMID: 36268121 PMCID: PMC9578135 DOI: 10.1021/acsptsci.2c00113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 12/25/2022]
Abstract
Bacterial DNA gyrase, a type IIA DNA topoisomerase that plays an essential role in bacterial DNA replication and transcription, is a clinically validated target for discovering and developing new antibiotics. In this article, based on a supercoiling-dependent fluorescence quenching (SDFQ) method, we developed a high-throughput screening (HTS) assay to identify inhibitors targeting bacterial DNA gyrase and screened the National Institutes of Health's Molecular Libraries Small Molecule Repository library containing 370,620 compounds in which 2891 potential gyrase inhibitors have been identified. According to these screening results, we acquired 235 compounds to analyze their inhibition activities against bacterial DNA gyrase using gel- and SDFQ-based DNA gyrase inhibition assays and discovered 155 new bacterial DNA gyrase inhibitors with a wide structural diversity. Several of them have potent antibacterial activities. These newly discovered gyrase inhibitors include several DNA gyrase poisons that stabilize the gyrase-DNA cleavage complexes and provide new chemical scaffolds for the design and synthesis of bacterial DNA gyrase inhibitors that may be used to combat multidrug-resistant bacterial pathogens. Additionally, this HTS assay can be applied to screen inhibitors against other DNA topoisomerases.
Collapse
Affiliation(s)
- Eddy E. Alfonso
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Zifang Deng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Daniel Boaretto
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| | - Becky L. Hood
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Vasile
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Layton H. Smith
- Conrad
Prebys Center for Chemical Genomics, Sanford
Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Jeremy W. Chambers
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Environmental Health Sciences, Florida
International University, Miami, Florida 33199, United States
| | - Prem Chapagain
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Physics, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular
Sciences Institute, Florida International
University, Miami, Florida 33199, United States
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United
States
| |
Collapse
|
12
|
New Quinazolin-4(3H)-one Derivatives Incorporating Hydrazone and Pyrazole Scaffolds as Antimicrobial Agents Targeting DNA Gyraze Enzyme. Sci Pharm 2022. [DOI: 10.3390/scipharm90030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present work includes the synthesis of a new series of quinazolin-4(3H)-one compounds (4a–f, 5a–d) as antimicrobial agents. The starting compound, 2-hydrazinylquinazolin-4(3H)-one (2), was synthesized and treated with different carbonyl compounds to afford the hydrazone derivatives 4a–f. In addition, the hydrazone derivatives 4a–d were treated with a DMF/POCl3 mixture to give the formyl-pyrazole derivatives 5a–d. All the target compounds were evaluated as antimicrobial agents against four bacterial and four fungal strains. The majority of the tested compounds showed potent antimicrobial activity compared with the reference antibiotics. The most potent antimicrobial activity was shown by 5a with MIC values in the range (1–16) μg/mL. In addition, the most potent compounds against E. coli were evaluated for their inhibitory activity against E. coli DNA gyrase, whereas the target compounds 4a, 5a, 5c, and 5d showed the most potent inhibition to the target enzyme with IC50 values ranging from 3.19 to 4.17 µM. Furthermore, molecular docking studies were performed for the most active compounds against the target E. coli DNA gyrase to determine their binding affinity within the enzyme’s active site. Moreover, ADME evaluations of these compounds predicted their high oral bioavailability and good GI absorption.
Collapse
|
13
|
Giang NTK, Thanh ND, Quyen TH, Huong DT, Toan VN, Van HTK. Synthesis, bacterial and fungal inhibition assay, molecular docking study of substituted isatin (N-substituted 1,2,3,4-tetra-O-acetyl-β-glucopyranosyl)thiosemicarbazones. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Ayoup MS, Rabee AR, Abdel-Hamid H, Harras MF, El Menofy NG, Ismail MMF. Exploration of Nitroaromatic Antibiotics via Sanger's Reagent: Synthesis, In Silico, and Antimicrobial Evaluation. ACS OMEGA 2022; 7:5254-5263. [PMID: 35187340 PMCID: PMC8851660 DOI: 10.1021/acsomega.1c06383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Facile synthesis of molecular hybrids containing a 2,4-dinitrophenyl moiety was achieved via nucleophilic aromatic substitution of the fluoride anion of Sanger's reagent (2,4-dinitrofluorobenzene) with various N, S, and O nucleophiles, considered as bioactive moieties. Antimicrobial evaluation of the new hybrids was carried out using amoxicillin and nystatin as antibacterial and antifungal reference standards, respectively. MIC test results identified the compounds 3, 4, and 7 as the most active hybrids against standard strains and multidrug-resistant strains (MDR) of Staphylococcus aureus, Escherichia coli, and Pseudomonas aurginosa. Most of the hybrids displayed two times the antibacterial activity of AMOX against MDR Pseudomonas aeruginosa, E. coli, and a standard strain of P. aeruginosa (ATCC 29853), while demonstrating a weak antifungal profile against Candida albicans. Selectivity profiles of the promising compounds 3, 4, 6, 7, 8, and 11 on WI-38 human cells were characterized, which indicated that compound 3 is the safest one (CC50 343.72 μM). The preferential anti-Gram-negative activity of our compounds led us to do docking studies on DNA gyrase B. Docking revealed that the potential antimicrobial compounds fit well into the active site of DNA gyrase B. Furthermore, in silico absorption, distribution, metabolism, and excretion (ADME) predictions revealed that most of the new compounds have high gastrointestinal absorption and a good oral bioavailability with no BBB permeability.
Collapse
Affiliation(s)
- Mohammed Salah Ayoup
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, 21525 Alexandria, Egypt
| | - Ahmed R. Rabee
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, 21525 Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, 21525 Alexandria, Egypt
| | - Marwa F. Harras
- Department
of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt
| | - Nagwan G. El Menofy
- Department
of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt
| | - Magda M. F. Ismail
- Department
of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
15
|
Narasimhan J, Letinski S, Jung SP, Gerasyuto A, Wang J, Arnold M, Chen G, Hedrick J, Dumble M, Ravichandran K, Levitz T, Cui C, Drennan CL, Stubbe J, Karp G, Branstrom A. Ribonucleotide reductase, a novel drug target for gonorrhea. eLife 2022; 11:e67447. [PMID: 35137690 PMCID: PMC8865847 DOI: 10.7554/elife.67447] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-resistant Neisseria gonorrhoeae (Ng) are an emerging public health threat due to increasing numbers of multidrug resistant (MDR) organisms. We identified two novel orally active inhibitors, PTC-847 and PTC-672, that exhibit a narrow spectrum of activity against Ng including MDR isolates. By selecting organisms resistant to the novel inhibitors and sequencing their genomes, we identified a new therapeutic target, the class Ia ribonucleotide reductase (RNR). Resistance mutations in Ng map to the N-terminal cone domain of the α subunit, which we show here is involved in forming an inhibited α4β4 state in the presence of the β subunit and allosteric effector dATP. Enzyme assays confirm that PTC-847 and PTC-672 inhibit Ng RNR and reveal that allosteric effector dATP potentiates the inhibitory effect. Oral administration of PTC-672 reduces Ng infection in a mouse model and may have therapeutic potential for treatment of Ng that is resistant to current drugs.
Collapse
Affiliation(s)
| | | | | | | | - Jiashi Wang
- PTC Therapeutics, IncSouth PlainfieldUnited States
| | | | | | - Jean Hedrick
- PTC Therapeutics, IncSouth PlainfieldUnited States
| | | | - Kanchana Ravichandran
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Talya Levitz
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Chang Cui
- Department of Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Gary Karp
- PTC Therapeutics, IncSouth PlainfieldUnited States
| | | |
Collapse
|
16
|
El-Zahabi HSA, Nossier ES, Mousa SM, Hassan H, Shalaby ASG, Arafa RK. Antibacterial and anticancer profiling of new benzocaine derivatives: Design, synthesis, and molecular mechanism of action. Arch Pharm (Weinheim) 2022; 355:e2100451. [PMID: 35102593 DOI: 10.1002/ardp.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
The need for new chemotherapeutics to overcome development of resistance merits research to discover new agents. Benzocaine derivatives are essential compounds in medicinal chemistry due to their various biological activities including antibacterial and anticancer activities. Therefore, this study focuses on the synthesis of new benzocaine derivatives 3a-e, 6, 7a and 7b, 8, 10-14, and 16a-d and their in vitro evaluation as antibacterial agents against gram +ve and -ve strains and as anticancer agents against HepG-2, HCT-116, and MCF-7 human cancer cell lines. The obtained results demonstrated that thiazolidines 6 and 7b showed higher antibacterial and anticancer activity in comparison with the reference drugs. In addition, 6 and 7b showed high potency as inhibitors toward their biological targets, that is DNA gyrase and human topoisomerase IIα, as compared to the reference standard drugs novobiocin and etoposide, respectively. Molecular docking demonstrated that both compounds could identify the active site of their target enzymes and develop effective binding interactions. Absorption, distribution, metabolism and elimination (ADME) and drug-likeness predictions of both compounds showed that they both have good ADME profiles and no structural alerts that might cause toxicity. Based on this, 6 and 7b could serve as lead compounds for the design of more potent antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Heba S A El-Zahabi
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Eman S Nossier
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Safya M Mousa
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Heba Hassan
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt
| | - Al Shimaa G Shalaby
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Center, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, Egypt.,Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
17
|
Ibrahim NM, Fahim SH, Hassan M, Farag AE, Georgey HH. Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: Potency and side effects. Eur J Med Chem 2022; 228:114021. [PMID: 34871841 DOI: 10.1016/j.ejmech.2021.114021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022]
Abstract
Fluoroquinolones are a class of antibacterial agents used clinically to treat a wide array of bacterial infections. Although being potent, susceptibility to CNS side effects limits their use. It was observed that improvements in absorption, activity and side effects were achieved via modifications at the N atom of the C7 of the side chain. To meet the increasing demand for development of new antibacterial agents, nineteen novel ciprofloxacin-sulfonamide hybrid molecules were designed, synthesized and characterized by IR, 1H NMR and 13C NMR as potential antibacterial agents with dual DNA gyrase/topoisomerase IV inhibitory activity. Most of the synthesized compounds showed significant antibacterial activity that was revealed by testing their inhibitory activity against DNA gyrase, DNA topoisomerase IV as well as their minimum inhibitory concentration against Staphylococcus aureus. Six ciprofloxacin-sulfonamide hybrids (3f, 5d, 7a, 7d, 7e and 9b) showed potent inhibitory activity against DNA topoisomerase IV, compared to ciprofloxacin (IC50: 0.55 μM), with IC50 range: 0.23-0.44 μM. DNA gyrase was also efficiently inhibited by five ciprofloxacin-sulfonamide hybrids (3f, 5d, 5e, 7a and 7d) with IC50 range: 0.43-1.1 μM (IC50 of ciprofloxacin: 0.83 μM). Compounds 3a and 3b showed a marked improvement in the antibacterial activity over ciprofloxacin against both Gram-positive and Gram-negative pathogens, namely, Staphylococcus aureus Newman and Escherichia coli ATCC8739, with MIC = 0.324 and 0.422 μM, respectively, that is 4.2-fold and 3.2-fold lower than ciprofloxacin (MIC = 1.359 μM) against the Gram-positive Staphylococcus aureus, and MIC = 0.025 and 0.013 μM, respectively, that is 10.2-fold and 19.6-fold lower than ciprofloxacin (MIC = 0.255 μM) against the Gram-negative Escherichia coli ATCC8739. Also, the most active compounds showed lower CNS and convulsive side effects compared to ciprofloxacin with a concomitant decrease in GABA expression.
Collapse
Affiliation(s)
- Noha M Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Samar H Fahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt.
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Awatef E Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, El-Kasr El-Eini Street, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
18
|
Saleh NM, Moemen YS, Mohamed SH, Fathy G, Ahmed AAS, Al-Ghamdi AA, Ullah S, El Sayed IET. Experimental and Molecular Docking Studies of Cyclic Diphenyl Phosphonates as DNA Gyrase Inhibitors for Fluoroquinolone-Resistant Pathogens. Antibiotics (Basel) 2022; 11:53. [PMID: 35052930 PMCID: PMC8772930 DOI: 10.3390/antibiotics11010053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
DNA gyrase and topoisomerase IV are proven to be validated targets in the design of novel antibacterial drugs. In this study, we report the antibacterial evaluation and molecular docking studies of previously synthesized two series of cyclic diphenylphosphonates (1a-e and 2a-e) as DNA gyrase inhibitors. The synthesized compounds were screened for their activity (antibacterial and DNA gyrase inhibition) against ciprofloxacin-resistant E.coli and Klebsiella pneumoniae clinical isolates having mutations (deletion and substitution) in QRDR region of DNA gyrase. The target compound (2a) that exhibited the most potent activity against ciprofloxacin Gram-negative clinical isolates was selected to screen its inhibitory activity against DNA gyrase displayed IC50 of 12.03 µM. In addition, a docking study was performed with inhibitor (2a), to illustrate its binding mode in the active site of DNA gyrase and the results were compatible with the observed inhibitory potency. Furthermore, the docking study revealed that the binding of inhibitor (2a) to DNA gyrase is mediated and modulated by divalent Mg2+ at good binding energy (-9.08 Kcal/mol). Moreover, structure-activity relationships (SARs) demonstrated that the combination of hydrazinyl moiety in conjunction with the cyclic diphenylphosphonate based scaffold resulted in an optimized molecule that inhibited the bacterial DNA gyrase by its detectable effect in vitro on gyrase-catalyzed DNA supercoiling activity.
Collapse
Affiliation(s)
- Neveen M. Saleh
- Department of Microbiology, National Organization for Drug Control and Research, Giza 12553, Egypt;
| | - Yasmine S. Moemen
- Clinical Pathology Department, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Sara H. Mohamed
- Department of Microbiology, National Organization for Drug Control and Research, Giza 12553, Egypt;
| | - Ghady Fathy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (G.F.); (A.A.S.A.)
| | - Abdullah A. S. Ahmed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (G.F.); (A.A.S.A.)
| | - Ahmed A. Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sami Ullah
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ibrahim El-Tantawy El Sayed
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt; (G.F.); (A.A.S.A.)
| |
Collapse
|
19
|
Son Hai D, Thi Thu Ha N, Tien Tung D, Thi Kim Giang N, Thi Thu Huong N, Huu Anh H, Thi Kim Van H, Ngoc Toan V, Toan DN, Thanh ND. Synthesis, biological evaluation and induced fit docking simulation study of d-glucose-conjugated 1 H-1,2,3-triazoles having 4 H-pyrano[2,3- d]pyrimidine ring as potential agents against bacteria and fungi. NEW J CHEM 2022. [DOI: 10.1039/d1nj05330b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gluco-conjugated 1H-1,2,3-triazoles having 4H-pyrano[2,3-d]pyrimidines are synthesized via click chemistry of N-propargyl-4H-pyrano[2,3-d]pyrimidines and glucopyaranosyl azide using CuI@Montmorillonite. Their antibacterial, anti-MRSA, and antifungal activity is probed.
Collapse
Affiliation(s)
- Do Son Hai
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, 47 Pham Van Dong, Cau Giay, Ha Noi, Vietnam
| | - Nguyen Thi Thu Ha
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
| | - Do Tien Tung
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
| | - Nguyen Thi Kim Giang
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
- Institute of Science and Technology, Ministry of Public Security of Vietnam, 47 Pham Van Dong, Cau Giay, Ha Noi, Vietnam
| | - Nguyen Thi Thu Huong
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
| | - Hoang Huu Anh
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
| | - Hoang Thi Kim Van
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
- Faculty of Chemical Technology, Viet Tri University of Industry, Tien Kien, Lam Thao, Phu Tho, Vietnam
| | - Vu Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
- Institute for Chemistry and Materials, Military Institute of Science and Technology (Ministry of Military), Cau Giay, Ha Noi, Vietnam
| | - Duong Ngoc Toan
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
- Faculty of Chemistry, Thai Nguyen University of Education, 20 Luong Ngoc Quyen, Thai Nguyen, Vietnam
| | - Nguyen Dinh Thanh
- Faculty of Chemistry, VNU University of Science (Vietnam National University, Ha Noi), 19 Le Thanh Tong, Hoan Kiem, Ha Noi, Vietnam
| |
Collapse
|
20
|
Bocian W, Naumczuk B, Urbanowicz M, Sitkowski J, Bierczyńska-Krzysik A, Bednarek E, Wiktorska K, Milczarek M, Kozerski L. The Mode of SN38 Derivatives Interacting with Nicked DNA Mimics Biological Targeting of Topo I Poisons. Int J Mol Sci 2021; 22:ijms22147471. [PMID: 34299090 PMCID: PMC8303725 DOI: 10.3390/ijms22147471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The compounds 7-ethyl-9-(N-methylamino)methyl-10-hydroxycamptothecin (2) and 7-ethyl-9-(N-morpholino)methyl-10-hydroxycamptothecin (3) are potential topoisomerase I poisons. Moreover, they were shown to have favorable anti-neoplastic effects on several tumor cell lines. Due to these properties, the compounds are being considered for advancement to the preclinical development stage. To gain better insights into the molecular mechanism with the biological target, here, we conducted an investigation into their interactions with model nicked DNA (1) using different techniques. In this work, we observed the complexity of the mechanism of action of the compounds 2 and 3, in addition to their decomposition products: compound 4 and SN38. Using DOSY experiments, evidence of the formation of strongly bonded molecular complexes of SN38 derivatives with DNA duplexes was provided. The molecular modeling based on cross-peaks from the NOESY spectrum also allowed us to assign the geometry of a molecular complex of DNA with compound 2. Confirmation of the alkylation reaction of both compounds was obtained using MALDI–MS. Additionally, in the case of 3, alkylation was confirmed in the recording of cross-peaks in the 1H/13C HSQC spectrum of 13C-enriched compound 3. In this work, we showed that the studied compounds—parent compounds 2 and 3, and their potential metabolite 4 and SN38—interact inside the nick of 1, either forming the molecular complex or alkylating the DNA nitrogen bases. In order to confirm the influence of the studied compounds on the topoisomerase I relaxation activity of supercoiled DNA, the test was performed based upon the measurement of the fluorescence of DNA stain which can differentiate between supercoiled and relaxed DNA. The presented results confirmed that studied SN38 derivatives effectively block DNA relaxation mediated by Topo I, which means that they stop the machinery of Topo I activity.
Collapse
Affiliation(s)
- Wojciech Bocian
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Beata Naumczuk
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-8514371 (ext. 318)
| | - Magdalena Urbanowicz
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Jerzy Sitkowski
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | | | - Elżbieta Bednarek
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Katarzyna Wiktorska
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Małgorzata Milczarek
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
| | - Lech Kozerski
- National Medicines Institute, 00-725 Warsaw, Poland; (W.B.); (M.U.); (J.S.); (E.B.); (K.W.); (M.M.); (L.K.)
- Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
21
|
DNA-Topology Simplification by Topoisomerases. Molecules 2021; 26:molecules26113375. [PMID: 34204901 PMCID: PMC8199745 DOI: 10.3390/molecules26113375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
The topological properties of DNA molecules, supercoiling, knotting, and catenation, are intimately connected with essential biological processes, such as gene expression, replication, recombination, and chromosome segregation. Non-trivial DNA topologies present challenges to the molecular machines that process and maintain genomic information, for example, by creating unwanted DNA entanglements. At the same time, topological distortion can facilitate DNA-sequence recognition through localized duplex unwinding and longer-range loop-mediated interactions between the DNA sequences. Topoisomerases are a special class of essential enzymes that homeostatically manage DNA topology through the passage of DNA strands. The activities of these enzymes are generally investigated using circular DNA as a model system, in which case it is possible to directly assay the formation and relaxation of DNA supercoils and the formation/resolution of knots and catenanes. Some topoisomerases use ATP as an energy cofactor, whereas others act in an ATP-independent manner. The free energy of ATP hydrolysis can be used to drive negative and positive supercoiling or to specifically relax DNA topologies to levels below those that are expected at thermodynamic equilibrium. The latter activity, which is known as topology simplification, is thus far exclusively associated with type-II topoisomerases and it can be understood through insight into the detailed non-equilibrium behavior of type-II enzymes. We use a non-equilibrium topological-network approach, which stands in contrast to the equilibrium models that are conventionally used in the DNA-topology field, to gain insights into the rates that govern individual transitions between topological states. We anticipate that our quantitative approach will stimulate experimental work and the theoretical/computational modeling of topoisomerases and similar enzyme systems.
Collapse
|
22
|
Deng Z, Leng F. A T5 Exonuclease-Based Assay for DNA Topoisomerases and DNA Intercalators. ACS OMEGA 2021; 6:12205-12212. [PMID: 34056374 PMCID: PMC8154156 DOI: 10.1021/acsomega.1c00962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
DNA topoisomerases, essential enzymes to all living organisms, are important targets of certain antibiotics and anticancer drugs. Although efforts have been taken to identify new inhibitors targeting DNA topoisomerases, limited high throughput screening (HTS) studies have been conducted since a widely accessible HTS assay is not available. We report here the establishment of a fluorescence-based, low-cost HTS assay to identify topoisomerase inhibitors. This HTS assay is based on a unique property of T5 exonuclease that can completely digest supercoiled plasmid pAB1 containing an "AT" hairpin structure and spare relaxed pAB1 and has been validated by screening a small library that contains 50 compounds for various topoisomerases. This T5 exonuclease-based HTS assay can also be used to identify DNA intercalators, the major false positives for identifying topoisomerase inhibitors using this HTS assay. Additionally, we found a new compound that potently inhibits human and bacterial DNA topoisomerase I.
Collapse
|
23
|
Pyne ALB, Noy A, Main KHS, Velasco-Berrelleza V, Piperakis MM, Mitchenall LA, Cugliandolo FM, Beton JG, Stevenson CEM, Hoogenboom BW, Bates AD, Maxwell A, Harris SA. Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides. Nat Commun 2021; 12:1053. [PMID: 33594049 PMCID: PMC7887228 DOI: 10.1038/s41467-021-21243-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/16/2021] [Indexed: 12/16/2022] Open
Abstract
In the cell, DNA is arranged into highly-organised and topologically-constrained (supercoiled) structures. It remains unclear how this supercoiling affects the detailed double-helical structure of DNA, largely because of limitations in spatial resolution of the available biophysical tools. Here, we overcome these limitations, by a combination of atomic force microscopy (AFM) and atomistic molecular dynamics (MD) simulations, to resolve structures of negatively-supercoiled DNA minicircles at base-pair resolution. We observe that negative superhelical stress induces local variation in the canonical B-form DNA structure by introducing kinks and defects that affect global minicircle structure and flexibility. We probe how these local and global conformational changes affect DNA interactions through the binding of triplex-forming oligonucleotides to DNA minicircles. We show that the energetics of triplex formation is governed by a delicate balance between electrostatics and bonding interactions. Our results provide mechanistic insight into how DNA supercoiling can affect molecular recognition, that may have broader implications for DNA interactions with other molecular species.
Collapse
Affiliation(s)
- Alice L B Pyne
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK.
- London Centre for Nanotechnology, University College London, London, UK.
| | - Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, UK.
| | - Kavit H S Main
- London Centre for Nanotechnology, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
| | | | - Michael M Piperakis
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| | | | - Fiorella M Cugliandolo
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK
| | - Joseph G Beton
- London Centre for Nanotechnology, University College London, London, UK
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK
| | | | - Bart W Hoogenboom
- London Centre for Nanotechnology, University College London, London, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Andrew D Bates
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
24
|
Toan VN, Thanh ND, Khuyen VH, Tu LTC, Tri NM, Huong NTT. N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones of 6-alkoxy-2-oxo-2H-chromene-4-carbaldehydes: synthesis, evaluation of their antibacterial, anti-MRSA, antifungal activity, and docking study. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Kolarič A, Germe T, Hrast M, Stevenson CEM, Lawson DM, Burton NP, Vörös J, Maxwell A, Minovski N, Anderluh M. Potent DNA gyrase inhibitors bind asymmetrically to their target using symmetrical bifurcated halogen bonds. Nat Commun 2021; 12:150. [PMID: 33420011 PMCID: PMC7794245 DOI: 10.1038/s41467-020-20405-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Novel bacterial type II topoisomerase inhibitors (NBTIs) stabilize single-strand DNA cleavage breaks by DNA gyrase but their exact mechanism of action has remained hypothetical until now. We have designed a small library of NBTIs with an improved DNA gyrase-binding moiety resulting in low nanomolar inhibition and very potent antibacterial activity. They stabilize single-stranded cleavage complexes and, importantly, we have obtained the crystal structure where an NBTI binds gyrase–DNA in a single conformation lacking apparent static disorder. This directly proves the previously postulated NBTI mechanism of action and shows that they stabilize single-strand cleavage through asymmetric intercalation with a shift of the scissile phosphate. This crystal stucture shows that the chlorine forms a halogen bond with the backbone carbonyls of the two symmetry-related Ala68 residues. To the best of our knowledge, such a so-called symmetrical bifurcated halogen bond has not been identified in a biological system until now. The mechanism of DNA gyrase inhibitor stabilization of single-strand DNA cleavage breaks by DNA gyrase has been hypothetical. Here, the authors show experimental evidence of the mechanism using a library of inhibitors with improved binding and employ crystal analysis to show bifurcated halogen bonding.
Collapse
Affiliation(s)
- Anja Kolarič
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Thomas Germe
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nicolas P Burton
- Inspiralis Ltd., Innovation Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7GJ, UK
| | - Judit Vörös
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Seddek A, Annamalai T, Tse-Dinh YC. Type IA Topoisomerases as Targets for Infectious Disease Treatments. Microorganisms 2021; 9:E86. [PMID: 33401386 PMCID: PMC7823277 DOI: 10.3390/microorganisms9010086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Infectious diseases are one of the main causes of death all over the world, with antimicrobial resistance presenting a great challenge. New antibiotics need to be developed to provide therapeutic treatment options, requiring novel drug targets to be identified and pursued. DNA topoisomerases control the topology of DNA via DNA cleavage-rejoining coupled to DNA strand passage. The change in DNA topological features must be controlled in vital processes including DNA replication, transcription, and DNA repair. Type IIA topoisomerases are well established targets for antibiotics. In this review, type IA topoisomerases in bacteria are discussed as potential targets for new antibiotics. In certain bacterial pathogens, topoisomerase I is the only type IA topoisomerase present, which makes it a valuable antibiotic target. This review will summarize recent attempts that have been made to identify inhibitors of bacterial topoisomerase I as potential leads for antibiotics and use of these inhibitors as molecular probes in cellular studies. Crystal structures of inhibitor-enzyme complexes and more in-depth knowledge of their mechanisms of actions will help to establish the structure-activity relationship of potential drug leads and develop potent and selective therapeutics that can aid in combating the drug resistant bacterial infections that threaten public health.
Collapse
Affiliation(s)
- Ahmed Seddek
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; (A.S.); (T.A.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
27
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Ahmed HEA, Abulkhair HS. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch Pharm (Weinheim) 2020; 354:e2000277. [PMID: 33078877 DOI: 10.1002/ardp.202000277] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E. coli DNA gyrase, to realize whether their antimicrobial action is mediated via inhibition of this enzyme. Four of the new derivatives (14, 17, 20, and 23) demonstrated a relatively potent antimicrobial activity with MIC values in the range of 0.66-5.29 μg/ml. Among them, compound 14 exhibited a particularly potent broad-spectrum antimicrobial activity against most of the tested strains of bacteria and fungi, with MIC values in the range of 0.66-3.98 μg/ml. A subsequent in vitro investigation against the bacterial DNA gyrase target enzyme revealed a significant potent inhibitory activity of quinoline derivative 14, which can be observed from its IC50 value (3.39 μM). Also, a molecular docking study of the most active compounds was carried out to explore the binding affinity of the new ligands toward the active site of DNA gyrase enzyme as a proposed target of their activity. Furthermore, the ADMET profiles of the most highly effective derivatives were analyzed to evaluate their potentials to be developed as good drug candidates.
Collapse
Affiliation(s)
- Mohamed H El-Shershaby
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmacognosy and Pharmaceutical Chemistry Department, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
28
|
Mohi El-Deen EM, Abd El-Meguid EA, Karam EA, Nossier ES, Ahmed MF. Synthesis and Biological Evaluation of New Pyridothienopyrimidine Derivatives as Antibacterial Agents and Escherichia coli Topoisomerase II Inhibitors. Antibiotics (Basel) 2020; 9:antibiotics9100695. [PMID: 33066400 PMCID: PMC7602199 DOI: 10.3390/antibiotics9100695] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
The growing resistance of bacteria to many antibiotics that have been in use for several decades has generated the need to discover new antibacterial agents with structural features qualifying them to overcome the resistance mechanisms. Thus, novel pyridothienopyrimidine derivatives (2a,b-a,b) were synthesized by a series of various reactions, starting with 3-aminothieno[2,3-b]pyridine-2-carboxamides (1a,b). Condensation of compounds 1a,b with cyclohexanone gave 1'H-spiro[cyclohexane-1,2'-pyrido[3',2':4,5]thieno[3,2-d]pyrimidin]-4'(3'H)-ones (2a,b), which in turn were utilized to afford the target 4-substituted derivatives (3a,b-8a,b). In vitro antibacterial activity evaluations of all the new compounds (2a,b-8a,b) were performed against six strains of Gram-negative and Gram-positive bacteria. The target compounds showed significant antibacterial activity, especially against Gram-negative strains. Moreover, the compounds (2a,b; 3a,b; 4a,b; and 5a,b) that exhibited potent activity against Escherichia coli were selected to screen their inhibitory activity against Escherichia coli topoisomerase II (DNA gyrase and topoisomerase IV) enzymes. Compounds 4a and 4b showed potent dual inhibition of the two enzymes with IC50 values of 3.44 µΜ and 5.77 µΜ against DNA gyrase and 14.46 µΜ and 14.89 µΜ against topoisomerase IV, respectively. In addition, docking studies were carried out to give insight into the binding mode of the tested compounds within the E. coli DNA gyrase B active site compared with novobiocin.
Collapse
Affiliation(s)
- Eman M. Mohi El-Deen
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
- Correspondence: ; Tel.: +20-0106-385-3338
| | - Eman A. Abd El-Meguid
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Eman A. Karam
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Eman S. Nossier
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif 21974, Saudi Arabia;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
29
|
A novel decatenation assay for DNA topoisomerases using a singly-linked catenated substrate. Biotechniques 2020; 69:356-362. [PMID: 33000631 DOI: 10.2144/btn-2020-0059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Decatenation is a crucial in vivo reaction of DNA topoisomerases in DNA replication and is frequently used in in vitro drug screening. Usually this reaction is monitored using kinetoplast DNA as a substrate, although this assay has several limitations. Here we have engineered a substrate for Tn3 resolvase that generates a singly-linked catenane that can readily be purified from the DNA substrate after restriction enzyme digestion and centrifugation. We show that this catenated substrate can be used with high sensitivity in topoisomerase assays and drug-inhibition assays.
Collapse
|
30
|
Picconi P, Hind CK, Nahar KS, Jamshidi S, Di Maggio L, Saeed N, Evans B, Solomons J, Wand ME, Sutton JM, Rahman KM. New Broad-Spectrum Antibiotics Containing a Pyrrolobenzodiazepine Ring with Activity against Multidrug-Resistant Gram-Negative Bacteria. J Med Chem 2020; 63:6941-6958. [PMID: 32515951 DOI: 10.1021/acs.jmedchem.0c00328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is urgent to find new antibiotic classes with activity against multidrug-resistant (MDR) Gram-negative pathogens as the pipeline of antibiotics is essentially empty. Modified pyrrolobenzodiazepines with a C8-linked aliphatic heterocycle provide a new class of broad-spectrum antibacterial agents with activity against MDR Gram-negative bacteria, including WHO priority pathogens. The structure-activity relationship established that the third ring was particularly important for Gram-negative activity. Minimum inhibitory concentrations for the lead compounds ranged from 0.125 to 2 mg/L for MDR Gram-negative, excluding Pseudomonas aeruginosa, and between 0.03 and 1 mg/L for MDR Gram-positive species. The lead compounds were rapidly bactericidal with >5 log reduction in viable count within 4 h for Acinetobacter baumannii and Klebsiella pneumoniae. The lead compound inhibited DNA gyrase in gel-based assays, with an IC50 of 3.16 ± 1.36 mg/L. This study provides a new chemical scaffold for developing novel broad-spectrum antibiotics which can help replenish the pipeline of antibiotics.
Collapse
Affiliation(s)
- Pietro Picconi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Charlotte K Hind
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Kazi S Nahar
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Lucia Di Maggio
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Naima Saeed
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, U.K
| | - Bonnie Evans
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Jessica Solomons
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - Matthew E Wand
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | - J Mark Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K
| | | |
Collapse
|
31
|
Bergant Loboda K, Janežič M, Štampar M, Žegura B, Filipič M, Perdih A. Substituted 4,5'-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase IIα. J Chem Inf Model 2020; 60:3662-3678. [PMID: 32484690 PMCID: PMC7469689 DOI: 10.1021/acs.jcim.0c00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human type II topoisomerases, molecular motors that alter the DNA topology, are a major target of modern chemotherapy. Groups of catalytic inhibitors represent a new approach to overcome the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. Here, we present a class of substituted 4,5'-bithiazoles as catalytic inhibitors targeting the human DNA topoisomerase IIα. Based on a structural comparison of the ATPase domains of human and bacterial type II topoisomerase, a focused chemical library of 4,5'-bithiazoles was assembled and screened to identify compounds that better fit the topology of the human topo IIα adenosine 5'-triphosphate (ATP) binding site. Selected compounds showed inhibition of human topo IIα comparable to that of the etoposide topo II drug, revealing a new class of inhibitors targeting this molecular motor. Further investigations showed that compounds act as catalytic inhibitors via competitive ATP inhibition. We also confirmed binding to the truncated ATPase domain of topo IIα and modeled the inhibitor molecular recognition with molecular simulations and dynophore models. The compounds also displayed promising cytotoxicity against HepG2 and MCF-7 cell lines comparable to that of etoposide. In a more detailed study with the HepG2 cell line, there was no induction of DNA double-strand breaks (DSBs), and the compounds were able to reduce cell proliferation and stop the cell cycle mainly in the G1 phase. This confirms the mechanism of action of these compounds, which differs from topo II poisons also at the cellular level. Substituted 4,5'-bithiazoles appear to be a promising class for further development toward efficient and potentially safer cancer therapies exploiting the alternative topo II inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant Loboda
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
32
|
Laws M, Hind C, Favaron A, Jamshidi S, Evans B, Clifford M, Sutton JM, Rahman KM. N1-Benzofused Modification of Fluoroquinolones Reduces Activity Against Gram-Negative Bacteria. ACS OMEGA 2020; 5:11923-11934. [PMID: 32548371 PMCID: PMC7271024 DOI: 10.1021/acsomega.9b03910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
The fluoroquinolone class of antibiotics has a well-established structure-activity relationship (SAR) and a long history in the clinic, but the effect of electron-rich benzofused substituents at the N1 position remains poorly explored. Because groups at this position are part of the topoisomerase-DNA binding complex and form a hydrophobic interaction with the major groove of DNA, it was hypothesized that an electron-rich benzofused N1 substituent could enhance this interaction. Molecular modeling techniques were employed to evaluate the binding of certain N1-modified fluoroquinolones to DNA gyrase targets from both Staphylococcus aureus and Klebsiella pneumoniae species compared with ciprofloxacin and norfloxacin. Seven N1-modified fluoroquinolones were subsequently synthesized and tested against a panel of Gram-negative pathogens to determine minimum inhibitory concentration (MIC) values. Gram-negative outer membrane penetration was investigated using the membrane permeabilizer polymyxin B nonapeptide and compound efflux via resistance-nodulation-division-family efflux transporters was evaluated using the known efflux pump inhibitor phenylalanine-arginine β-naphthylamide. Additionally, the target inhibitory activity of representative compound 6e was determined in a cell-free environment. A correlation between N1 substituent hydrophobicity and activity was observed across the MIC panel, with compound activity decreasing with increased hydrophobicity. Those compounds with highest hydrophobicity were inactive because of poor solubility profiles whereas compounds with intermediate hydrophobicity were inactive because of impaired outer membrane penetration, and reduced inhibition of topoisomerase targets, the latter in contrast to modeling predictions. This study adds new information to the fluoroquinolone SAR and suggests limited utility of large hydrophobic substituents at the N1 position of fluoroquinolones.
Collapse
Affiliation(s)
- Mark Laws
- Institute
of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Charlotte Hind
- Public
Health England, National Infection Service, Research and Development
Institute, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
| | - Andrea Favaron
- Institute
of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Shirin Jamshidi
- Institute
of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| | - Bonnie Evans
- Public
Health England, National Infection Service, Research and Development
Institute, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
| | - Melanie Clifford
- Public
Health England, National Infection Service, Research and Development
Institute, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
| | - J. Mark Sutton
- Public
Health England, National Infection Service, Research and Development
Institute, Porton Down, Salisbury, Wiltshire SP4 0JG, U.K.
| | - Khondaker Miraz Rahman
- Institute
of Pharmaceutical Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford
Street, London SE1 9NH, U.K.
| |
Collapse
|
33
|
Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα. Bioorg Chem 2020; 99:103828. [DOI: 10.1016/j.bioorg.2020.103828] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 01/05/2023]
|
34
|
Ismail MM, Abdulwahab HG, Nossier ES, El Menofy NG, Abdelkhalek BA. Synthesis of novel 2-aminobenzothiazole derivatives as potential antimicrobial agents with dual DNA gyrase/topoisomerase IV inhibition. Bioorg Chem 2020; 94:103437. [DOI: 10.1016/j.bioorg.2019.103437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/28/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
|
35
|
Ghannam IA, Abd El-Meguid EA, Ali IH, Sheir DH, El Kerdawy AM. Novel 2-arylbenzothiazole DNA gyrase inhibitors: Synthesis, antimicrobial evaluation, QSAR and molecular docking studies. Bioorg Chem 2019; 93:103373. [DOI: 10.1016/j.bioorg.2019.103373] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
|
36
|
Synthesis, Docking Studies, and In Vitro Evaluation of Some Novel Thienopyridines and Fused Thienopyridine-Quinolines as Antibacterial Agents and DNA Gyrase Inhibitors. Molecules 2019; 24:molecules24203650. [PMID: 31658631 PMCID: PMC6832920 DOI: 10.3390/molecules24203650] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023] Open
Abstract
A series of novel thienopyridines and pyridothienoquinolines (3a,b–14) was synthesized, starting with 2-thioxo-1,2-dihydropyridine-3-carbonitriles 1a and 1b. All compounds were evaluated for their in vitro antimicrobial activity against six bacterial strains. Compounds 3a,b, 4a, 5b, 6a,b, 7a, 9b, 12b, and 14 showed significant growth inhibition activity against both Gram-positive and Gram-negative bacteria compared with the reference drug. The most active compounds (4a, 7a, 9b, and 12b) against Staphylococcus aureus were also tested for their in vitro inhibitory action on methicillin-resistant Staphylococcus aureus (MRSA). The tested compounds showed promising inhibition activity, with the performance of 12b being equal to gentamicin and that of 7a exceeding it. Moreover, the most promising compounds were also screened for their Escherichia coli DNA gyrase inhibitory activity, compared with novobiocin as a reference DNA gyrase inhibitor. The results revealed that compounds (3a, 3b, 4a, 9b, and 12b) had the highest inhibitory capacity, with IC50 values of 2.26–5.87 µM (that of novobiocin is equal to 4.17 µM). Docking studies were performed to identify the mode of binding of the tested compounds to the active site of E. coli DNA gyrase B.
Collapse
|
37
|
Othman IMM, Gad-Elkareem MAM, El-Naggar M, Nossier ES, Amr AEGE. Novel phthalimide based analogues: design, synthesis, biological evaluation, and molecular docking studies. J Enzyme Inhib Med Chem 2019; 34:1259-1270. [PMID: 31287341 PMCID: PMC6691772 DOI: 10.1080/14756366.2019.1637861] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pyrazolylphthalimide derivative 4 was synthesized and reacted with different reagents to afford the target compounds imidazopyrazoles 5-7, pyrazolopyrimidines 9, 12, 14 and pyrazolotriazines 16, 17 containing phthalimide moiety. The prepared compounds were established by different spectral data and elemental analyses. Additionally, all synthesized derivatives were screened for their antibacterial activity against four types of Gram + ve and Gram-ve strains, and for antifungal activity against two fungi micro-organisms by well diffusion method. Moreover, the antiproliferative activity was tested for all compounds against human liver (HepG-2) cell line in comparison with the reference vinblastine. Moreover, drug-likeness and toxicity risk parameters of the newly synthesized compounds were calculated using in silico studies. The data from structure-actvity relationship (SAR) analysis suggested that phthalimide derivative bearing 3-aminopyrazolone moiety, 4 illustrated the best antimicrobial and antitumor activities and might be considered as a lead for further optimization. To investigate the mechanism of the antimicrobial and anticancer activities, enzymatic assay and molecular docking studies were carried out on E. coli topoisomerase II DNA gyrase B and VEGFR-2 enzymes.
Collapse
Affiliation(s)
- Ismail M M Othman
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt
| | - Mohamed A M Gad-Elkareem
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt.,b Department of Chemistry, Faculty of Science and Arts of Baljurashi , Albaha University , Saudi Arabia
| | - Mohamed El-Naggar
- c Chemistry Department, Faculty of Sciences , University of Sharjah , Sharjah , UAE
| | - Eman S Nossier
- d Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Abd El-Galil E Amr
- e Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC) , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia.,f Applied Organic Chemistry Department , National Research Centre , Giza , Egypt
| |
Collapse
|
38
|
El‐serwy WS, Mohamed HS, El‐serwy WS, Mohamed NA, Kassem EMM, Nossier ES, Shalaby ASG. Molecular Docking Study of Newly Synthesized Thiopyrimidines as Antimicrobial Agents Targeting DNA Gyrase Enzyme. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Walaa S. El‐serwy
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo 12622 Egypt
| | - Hanaa S. Mohamed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo 12622 Egypt
| | - Weam S. El‐serwy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo 12622 Egypt
| | - Neama A. Mohamed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo 12622 Egypt
| | - Emad M. M. Kassem
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo 12622 Egypt
| | - Eman S. Nossier
- Pharmaceutical Chemistry Department, Faculty of PharmacyAl‐Azhar University (Girls) Cairo 12622 Egypt
| | - Al Shimaa G. Shalaby
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research DivisionNational Research Centre Cairo 12622 Egypt
| |
Collapse
|
39
|
Bergant K, Janežič M, Valjavec K, Sosič I, Pajk S, Štampar M, Žegura B, Gobec S, Filipič M, Perdih A. Structure-guided optimization of 4,6-substituted-1,3,5-triazin-2(1H)-ones as catalytic inhibitors of human DNA topoisomerase IIα. Eur J Med Chem 2019; 175:330-348. [PMID: 31096154 DOI: 10.1016/j.ejmech.2019.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023]
Abstract
Human DNA topoisomerases represent one of the key targets of modern chemotherapy. An emerging group of catalytic inhibitors of human DNA topoisomerase IIα comprises a new paradigm directed to circumvent the known limitations of topoisomerase II poisons such as cardiotoxicity and induction of secondary tumors. In our previous studies, 4,6-substituted-1,3,5-triazin-2(1H)-ones were discovered as catalytic inhibitors of topo IIα. Here, we report the results of our efforts to optimize several properties of the initial chemical series that did not exhibit cytotoxicity on cancer cell lines. Using an optimized synthetic route, a focused chemical library was designed aimed at further functionalizing substituents at the position 4 of the 1,3,5-triazin-2(1H)-one scaffold to enable additional interactions with the topo IIα ATP binding site. After virtual screening, selected 36 analogues were synthesized and experimentally evaluated for human topo IIα inhibition. The optimized series displayed improved inhibition of topo IIα over the initial series and the catalytic mode of inhibition was confirmed for the selected active compounds. The optimized series also showed cytotoxicity against HepG2 and MCF-7 cell lines and did not induce double-strand breaks, thus displaying a mechanism of action that differs from the topo II poisons on the cellular level. The new series represents a new step in the development of the 4,6-substituted-1,3,5-triazin-2(1H)-one class towards novel efficient anticancer therapies utilizing the catalytic topo IIα inhibition paradigm.
Collapse
Affiliation(s)
- Kaja Bergant
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia; University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Matej Janežič
- Laboratory for Structural Bioinformatics, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Katja Valjavec
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia
| | - Izidor Sosič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Stane Pajk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Martina Štampar
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, SI 1000, Ljubljana, Slovenia
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, SI 1001, Ljubljana, Slovenia.
| |
Collapse
|
40
|
Riyadh SM, El-Motairi SA, Ahmed HEA, Khalil KD, Habib ESE. Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as DHFR Inhibitors. Chem Biodivers 2018; 15:e1800231. [PMID: 29956887 DOI: 10.1002/cbdv.201800231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
2-(1-{4-[(4-Methylphenyl)sulfonamido]phenyl}ethylidene)thiosemicarbazide (3) was exploited as a starting material for the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 6a - 6j and 2-hydrazono[1,3,4]thiadiazoles 10a - 10d, incorporating sulfonamide group, through its reactions with appropriate hydrazonoyl halides. The structures of the newly synthesized products were confirmed by spectral and elemental analyses. Also, the antimicrobial, anticancer, and DHFR inhibition potency for two series of thiazoles and [1,3,4]thiadiazoles were evaluated and explained by molecular docking studies and SAR analysis.
Collapse
Affiliation(s)
- Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shojaa A El-Motairi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - El-Sayed E Habib
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
41
|
Jeannot F, Taillier T, Despeyroux P, Renard S, Rey A, Mourez M, Poeverlein C, Khichane I, Perrin MA, Versluys S, Stavenger RA, Huang J, Germe T, Maxwell A, Cao S, Huseby DL, Hughes D, Bacqué E. Imidazopyrazinones (IPYs): Non-Quinolone Bacterial Topoisomerase Inhibitors Showing Partial Cross-Resistance with Quinolones. J Med Chem 2018; 61:3565-3581. [PMID: 29596745 DOI: 10.1021/acs.jmedchem.7b01892] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In our quest for new antibiotics able to address the growing threat of multidrug resistant infections caused by Gram-negative bacteria, we have investigated an unprecedented series of non-quinolone bacterial topoisomerase inhibitors from the Sanofi patrimony, named IPYs for imidazopyrazinones, as part of the Innovative Medicines Initiative (IMI) European Gram Negative Antibacterial Engine (ENABLE) organization. Hybridization of these historical compounds with the quinazolinediones, a known series of topoisomerase inhibitors, led us to a novel series of tricyclic IPYs that demonstrated potential for broad spectrum activity, in vivo efficacy, and a good developability profile, although later profiling revealed a genotoxicity risk. Resistance studies revealed partial cross-resistance with fluoroquinolones (FQs) suggesting that IPYs bind to the same region of bacterial topoisomerases as FQs and interact with at least some of the keys residues involved in FQ binding.
Collapse
Affiliation(s)
- Frédéric Jeannot
- Therapeutic Area Infectious Diseases , Sanofi R&D , 1541 Avenue Marcel Mérieux , 69280 Marcy L'Etoile , France
| | - Thomas Taillier
- Therapeutic Area Infectious Diseases , Sanofi R&D , 1541 Avenue Marcel Mérieux , 69280 Marcy L'Etoile , France
| | - Pierre Despeyroux
- Therapeutic Area Infectious Diseases , Sanofi R&D , 1541 Avenue Marcel Mérieux , 69280 Marcy L'Etoile , France
| | - Stéphane Renard
- Therapeutic Area Infectious Diseases , Sanofi R&D , 1541 Avenue Marcel Mérieux , 69280 Marcy L'Etoile , France
| | - Astrid Rey
- Therapeutic Area Infectious Diseases , Sanofi R&D , 1541 Avenue Marcel Mérieux , 69280 Marcy L'Etoile , France
| | - Michaël Mourez
- Therapeutic Area Infectious Diseases , Sanofi R&D , 1541 Avenue Marcel Mérieux , 69280 Marcy L'Etoile , France
| | - Christoph Poeverlein
- R&D, Integrated Drug Discovery , Sanofi-Aventis Deutschland GmbH , Industriepark Hoechst , 65926 Frankfurt am Main , Germany
| | - Imène Khichane
- LGCR, Analytical Sciences , Sanofi R&D , 13 Quai Jules Guesde , 94400 Vitry sur Seine , France
| | - Marc-Antoine Perrin
- LGCR, Analytical Sciences , Sanofi R&D , 13 Quai Jules Guesde , 94400 Vitry sur Seine , France
| | - Stéphanie Versluys
- Evotec France , 195 Route d'Espagne , BP 13669, 31036 Toulouse Cedex 1, France
| | - Robert A Stavenger
- Antibacterial DPU , GlaxoSmithKline , 1250 Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Jianzhong Huang
- Antibacterial DPU , GlaxoSmithKline , 1250 Collegeville Road , Collegeville , Pennsylvania 19426 , United States
| | - Thomas Germe
- Department of Biological Chemistry , John Innes Centre , Norwich Research Park , Norwich NR4 7UH , U.K
| | - Anthony Maxwell
- Department of Biological Chemistry , John Innes Centre , Norwich Research Park , Norwich NR4 7UH , U.K
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Biomedical Center , Uppsala University , Box 582, Uppsala S-751 23 , Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Biomedical Center , Uppsala University , Box 582, Uppsala S-751 23 , Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Biomedical Center , Uppsala University , Box 582, Uppsala S-751 23 , Sweden
| | - Eric Bacqué
- Therapeutic Area Infectious Diseases , Sanofi R&D , 1541 Avenue Marcel Mérieux , 69280 Marcy L'Etoile , France
| |
Collapse
|
42
|
Germe T, Vörös J, Jeannot F, Taillier T, Stavenger RA, Bacqué E, Maxwell A, Bax BD. A new class of antibacterials, the imidazopyrazinones, reveal structural transitions involved in DNA gyrase poisoning and mechanisms of resistance. Nucleic Acids Res 2018; 46:4325. [PMID: 29596599 PMCID: PMC5934632 DOI: 10.1093/nar/gky241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Germe
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Judit Vörös
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Frederic Jeannot
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France
| | - Thomas Taillier
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France
| | - Robert A Stavenger
- Antibacterial Discovery Performance Unit, Infectious Diseases Therapy Area Unit, GlaxoSmithKline, 1250 Collegeville Road, Collegeville, PA 19426, USA
| | - Eric Bacqué
- Sanofi R&D, TSU Infectious Diseases, 1541 Avenue Marcel Mérieux, 69280 Marcy L'Etoile, France
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Benjamin D Bax
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.,Platform Technology and Science, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood, Road, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
43
|
Al-Nadaf AH, Salah SA, Taha MO. Discovery of new Gyrase β inhibitors via structure based modeling. Comput Biol Chem 2018; 74:263-272. [PMID: 29679863 DOI: 10.1016/j.compbiolchem.2018.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/10/2018] [Accepted: 03/13/2018] [Indexed: 11/16/2022]
Abstract
Gyrase B is an essential enzyme in the prokaryotes which became an attractive target for antibacterial agents. In our study, we implemented a wide range of docking configurations to dock 120 inhibitors into the in the ATP- binding pocket of Gyrase B enzyme (PDB code: 4GEE). LigandFit docking engines and six scoring functions were utilized in the study. Furthermore, the ligands were docked in their ionized and unionized forms into the hydrous and anhydrous binding pocket. We used docking-based Comparative Intermolecular Contacts Analysis (db-CICA) which is a novel methodology to validate and identify the optimal docking configurations. Three docking configurations were found to achieve self-consistent db-CICA models. The resulting db-CICA models were used to construct corresponding pharmacophoric models that were used to screen the National Cancer Institute (NCI) list of compounds. In-vitro study represents antibacterial activities for twelve hit molecules with the most active having IC50 of 20.9 μM.
Collapse
Affiliation(s)
- Afaf H Al-Nadaf
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mu'tah University, Alkarak Jordan.
| | - Sajeda A Salah
- Department of Pharmaceutical Chemistry and Pharmacognacy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mutasem O Taha
- Drug Discovery Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, Jordan.
| |
Collapse
|
44
|
Andriollo P, Hind CK, Picconi P, Nahar KS, Jamshidi S, Varsha A, Clifford M, Sutton JM, Rahman KM. C8-Linked Pyrrolobenzodiazepine Monomers with Inverted Building Blocks Show Selective Activity against Multidrug Resistant Gram-Positive Bacteria. ACS Infect Dis 2018; 4:158-174. [PMID: 29260545 DOI: 10.1021/acsinfecdis.7b00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antimicrobial resistance has become a major global concern. Development of novel antimicrobial agents for the treatment of infections caused by multidrug resistant (MDR) pathogens is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents initially discovered and isolated from natural sources. Recently, C8-linked PBD biaryl conjugates have been shown to be active against some MDR Gram-positive strains. To explore the role of building block orientations on antibacterial activity and obtain structure activity relationship (SAR) information, four novel structures were synthesized in which the building blocks of previously reported compounds were inverted, and their antibacterial activity was studied. The compounds showed minimum inhibitory concentrations (MICs) in the range of 0.125-32 μg/mL against MDR Gram-positive strains with a bactericidal mode of action. The results showed that a single inversion of amide bonds reduces the activity while the double inversion restores the activity against MDR pathogens. All inverted compounds did not stabilize DNA and lacked eukaryotic toxicity. The compounds inhibit DNA gyrase in vitro, and the most potent compound was equally active against both wild-type and mutant DNA gyrase in a biochemical assay. The observed activity of the compounds against methicillin resistant S. aureus (MRSA) strains with equivalent gyrase mutations is consistent with gyrase inhibition being the mechanism of action in vivo, although this has not been definitively confirmed in whole cells. This conclusion is supported by a molecular modeling study showing interaction of the compounds with wild-type and mutant gyrases. This study provides important SAR information about this new class of antibacterial agents.
Collapse
Affiliation(s)
- Paolo Andriollo
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Charlotte K. Hind
- National Infections Service, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Pietro Picconi
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Kazi S. Nahar
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Shirin Jamshidi
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Amrit Varsha
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Melanie Clifford
- National Infections Service, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - J. Mark Sutton
- National Infections Service, Public Health England, Manor Farm Road, Porton Down, Salisbury SP4 0JG, United Kingdom
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical
Science, King’s College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
45
|
Mitchenall LA, Hipkin RE, Piperakis MM, Burton NP, Maxwell A. A rapid high-resolution method for resolving DNA topoisomers. BMC Res Notes 2018; 11:37. [PMID: 29338757 PMCID: PMC5771066 DOI: 10.1186/s13104-018-3147-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Agarose gel electrophoresis has been the mainstay technique for the analysis of DNA samples of moderate size. In addition to separating linear DNA molecules, it can also resolve different topological forms of plasmid DNAs, an application useful for the analysis of the reactions of DNA topoisomerases. However, gel electrophoresis is an intrinsically low-throughput technique and suffers from other potential disadvantages. We describe the application of the QIAxcel Advanced System, a high-throughput capillary electrophoresis system, to separate DNA topoisomers, and compare this technique with gel electrophoresis. RESULTS We prepared a range of topoisomers of plasmids pBR322 and pUC19, and a 339 bp DNA minicircle, and compared their separation by gel electrophoresis and the QIAxcel System. We found superior resolution with the QIAxcel System, and that quantitative analysis of topoisomer distributions was straightforward. We show that the QIAxcel system has advantages in terms of speed, resolution and cost, and can be applied to DNA circles of various sizes. It can readily be adapted for use in compound screening against topoisomerase targets.
Collapse
Affiliation(s)
- Lesley A. Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Rachel E. Hipkin
- Qiagen Ltd., Skelton House, Lloyd St. North, Manchester, M15 6SH UK
- Present Address: Fluidigm Ltd, 12 New Fetter Lane, London, EC4A 1JP UK
| | - Michael M. Piperakis
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
- Present Address: University Centre, Blackburn College, University Close, Blackburn, Lancashire BB2 1LH UK
| | - Nicolas P. Burton
- Inspiralis Ltd, Innovation Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| |
Collapse
|
46
|
Picconi P, Hind C, Jamshidi S, Nahar K, Clifford M, Wand ME, Sutton JM, Rahman KM. Triaryl Benzimidazoles as a New Class of Antibacterial Agents against Resistant Pathogenic Microorganisms. J Med Chem 2017. [PMID: 28650661 DOI: 10.1021/acs.jmedchem.7b00108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new class of nontoxic triaryl benzimidazole compounds, derived from existing classes of DNA minor groove binders, were designed, synthesized, and evaluated for their antibacterial activity against multidrug resistant (MDR) Gram-positive and Gram-negative species. Molecular modeling experiments suggest that the newly synthesized class cannot be accommodated within the minor groove of DNA due to a change in the shape of the molecules. Compounds 8, 13, and 14 were found to be the most active of the series, with MICs in the range of 0.5-4 μg/mL against the MDR Staphylococci and Enterococci species. Compound 13 showed moderate activity against the MDR Gram-negative strains, with MICs in the range of 16-32 μg/mL. Active compounds showed a bactericidal mode of action, and a mechanistic study suggested the inhibition of bacterial gyrase as the mechanism of action (MOA) of this chemical class. The MOA was further supported by the molecular modeling study.
Collapse
Affiliation(s)
- Pietro Picconi
- Institute of Pharmaceutical Science, King's College London , London SE1 1DB, U.K
| | - Charlotte Hind
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | - Shirin Jamshidi
- Institute of Pharmaceutical Science, King's College London , London SE1 1DB, U.K
| | - Kazi Nahar
- Institute of Pharmaceutical Science, King's College London , London SE1 1DB, U.K
| | - Melanie Clifford
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | - Matthew E Wand
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | - J Mark Sutton
- National Infections Service, Porton Down, Public Health England , Salisbury SP4 0JG, Wiltshire U.K
| | | |
Collapse
|
47
|
Noy A, Maxwell A, Harris SA. Interference between Triplex and Protein Binding to Distal Sites on Supercoiled DNA. Biophys J 2017; 112:523-531. [PMID: 28108011 PMCID: PMC5300792 DOI: 10.1016/j.bpj.2016.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/09/2016] [Accepted: 12/16/2016] [Indexed: 11/29/2022] Open
Abstract
We have explored the interdependence of the binding of a DNA triplex and a repressor protein to distal recognition sites on supercoiled DNA minicircles using MD simulations. We observe that the interaction between the two ligands through their influence on their DNA template is determined by a subtle interplay of DNA mechanics and electrostatics, that the changes in flexibility induced by ligand binding play an important role and that supercoiling can instigate additional ligand-DNA contacts that would not be possible in simple linear DNA sequences.
Collapse
Affiliation(s)
- Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich, United Kingdom
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
48
|
Priyanka, Singh V, Ekta, Katiyar D. Synthesis, antimicrobial, cytotoxic and E. coli DNA gyrase inhibitory activities of coumarinyl amino alcohols. Bioorg Chem 2017; 71:120-127. [PMID: 28196603 DOI: 10.1016/j.bioorg.2017.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/01/2017] [Accepted: 01/29/2017] [Indexed: 12/20/2022]
Abstract
Here we report the in vitro antimicrobial activity (minimum inhibitory concentration) of fourteen coumarinyl amino alcohols 2-16 against eight bacterial strains and two fungi. Among these compounds 4, 8, 12, 15 and 16 showed moderate to good microbial inhibition with MIC values varied from 6.25 to 25μg/mL. The most promising compounds were also evaluated for their in vitro cytotoxic and E. coli DNA gyrase inhibitory activities along with the two 7-oxy-4-methyl coumarinyl amino alcohol derivatives 17 and 18, which were found to be the most potent in in vitro antimicrobial screening in our previous study. All the active compounds, including 17 and 18, were also docked into the E. coli DNA gyrase ATP binding site (PDB ID: 1KZN) to investigate their binding interactions. Of these compound 17 has shown maximum binding energy value of -6.13kcal/mol.
Collapse
Affiliation(s)
- Priyanka
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow 226021, India
| | - Ekta
- Department of Bioinformatics, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Diksha Katiyar
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
49
|
Gu M, Berrido A, Gonzalez WG, Miksovska J, Chambers JW, Leng F. Fluorescently labeled circular DNA molecules for DNA topology and topoisomerases. Sci Rep 2016; 6:36006. [PMID: 27796331 PMCID: PMC5087112 DOI: 10.1038/srep36006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/10/2016] [Indexed: 01/18/2023] Open
Abstract
DNA topology plays essential roles in several fundamental biological processes, such as DNA replication, recombination, and transcription. Typically agarose gel electrophoresis is employed to study DNA topology. Since gel electrophoresis is time-consuming and labor intensive, it is desirable to develop other methods, such as fluorescence-based methods, for such studies. In this paper we report the synthesis of a type of unique fluorescence-labeled DNA molecules that can be used to study DNA topology and topoisomerases by fluorescence resonance energy transfer (FRET). Specifically, we inserted an 82 nt. synthetic DNA oligomer FL905 carrying a 42 nt. AT sequence with fluorescein and dabcyl labels into a gapped DNA molecule to generate relaxed and supercoiled pAB1_FL905. Since the fluorescence intensity of pAB1_FL905 is dependent on its supercoiling status, pAB1_FL905 is a powerful tool to study DNA topology and topoisomerases by FRET. pAB1_FL905 can also be developed into rapid and efficient high-throughput screening assays to identify inhibitors that target various DNA topoisomerases.
Collapse
Affiliation(s)
- Maxwell Gu
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Andrea Berrido
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Walter G Gonzalez
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Jaroslava Miksovska
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| | - Jeremy W Chambers
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199
| | - Fenfei Leng
- Biomolecular Science Institute, Florida International University, Miami, FL 33199.,Department of Chemistry &Biochemistry, Florida International University, Miami, FL 33199
| |
Collapse
|
50
|
Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics. Future Med Chem 2016; 7:459-71. [PMID: 25875873 DOI: 10.4155/fmc.14.157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Resistance of bacterial pathogens to current antibiotics has grown to be an urgent crisis. Approaches to overcome this challenge include identification of novel targets for discovery of new antibiotics. Bacterial topoisomerase I is present in all bacterial pathogens as a potential target for bactericidal topoisomerase poison inhibitors. Recent efforts have identified inhibitors of bacterial topoisomerase I with antibacterial activity. Additional research on the mode of action and binding site of these inhibitors would provide further validation of the target and establish that bacterial topoisomerase I is druggable. Bacterial topoisomerase I is a potentially high value target for discovery of new antibiotics. Demonstration of topoisomerase I as the cellular target of an antibacterial compound would provide proof-of-concept validation.
Collapse
|