1
|
Watanabe K, Yamagishi T, Toyomane K, Akutsu T. Validation of a novel fluorescent probe-based real-time PCR assay to detect saliva-specific unmethylated CpG sites for saliva identification. Leg Med (Tokyo) 2023; 63:102260. [PMID: 37094513 DOI: 10.1016/j.legalmed.2023.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The identification of saliva from forensic samples is often important to establish what happened at a crime scene, especially in sexual assault cases. Recently, CpG sites that are specifically methylated or unmethylated in saliva have been reported as markers for saliva identification. In this study, we designed a fluorescent probe-based real-time polymerase chain reaction (PCR) assay for analyzing the methylation status of two neighboring CpG sites, which we previously found were saliva-specifically unmethylated. Specificity analysis using various types of body fluid/tissue samples demonstrated a probe detecting the unmethylation of the two CpG sites reacted only to saliva DNA, indicating this probe as an all-or-nothing marker for the presence of saliva DNA. Sensitivity analysis demonstrated that the detection limit was 0.5 ng saliva DNA as input for bisulfite conversion, while we confirmed a negative effect of larger amounts of non-saliva DNA on sensitivity in the analysis of saliva-vaginal DNA mixtures. We finally validated the applicability of this test to swabs from licked skin and bottles after drinking as mock forensic samples in comparison with other saliva-specific markers. We confirmed the potential usefulness of this test for skin samples, from which a saliva-specific mRNA was not detected reliably, while the ingredients in several beverages might affect methylation analysis. Given the simplicity of real-time PCR as well as the high specificity and sensitivity of the test, we believe the developed method is suitable for routine forensic analysis and can play an important role in saliva identification.
Collapse
Affiliation(s)
- Ken Watanabe
- National Research Institute of Police Science, Chiba 277-0882, Japan.
| | | | - Kochi Toyomane
- National Research Institute of Police Science, Chiba 277-0882, Japan
| | - Tomoko Akutsu
- National Research Institute of Police Science, Chiba 277-0882, Japan
| |
Collapse
|
2
|
Razu MH, Ahmed ZB, Hossain MI, Rabbi MFA, Nayem MR, Hassan MA, Paul GK, Khan MR, Moniruzzaman M, Karmaker P, Khan M. Performance Evaluation of Developed Bangasure™ Multiplex rRT-PCR Assay for SARS-CoV-2 Detection in Bangladesh: A Blinded Observational Study at Two Different Sites. Diagnostics (Basel) 2022; 12:diagnostics12112617. [PMID: 36359461 PMCID: PMC9689614 DOI: 10.3390/diagnostics12112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we evaluated the performance of the in-house developed rRT-PCR assay for SARS-CoV-2 RNA targeting the envelope (E) and nucleocapsid (N) genes with internal control as human RNase P. A total of 50 positive samples and 50 negative samples of SARS-CoV-2 were tested by a reference kit at site 1 and a subset (30 positives and 16 negatives) of these samples are tested blindly at site 2. The limit of detection (LoD) was calculated by using a replication-deficient complete SARS-CoV-2 genome and known copy numbers, where Pseudo-virus samples were used to evaluate accuracy. On site 1, among the 50 SARS-CoV-2 positive samples 24, 18, and eight samples showed high (Ct < 26), moderate (26 < Ct ≤ 32), and low (32 < Ct ≤ 38) viral load, respectively, whereas in site 2, out of 30 SARS-CoV-2 positive samples, high, moderate, and low viral loads were found in each of the 10 samples. However, SARS-CoV-2 was not detected in the negative sample. So, in-house assays at both sites showed 100% sensitivity and specificity with no difference observed between RT PCR machines. The Ct values of the in-house kit had a very good correlation with the reference kits. LoD was determined as 100 copies/mL. It also displayed 100% accuracy in mutant and wild-type SARS-CoV-2 virus. This Bangasure™ RT-PCR kit shows excellent performance in detecting SARS-CoV-2 viral RNA compared to commercially imported CE-IVD marked FDA authorized kits.
Collapse
Affiliation(s)
- Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Zabed Bin Ahmed
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Iqbal Hossain
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Mohammad Fazle Alam Rabbi
- DNA Solutions Ltd., Dhaka 1207, Bangladesh
- Department of Soil, Water and Environment, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Gobindo Kumar Paul
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Robin Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Md. Moniruzzaman
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Pranab Karmaker
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements, Dhaka 1205, Bangladesh
- Correspondence:
| |
Collapse
|
3
|
Lin W, Tian T, Jiang Y, Xiong E, Zhu D, Zhou X. A CRISPR/Cas9 eraser strategy for contamination-free PCR end-point detection. Biotechnol Bioeng 2021; 118:2053-2066. [PMID: 33615437 PMCID: PMC8013395 DOI: 10.1002/bit.27718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Polymerase chain reaction (PCR), a central technology for molecular diagnostics, is highly sensitive but susceptible to the risk of false positives caused by aerosol contamination, especially when an end-point detection mode is applied. Here, we proposed a solution by designing a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 eraser strategy for eliminating potential contamination amplification. The CRISPR/Cas9 engineered eraser is firstly adopted into artpcr reverse-transcription PCR (RT-PCR) system to achieve contamination-free RNA detection. Subsequently, we extended this CRISPR/Cas9 eraser to the PCR system. We engineered conventional PCR primers to enable the amplified products to contain an implanted NGG (protospacer adjacent motif, PAM) site, which is used as a code for specific CRISPR/Cas9 recognition. Pre-incubation of Cas9/sgRNA with PCR mix leads to a selective cleavage of contamination amplicons, thus only the template DNA is amplified. The developed CRISPR/Cas9 eraser, adopted by both RT-PCR and PCR systems, showed high-fidelity detection of SARS-CoV-2 and African swine fever virus with a convenient strip test.
Collapse
Affiliation(s)
- Wei Lin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of BiophotonicsSouth China Normal UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Laser Life Science, College of BiophotonicsSouth China Normal UniversityGuangzhouChina
| | - Tian Tian
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Yongzhong Jiang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanChina
- Hubei Provincial Center for Disease Control and PreventionWuhanChina
| | - Erhu Xiong
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Debin Zhu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of ChemistrySouth China Normal UniversityGuangzhouChina
| | - Xiaoming Zhou
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| |
Collapse
|
4
|
Opere WM, John M, Ombori O. Molecular Detection of Human Enteric Adenoviruses in Water Samples Collected from Lake Victoria Waters Along Homa Bay Town, Homa Bay County, Kenya. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:32-43. [PMID: 33141920 DOI: 10.1007/s12560-020-09444-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Lake Victoria is the primary source of water for millions of people in the Sub-Saharan Africa region. In recent years, population development around the lake has resulted in compromised sanitation standards resulting in increased faecal pollution of the lake. Consequently, this condition has increased the chances of waterborne enteric viruses, such as adenoviruses' circulation in the community. Adenoviruses can affect health in both humans and animals by causing a myriad of diseases including the gastrointestinal infections. The study aimed to detect contamination of the lake water with pathogenic human adenoviruses along Homa Bay town, Homa Bay County, Kenya. To examine the presence of adenoviral genome, we collected a total of 216 (monthly n = 36) water samples from six different locations marked by high levels of anthropogenic activities along the shoreline. Molecular amplification technique using the nested PCR procedure was used to detect the genomes from the water samples. Human adenoviruses were detected in 11 samples (5.09%). Statistical analyses indicated a significant correlation between adenovirus presence and the approximate distance from pit latrines and sewage treatment works at the area. The findings indicate that faecal contamination of the lake waters originated from the point sources. The findings also suggest a possibility of elevated levels of faecal pollution in different surface waters within the lake basin. The findings indicate that some of the enteric viruses circulating in the local community are human adenovirus type 40, and 41. The data may provide a basis for recognizing the need to prioritize environmental monitoring for enteric virus contamination on an on-going basis.
Collapse
Affiliation(s)
- Wasonga Michael Opere
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya.
| | - Maingi John
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Omwoyo Ombori
- Department of Plant Sciences, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
5
|
Li W, Edwards A, Cox MS, Raabis SM, Skarlupka JH, Steinberger AJ, Murphy B, Larsen A, Suen G. Changes in the host transcriptome and microbial metatranscriptome of the ileum of dairy calves subjected to artificial dosing of exogenous rumen contents. Physiol Genomics 2020; 52:333-346. [PMID: 32567508 DOI: 10.1152/physiolgenomics.00005.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Development of a properly functioning gastrointestinal tract (GIT) at an early age is critical for the wellbeing and lifetime productivity of dairy cattle. The role of early microbial colonization on GIT development in neonatal cattle and the associated molecular changes remain largely unknown, particularly for the small intestine. In this study, we performed artificial dosing of exogenous rumen fluid during the early life of the calf, starting at birth through the weaning transition at 8 wk. Six calves were included in this study. At 8 wk of age, tissue from the ileum was collected and subjected to host transcriptome and microbial metatranscriptome analysis using RNA sequencing. A total of 333 genes showed significant differential expression (DE) (fold-change ≥2; adjusted P < 0.1, mean read-count ≥10) between the treated and control calves. Gene ontology analysis indicated that these DE genes are predominantly associated with processes related to the host immune response (P < 0.0001). Association analysis between the host gene expression and the microbial genus abundance identified 57 genes as having significant correlation with the ileum microbial genera (P < 0.0001). Of these, three genes showed significant association with six microbial genera: lysozyme 2 (LYZ2), fatty acid binding protein 5 (FABP5), and fucosyltransferase (FUT1). Specifically, the profound increase in expression of LYZ2 in treated calves suggests the initiation of antibacterial activity and innate response from the host. Despite the limitation of a relatively small sample size, this study sheds light on the potential impact of early introduction of microbes on the small intestine of calves.
Collapse
Affiliation(s)
- Wenli Li
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, US Department of Agriculture Agricultural Research Service, Madison, Wisconsin
| | - Andrea Edwards
- Department of Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Madison S Cox
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sarah M Raabis
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| | | | - Brianna Murphy
- Department of Nutritional Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anna Larsen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
6
|
Li W, Gelsinger S, Edwards A, Riehle C, Koch D. Changes in meta-transcriptome of rumen epimural microbial community and liver transcriptome in young calves with feed induced acidosis. Sci Rep 2019; 9:18967. [PMID: 31831817 PMCID: PMC6908691 DOI: 10.1038/s41598-019-54055-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
The common management practices of dairy calves leads to increased starch concentration in feed, which subsequently may cause rumen acidosis while on milk and during weaning. Until recently, few attempts were undertaken to understand the health risks of prolonged ruminal acidosis in post weaning calves. Resultantly, the molecular changes in the digestive tracts in post-weaning calves with ruminal acidosis remain largely unexplored. In this study, we investigated the liver transcriptome changes along with its correlation with the rumen microbial rRNA expression changes in young calves using our model of feed induced ruminal acidosis. In this model, new born calves were fed a highly processed, starch-rich diet starting from one week of age through 16 weeks. A total of eight calves were involved in this study. Four of them were fed the acidosis-inducing diet (Treated) and the rest of the four were fed a standard starter diet (Control). Liver and rumen epithelial tissues were collected at necropsy at 17 weeks of age. Transcriptome analyses were carried out in the liver tissues and rRNA meta-transcriptome analysis were done using the rumen epithelial tissues. The correlation analysis was performed by comparing the liver mRNA expression with the rumen epithelial rRNA abundance at genus level. Calves with induced ruminal acidosis had significantly lower ruminal pH in comparison to the control group, in addition to significantly less weight-gain over the course of the experiment. In liver tissues, a total of 428 differentially expressed genes (DEGs) (fold-change, FC ≥ 1.5; adjusted P ≤ 0.1) were identified in treated group in comparison to control. Biological pathways enriched by these DEGs included cellular component organization, indicating the impact of ruminal acidosis on liver development in young calves. Specifically, the up-regulated genes were enriched in acute phase response (P < 0.01), pyruvate metabolic process (P < 0.01) and proton-acceptors (P ≪ 0.001), indicating the liver's response to feed induced acidosis at the transcriptome level. Twelve transferase activity related genes had significant correlation with rumen microbial rRNA expression changes. Among these genes, two up-regulated genes were reported with involvement in lipid metabolism in the liver, implying the direct effect of feed-induced acidosis on both the rumen microbial community and liver metabolism. Our study provides insight into the physiological remodeling in the liver resultant from the prolonged acidosis in post weaning calves, which may facilitate future RNA-seq based diagnosis and precision management of rumen acidosis in dairy calves.
Collapse
Affiliation(s)
- Wenli Li
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA ARS, Madison, WI, 53706, USA.
| | - Sonia Gelsinger
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrea Edwards
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA ARS, Madison, WI, 53706, USA
| | - Christina Riehle
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Koch
- Department of Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
7
|
Li W, Gelsinger S, Edwards A, Riehle C, Koch D. Transcriptome analysis of rumen epithelium and meta-transcriptome analysis of rumen epimural microbial community in young calves with feed induced acidosis. Sci Rep 2019; 9:4744. [PMID: 30894588 PMCID: PMC6426933 DOI: 10.1038/s41598-019-40375-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/04/2019] [Indexed: 02/07/2023] Open
Abstract
Many common management practices used to raise dairy calves while on milk and during weaning can cause rumen acidosis. Ruminal pH has long been used to identify ruminal acidosis. However, few attempts were undertaken to understand the role of prolonged ruminal acidosis on rumen microbial community or host health in young calves long after weaning. Thus, the molecular changes associated with prolonged rumen acidosis in post weaning young calves are largely unknown. In this study, we induced ruminal acidosis by feeding a highly processed, starch-rich diet to calves starting from one week of age through 16 weeks. Rumen epithelial tissues were collected at necropsy at 17 weeks of age. Transcriptome analyses on the rumen epithelium and meta-transcriptome analysis of rumen epimural microbial communities were carried out. Calves with induced ruminal acidosis showed significantly less weight gain over the course of the experiment, in addition to substantially lower ruminal pH in comparison to the control group. For rumen epithelial transcriptome, a total of 672 genes (fold-change, FC ≥ 1.5; adjusted-p ≤ 0.05) showed significant differential expression in comparison to control. Biological pathways impacted by these differentially expressed genes included cell signaling and morphogenesis, indicating the impact of ruminal acidosis on rumen epithelium development. rRNA read-based microbial classification indicated significant increase in abundance of several genera in calves with induced acidosis. Our study provides insight into host rumen transcriptome changes associated with prolonged acidosis in post weaning calves. Shifts in microbial species abundance are promising for microbial species-based biomarker development and artificial manipulation. Such knowledge provides a foundation for future more precise diagnosis and preventative management of rumen acidosis in dairy calves.
Collapse
Affiliation(s)
- Wenli Li
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA ARS, Madison, WI, 53706, USA.
| | - Sonia Gelsinger
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Andrea Edwards
- The Cell Wall Utilization and Biology Laboratory, US Dairy Forage Research Center, USDA ARS, Madison, WI, 53706, USA
| | - Christina Riehle
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Koch
- Department of Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
8
|
Transcriptomics analysis of host liver and meta-transcriptome analysis of rumen epimural microbial community in young calves treated with artificial dosing of rumen content from adult donor cow. Sci Rep 2019; 9:790. [PMID: 30692556 PMCID: PMC6349911 DOI: 10.1038/s41598-018-37033-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022] Open
Abstract
In mammals, microbial colonization of the digestive tract (GIT) occurs right after birth by several bacterial phyla. Numerous human and mouse studies have reported the importance of early gut microbial inhabitants on host health. However, few attempts have been undertaken to directly interrogate the role of early gut/rumen microbial colonization on GIT development or host health in neonatal ruminants through artificial manipulation of the rumen microbiome. Thus, the molecular changes associated with bacterial colonization are largely unknown in cattle. In this study, we dosed young calves with exogenous rumen fluid obtained from an adult donor cow, starting at birth, and repeated every other week until six weeks of age. Eight Holstein bull calves were included in this study and were separated into two groups of four: the first group was treated with rumen content freshly extracted from an adult cow, and the second group was treated with sterilized rumen content. Using whole-transcriptome RNA-sequencing, we investigated the transcriptional changes in the host liver, which is a major metabolic organ and vital to the calf’s growth performance. Additionally, the comparison of rumen epimural microbial communities between the treatment groups was performed using the rRNA reads generated by sequencing. Liver transcriptome changes were enriched with genes involved in cell signaling and protein phosphorylation. Specifically, up-regulation of SGPL1 suggests a potential increase in the metabolism of sphingolipids, an essential molecular signal for bacterial survival in digestive tracts. Notably, eight genera, belonging to four phyla, had significant increases in abundance in treated calves. Our study provides insight into host liver transcriptome changes associated with early colonization of the microbial communities in neonatal calves. Such knowledge provides a foundation for future probiotics-based research in microbial organism mediated rumen development and nutrition in ruminants.
Collapse
|
9
|
Busato F, Dejeux E, El Abdalaoui H, Gut IG, Tost J. Quantitative DNA Methylation Analysis at Single-Nucleotide Resolution by Pyrosequencing®. Methods Mol Biol 2018; 1708:427-445. [PMID: 29224157 DOI: 10.1007/978-1-4939-7481-8_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many protocols for gene-specific DNA methylation analysis are either labor intensive, not quantitative and/or limited to the measurement of the methylation status of only one or very few CpG positions. Pyrosequencing is a real-time sequencing technology that overcomes these limitations. After bisulfite modification of genomic DNA, a region of interest is amplified by PCR with one of the two primers being biotinylated. The PCR generated template is rendered single-stranded and a pyrosequencing primer is annealed to analyze quantitatively cytosine methylation. In comparative studies, pyrosequencing has been shown to be among the most accurate and reproducible technologies for locus-specific DNA methylation analyses and has become a widely used tool for the validation of DNA methylation changes identified in genome-wide studies as well as for locus-specific analyses with clinical impact such as methylation analysis of the MGMT promoter. Advantages of the Pyrosequencing technology are the ease of its implementation, the high quality and the quantitative nature of the results, and its ability to identify differentially methylated positions in close proximity.
Collapse
Affiliation(s)
- Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Emelyne Dejeux
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Hafida El Abdalaoui
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Ivo Glynne Gut
- Biomedical Genomics Group, Centro Nacional de Analisis Genomico, CNAG-CRG, Center for Genomic Regulation, Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
10
|
Diagnostic Accuracy of Methylated SEPT9 for Blood-based Colorectal Cancer Detection: A Systematic Review and Meta-Analysis. Clin Transl Gastroenterol 2017; 8:e216. [PMID: 28102859 PMCID: PMC5288600 DOI: 10.1038/ctg.2016.66] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
Objectives: More convenient and effective blood-based methods are believed to increase colorectal cancer (CRC) detection adoption. The effectiveness of methylated SPET9 for CRC detection has been reviewed in the newly published recommendation statement by US Preventive Services Task Force (USPSTF), while detailed instructions were not provided, which may be a result of insufficient evidence. Therefore, more evidence is needed to assist practitioners to thoroughly understand the utilization of this special maker. Methods: Based on the standard method, a systematic review and meta-analysis was performed. Quadas-2 was used to assess the methodological quality of studies. Relevant studies were searched and screened from PubMed, Embase and other literature databases up to June 1, 2016. Pooled sensitivity, specificity and diagnostic odds ratio were summarized by bivariate mixed effect model and area under the curve (AUC) was estimated by hierarchical summary receiver operator characteristic curve. Results: 25 studies were included for analysis. The pooled sensitivity, specificity and AUC were 0.71, 0.92 and 0.88, respectively. Among the various methods and assays, Epipro Colon 2.0 with 2/3 algorithm was the most effective in colorectal cancer detection. Positive ratio of mSEPT9 was higher in advanced CRC (45% in I, 70% in II, 76% in III, 79% in IV) and lower differentiation (31% in high, 73% in moderate, 90% in low) tissue. However, this marker has poor ability of identifying precancerous lesions according to current evidence. Conclusions: mSEPT9 is a reliable blood-based marker in CRC detection, particularly advanced CRC. Epipro Colon 2.0 with 2/3 algorithm is currently the optimal method and assay to detect CRC.
Collapse
|
11
|
McCleary S, Henshilwood K. Novel quantitative TaqMan® MGB real-time PCR for sensitive detection of Vibrio aestuarianus in Crassostrea gigas. DISEASES OF AQUATIC ORGANISMS 2015; 114:239-248. [PMID: 26036831 DOI: 10.3354/dao02869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Validation of a novel quantitative real-time PCR using TaqMan® minor groove binder (MGB) chemistry is described for sensitive and rapid detection of Vibrio aestuarianus, an increasingly important pathogen of Pacific cupped oyster Crassostrea gigas aquaculture. Primers and TaqMan® MGB hydrolysis probe were designed to specifically amplify a 58bp DNA fragment of the V. aestuarianus dnaJ gene. Real-time PCR selectivity was empirically tested using DNA extracted from isolates of V. aestuarianus and a selection of different aquatic bacterial species, including other Vibrio spp. Theoretical selectivity was assessed through sequence comparison using the NCBI BLAST similarity tool. Quantitative PCR plasmid standards were generated to test assay linearity, amplification efficiency and the limit of quantitation (LOQ), according to International Organisation for Standardisation ISO 16140 validation recommendations. LOQ ranged between 5 and 10 PCR copies, although the detection range extended beyond this with reduced precision. Applied performance was tested using C. gigas samples taken from a selection of Irish aquaculture sites. Increasing levels of V. aestuarianus, accompanied by the development of tissue pathology in examined oysters, were found at 1 site that was sampled repeatedly in 2013. Rapid, sensitive and reproducible detections of V. aestuarianus from C. gigas tissue samples were attained during this validation study with a small sample size, and a practical application for disease management is described.
Collapse
Affiliation(s)
- S McCleary
- Marine Institute, Rinville, Oranmore, County Galway, Ireland
| | | |
Collapse
|
12
|
Su F, Wang L, Sun Y, Liu C, Duan X, Li Z. Highly sensitive and multiplexed analysis of CpG methylation at single-base resolution with ligation-based exponential amplification. Chem Sci 2014; 6:1866-1872. [PMID: 28706642 PMCID: PMC5494546 DOI: 10.1039/c4sc03135k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 12/10/2014] [Indexed: 01/16/2023] Open
Abstract
DNA methylation is a primary epigenetic mechanism for transcriptional regulation during normal development and the occurrence of diseases, including cancers. DNA methylation has been increasingly utilized as a biomarker for cancer detection and differential diagnosis. Generally, one type of cancer is associated with several CpG methylation sites and detection of multiplexed CpG methylation can greatly improve the accuracy of cancer diagnosis. In this paper, we have developed a novel ligase chain reaction (LCR)-based method for multiplexed detection of CpG methylation in genomic DNA at single-base resolution. By rationally designing the two pairs of DNA probes for LCR, the bisulfite-treated methylated DNA target can be exponentially amplified by thermal cycling of the ligation reaction, in which one-base mismatch can be discriminated against, and thus high sensitivity and specificity for the detection of DNA methylation can be achieved. The LCR-based method can accurately determine as low as 10 aM methylated DNA fragment and 10 ng methylated genomic DNA. 0.1% methylated DNA can be detected in the presence of a large excess of unmethylated DNA. Moreover, by simply encoding one of the DNA probes in the LCR with a different length of poly(A) for detection of methylation at different CpG sites, the CpG methylation at different sites can produce LCR products with different lengths, and thus, can be simultaneously detected with one-tube LCR amplification and separation by capillary electrophoresis.
Collapse
Affiliation(s)
- Fengxia Su
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Limei Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Yueying Sun
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| | - Xinrui Duan
- Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| | - Zhengping Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis , Ministry of Education , College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , Hebei Province , P. R. China . ; ; Tel: +86 29 81530859.,Key Laboratory of Applied Surface and Colloid Chemistry , Ministry of Education , Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province , School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , Shaanxi Province , P. R. China
| |
Collapse
|
13
|
Verma M, Khoury MJ, Ioannidis JPA. Opportunities and challenges for selected emerging technologies in cancer epidemiology: mitochondrial, epigenomic, metabolomic, and telomerase profiling. Cancer Epidemiol Biomarkers Prev 2013; 22:189-200. [PMID: 23242141 PMCID: PMC3565041 DOI: 10.1158/1055-9965.epi-12-1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress has been made in the last decade in new methods for biologic measurements using sophisticated technologies that go beyond the established genome, proteome, and gene expression platforms. These methods and technologies create opportunities to enhance cancer epidemiologic studies. In this article, we describe several emerging technologies and evaluate their potential in epidemiologic studies. We review the background, assays, methods, and challenges and offer examples of the use of mitochondrial DNA and copy number assessments, epigenomic profiling (including methylation, histone modification, miRNAs, and chromatin condensation), metabolite profiling (metabolomics), and telomere measurements. We map the volume of literature referring to each one of these measurement tools and the extent to which efforts have been made at knowledge integration (e.g., systematic reviews and meta-analyses). We also clarify strengths and weaknesses of the existing platforms and the range of type of samples that can be tested with each of them. These measurement tools can be used in identifying at-risk populations and providing novel markers of survival and treatment response. Rigorous analytic and validation standards, transparent availability of massive data, and integration in large-scale evidence are essential in fulfilling the potential of these technologies.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
Pedersen IS, Krarup HB, Thorlacius-Ussing O, Madsen PH. High recovery of cell-free methylated DNA based on a rapid bisulfite-treatment protocol. BMC Mol Biol 2012; 13:12. [PMID: 22448717 PMCID: PMC3324385 DOI: 10.1186/1471-2199-13-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/26/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Detection of cell-free methylated DNA in plasma is a promising tool for tumour diagnosis and monitoring. Due to the very low amounts of cell-free DNA in plasma, analytical sensitivity is of utmost importance. The vast majority of currently available methods for analysing DNA methylation are based on bisulfite-mediated deamination of cytosine. Cytosine is rapidly converted to uracil during bisulfite treatment, whereas 5-methylcytosine is only slowly converted. Hence, bisulfite treatment converts an epigenetic modification into a difference in sequence, amenable to analysis either by sequencing or PCR based methods. However, the recovery of bisulfite-converted DNA is very poor. RESULTS Here we introduce an alternative method for the crucial steps of bisulfite treatment with high recovery. The method is based on an accelerated deamination step and alkaline desulfonation in combination with magnetic silica purification of DNA, allowing preparation of deaminated DNA from patient samples in less than 2 hours. CONCLUSIONS The method presented here allows low levels of DNA to be easily and reliably analysed, a prerequisite for the clinical usefulness of cell-free methylated DNA detection in plasma.
Collapse
Affiliation(s)
- Inge Søkilde Pedersen
- Section of Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Denmark, DK
| | - Henrik Bygum Krarup
- Section of Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Denmark, DK
| | | | - Poul Henning Madsen
- Section of Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Denmark, DK
| |
Collapse
|
15
|
Zhou J, Cao J, Lu Z, Liu H, Deng D. A 115-bp MethyLight assay for detection of p16 (CDKN2A) methylation as a diagnostic biomarker in human tissues. BMC MEDICAL GENETICS 2011; 12:67. [PMID: 21569495 PMCID: PMC3120739 DOI: 10.1186/1471-2350-12-67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/13/2011] [Indexed: 12/15/2022]
Abstract
Background p16 Methylation is a potential biomarker for prediction of malignant transformation of epithelial dysplasia. A probe-based, quantitative, methylation-specific PCR (MSP) called MethyLight may become an eligible method for detecting this marker clinically. We studied oral mucosa biopsies with epithelial dysplasia from 78 patients enrolled in a published 4-years' followup cohort, in which cancer risk for patients with p16 methylation-positive dysplasia was significantly higher than those without p16 methylation (by 150-bp MSP and bisulfite sequencing; +133 ~ +283, transcription starting site, +1). The p16 methylation status in samples (N = 102) containing sufficient DNA was analyzed by the 70-bp classic (+238 ~ +307) and 115-bp novel (+157 ~ +272) MethyLight assays, respectively. Results p16 Methylation was detectable in 75 samples using the classic MethyLight assay. The methylated-p16 positive rate and proportion of methylated-p16 by the MethyLight in MSP-positive samples were higher than those in MSP-negative samples (positive rate: 37/44 vs. 38/58, P=0.035, two-sided; proportion [median]: 0.78 vs. 0.02, P <0.007). Using the published results of MSP as a golden standard, we found sensitivity, specificity, and accuracy for this MethyLight assay to be 70.5%, 84.5%, and 55.0%, respectively. Because amplicon of the classic MethyLight procedure only partially overlapped with the MSP amplicon, we further designed a 115-bp novel MethyLight assay in which the amplicon on the sense-strand fully overlapped with the MSP amplicon on the antisense-strand. Using the 115-bp MethyLight assay, we observed methylated-p16 in 26 of 44 MSP-positive samples and 2 of 58 MSP-negative ones (P = 0.000). These results were confirmed with clone sequencing. Sensitivity, specificity, and accuracy using the 115-bp MethyLight assay were 59.1%, 98.3%, and 57.4%, respectively. Significant differences in the oral cancer rate were observed during the followup between patients (≥60 years) with and without methylated-p16 as detected by the 115-bp MethyLight assay (6/8 vs. 6/22, P = 0.034, two-sided). Conclusions The 115-bp MethyLight assay is a useful and practical assay with very high specificity for the detection of p16 methylation clinically.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
Tierling S, Schuster M, Tetzner R, Walter J. A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation. Epigenetics Chromatin 2010; 3:12. [PMID: 20525169 PMCID: PMC2887863 DOI: 10.1186/1756-8935-3-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/02/2010] [Indexed: 02/06/2023] Open
Abstract
Background DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation. Results This combined method allows detection of 14 pg (that is, four to five genomic copies) of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng) of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2) and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer. Conclusion The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.
Collapse
|
17
|
Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010; 11:191-203. [DOI: 10.1038/nrg2732] [Citation(s) in RCA: 1075] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 2010; 5:e8888. [PMID: 20126651 PMCID: PMC2811190 DOI: 10.1371/journal.pone.0008888] [Citation(s) in RCA: 536] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/28/2009] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We recently showed that enzymes of the TET family convert 5-mC to 5-hydroxymethylcytosine (5-hmC) in DNA. 5-hmC is present at high levels in embryonic stem cells and Purkinje neurons. The methylation status of cytosines is typically assessed by reaction with sodium bisulfite followed by PCR amplification. Reaction with sodium bisulfite promotes cytosine deamination, whereas 5-methylcytosine (5-mC) reacts poorly with bisulfite and is resistant to deamination. Since 5-hmC reacts with bisulfite to yield cytosine 5-methylenesulfonate (CMS), we asked how DNA containing 5-hmC behaves in bisulfite sequencing. METHODOLOGY/PRINCIPAL FINDINGS We used synthetic oligonucleotides with different distributions of cytosine as templates for generation of DNAs containing C, 5-mC and 5-hmC. The resulting DNAs were subjected in parallel to bisulfite treatment, followed by exposure to conditions promoting cytosine deamination. The extent of conversion of 5-hmC to CMS was estimated to be 99.7%. Sequencing of PCR products showed that neither 5-mC nor 5-hmC undergo C-to-T transitions after bisulfite treatment, confirming that these two modified cytosine species are indistinguishable by the bisulfite technique. DNA in which CMS constituted a large fraction of all bases (28/201) was much less efficiently amplified than DNA in which those bases were 5-mC or uracil (the latter produced by cytosine deamination). Using a series of primer extension experiments, we traced the inefficient amplification of CMS-containing DNA to stalling of Taq polymerase at sites of CMS modification, especially when two CMS bases were either adjacent to one another or separated by 1-2 nucleotides. CONCLUSIONS We have confirmed that the widely used bisulfite sequencing technique does not distinguish between 5-mC and 5-hmC. Moreover, we show that CMS, the product of bisulfite conversion of 5-hmC, tends to stall DNA polymerases during PCR, suggesting that densely hydroxymethylated regions of DNA may be underrepresented in quantitative methylation analyses.
Collapse
|
19
|
Terlizzi ME, Massimiliano B, Francesca S, Sinesi F, Rosangela V, Stefano G, Costa C, Rossana C. Quantitative RT real time PCR and indirect immunofluorescence for the detection of human parainfluenza virus 1, 2, 3. J Virol Methods 2009; 160:172-7. [PMID: 19445964 PMCID: PMC7119502 DOI: 10.1016/j.jviromet.2009.04.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/17/2009] [Accepted: 04/21/2009] [Indexed: 11/01/2022]
Abstract
Human parainfluenza viruses (HPIVs) are distributed worldwide and are involved mainly in the pathogenesis of respiratory tract infections. The development and optimization of three quantitative reverse transcription real time polymerase chain reactions (RT Real Time Qt-PCRs) and an indirect immunofluorescence (IFA) for the detection and quantitation of HPIV-1, -2 and -3 in clinical samples are described. Efficiency, sensitivity, specificity, inter- and intra-assay variability and turnaround time of the two methods were compared. These assays have been validated on 131 bronchoalveolar lavage specimens. Based on the results obtained, the molecular methods represent a valid and rapid tool for clinical management and should be included in diagnostic panels aimed to evaluate suspected respiratory tract infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Costa
- Department of Public Health and Microbiology, Virology Unit, Turin University, via Santena 9, Turin, Italy
| | | |
Collapse
|
20
|
Bergallo M, Costa C, Terlizzi ME, Sidoti F, Margio S, Astegiano S, Ponti R, Cavallo R. Development of a LUX real-time PCR for the detection and quantification of human herpesvirus 7. Can J Microbiol 2009; 55:319-25. [PMID: 19370075 DOI: 10.1139/w08-134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human herpesvirus 7 is a highly seroprevalent beta-herpesvirus that, following primary infection, remains latent in CD4+ T cells and determines a persistent rather than a latent infection in various tissues and organs, including the lung and skin. This paper describes the development of an in-house light upon extension real-time PCR assay for quantification of human herpesvirus 7 DNA in clinical samples. The efficiency, sensitivity, specificity, inter- and intra-assay variability, and dynamic range have been determined. Subsequently, the assay has been validated by evaluating the human herpesvirus 7 load in bronchoalveolar lavages and skin specimens, chosen as 2 persistency sites, from healthy and pathological individuals. The real-time PCR assay developed in this study could be a useful tool to detect and quantify human herpesvirus 7 DNA in different clinical specimens to elucidate its epidemiological and pathogenic roles.
Collapse
Affiliation(s)
- Massimiliano Bergallo
- Virology Unit, Department of Public Health and Microbiology, University of Turin, Via Santena 9, Turin 10126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Detection of parvovirus B19 in the lower respiratory tract. J Clin Virol 2009; 46:150-3. [PMID: 19632147 PMCID: PMC7172881 DOI: 10.1016/j.jcv.2009.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND Human parvovirus B19 infection generally displays a self-limiting course followed by viral clearance; although, in some cases, persistent infection may occur. Few cases of severe pulmonary disease following primary infection in both immunocompetent and immunocompromised patients were reported. OBJECTIVES To investigate the prevalence and clinical impact of parvovirus B19 in the lower respiratory tract. STUDY DESIGN The prevalence of parvovirus B19-DNA was evaluated by Real-Time PCR in 264 bronchoalveolar lavages (BAL) from 189 adult patients over a full-year period and related to demographic characteristics, underlying pathologies, immune status, admission to intensive care unit, mortality within 28 days, and discharge diagnosis. RESULTS Parvovirus B19-DNA was detected in 7/189 (3.7%) patients, without significant association to demographic characteristics, immune status, transplant versus non-transplant status, admission to intensive care unit, presence of haematological conditions. In two lung transplant recipients surveillance specimens were positive to B19. Four of the remaining five patients presented respiratory insufficiency. A significant association to mortality was found, as 3/7 (42.9%) positive patients died within 28 days. No patient presented serological evidence of recent or acute infection and viremia. CONCLUSIONS Parvovirus B19 may be detected at low frequency in BAL specimens from patients with different pathological backgrounds. This finding could be due to chronic infection with virus persistence in the lower respiratory tract, also in the absence of symptoms unequivocally attributable to B19. The high rate of mortality warrants the need for further studies to evaluate the opportunity to consider parvovirus B19 in the diagnostic work-up of lower respiratory tract infections.
Collapse
|
22
|
deVos T, Tetzner R, Model F, Weiss G, Schuster M, Distler J, Steiger KV, Grützmann R, Pilarsky C, Habermann JK, Fleshner PR, Oubre BM, Day R, Sledziewski AZ, Lofton-Day C. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 2009; 55:1337-46. [PMID: 19406918 DOI: 10.1373/clinchem.2008.115808] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The presence of aberrantly methylated SEPT9 DNA in plasma is highly correlated with the occurrence of colorectal cancer. We report the development of a new SEPT9 biomarker assay and its validation in case-control studies. The development of such a minimally invasive blood-based test may help to reduce the current gap in screening coverage. METHODS A new SEPT9 DNA methylation assay was developed for plasma. The assay comprised plasma DNA extraction, bisulfite conversion of DNA, purification of bisulfite-converted DNA, quantification of converted DNA by real-time PCR, and measurement of SEPT9 methylation by real-time PCR. Performance of the SEPT9 assay was established in a study of 97 cases with verified colorectal cancer and 172 healthy controls as verified by colonoscopy. Performance based on predetermined algorithms was validated in an independent blinded study with 90 cases and 155 controls. RESULTS The SEPT9 assay workflow yielded 1.9 microg/L (CI 1.3-3.0) circulating plasma DNA following bisulfite conversion, a recovery of 45%-50% of genomic DNA, similar to yields in previous studies. The SEPT9 assay successfully identified 72% of cancers at a specificity of 93% in the training study and 68% of cancers at a specificity of 89% in the testing study. CONCLUSIONS Circulating methylated SEPT9 DNA, as measured in the new (m)SEPT9 assay, is a valuable biomarker for minimally invasive detection of colorectal cancer. The new assay is amenable to automation and standardized use in the clinical laboratory.
Collapse
Affiliation(s)
- Theo deVos
- Epigenomics Inc., Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Weiss G, Cottrell S, Distler J, Schatz P, Kristiansen G, Ittmann M, Haefliger C, Lesche R, Hartmann A, Corman J, Wheeler T. DNA methylation of the PITX2 gene promoter region is a strong independent prognostic marker of biochemical recurrence in patients with prostate cancer after radical prostatectomy. J Urol 2009; 181:1678-85. [PMID: 19233404 DOI: 10.1016/j.juro.2008.11.120] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Indexed: 11/23/2022]
Abstract
PURPOSE Approximately 35% of patients with prostate cancer who undergo radical prostatectomy experience prostate specific antigen recurrence within 10 years of surgery. Current prognostic indicators cannot sufficiently detect who is at risk for biochemical recurrence. We evaluated DNA methylation markers for prostate cancer prognosis. MATERIALS AND METHODS We assessed the DNA methylation of 6 marker candidates that were identified in previous studies. Formalin fixed, paraffin embedded tissue sections from a cohort of 605 patients who underwent radical prostatectomy were analyzed using real-time polymerase chain reaction assays. Using a Cox proportional hazard model we determined which markers were significant predictors of biochemical recurrence. RESULTS ABHD9, Chr3-EST, GPR7, HIST2H2BF and PITX2 were significantly associated with biochemical recurrence. PITX2 methylation was the strongest predictor of biochemical recurrence, providing additional prognostic information to established clinical factors in patients treated with radical prostatectomy and especially in patients at intermediate risk (Gleason 7). Patients with greater than median PITX2 methylation in the tumors were 4 times more likely to experience biochemical recurrence within 8 years after surgery than patients with less than average methylation. CONCLUSIONS The prognostic information provided by PITX2 methylation adds significantly to currently used clinical variables such as Gleason grade and stage. Therefore, it could contribute to better counseling in patients with prostate cancer.
Collapse
Affiliation(s)
- Gunter Weiss
- Epigenomics, A. G., Charite-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Amplification of sodium bisulfite-treated DNA is widely used to study DNA methylation. The proportion of methylated sequences of a specific DNA region in a sample can be determined by the analysis of PCR products or directly calculated from real-time PCR amplification of bisulfite-treated DNA. At the same time, PCR based methods always involve the risk of false positive or incorrect quantitative results due to the unintended reamplification of contaminating PCR products. The incubation of PCR reactions with Uracil-DNA Glycosylase (UNG) prior to the thermal cycling in combination with the use of dUTP in the PCR amplification is a commonly used technology to prevent such cross-contamination. Since sodium bisulfite treatment converts unmethylated cytosine bases into uracil residues, not only contaminating PCR products but also the converted template DNAs would be degraded as well. This chapter describes a modified bisulfite treatment procedure to generate sulfonated DNA enabling the application of UNG-based carryover prevention to DNA methylation analysis. The high efficiency of the decontamination procedure as well as the universal applicability of this simple method is shown.
Collapse
|
25
|
Dietrich D, Lesche R, Tetzner R, Krispin M, Dietrich J, Haedicke W, Schuster M, Kristiansen G. Analysis of DNA methylation of multiple genes in microdissected cells from formalin-fixed and paraffin-embedded tissues. J Histochem Cytochem 2009; 57:477-89. [PMID: 19153192 DOI: 10.1369/jhc.2009.953026] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A procedure for simultaneous quantification of DNA methylation of several genes in minute amounts of sample material was developed and applied to microdissected formalin-fixed and paraffin-embedded breast tissues. The procedure is comprised of an optimized bisulfite treatment protocol suitable for samples containing only few cells, a multiplex preamplification and subsequent locus specific reamplification, and a novel quantitative bisulfite sequencing method based on the incorporation of a normalization domain into the PCR product. A real-time PCR assay amplifying repetitive elements was established to quantify low amounts of bisulfite-treated DNA. Ten prognostic and diagnostic epigenetic breast cancer biomarkers (PITX2, RASSF1A, PLAU, LHX3, PITX3, LIMK1, SLITRK1, SLIT2, HS3ST2, and TFF1) were analyzed in tissue samples obtained from two patients with invasive ductal carcinoma of the breast. The microdissected samples were obtained from several areas within the tumor tissue, including intraductal and invasive carcinoma, adenosis, and normal ductal epithelia of adjacent normal tissue, as well as stroma, tumor infiltrating lymphocytes, and adipose tissue. Overall, reliable quantification was possible for all genes. For most genes, increased DNA methylation in invasive and intraductal carcinoma cells compared with other tissue components was observed. For TFF1, decreased methylation levels were observed in tumor cells.
Collapse
Affiliation(s)
- Dimo Dietrich
- Epigenomics AG, Kleine Präsidentenstr. 1, 10178 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Dejeux E, El abdalaoui H, Gut IG, Tost J. Identification and quantification of differentially methylated loci by the pyrosequencing technology. Methods Mol Biol 2009; 507:189-205. [PMID: 18987816 DOI: 10.1007/978-1-59745-522-0_15] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Most available protocols for gene-specific DNA methylation analysis are either labor intensive, not quantitative, or limited to the measurement of the methylation status of only one or very few CpG positions. Pyrosequencing is a real-time sequencing technology that overcomes these limitations. After bisulfite modification of genomic DNA, a region of interest is amplified by polymerase chain reaction (PCR) with one of the two primers being biotinylated. The PCR-generated template is rendered single stranded and a pyrosequencing primer is annealed to analyze quantitatively CpGs within 120 bases. Advantages of the pyrosequencing technology are the ease of its implementation, the high quality and the quantitative nature of the results, and its ability to identify differentially methylated positions in close proximity. A minimum amount of 10 ng of bisulfite-treated DNA is necessary to obtain high reproducibility and avoid random amplification. The required DNA amount can be provided by an individual sample or a pool of samples to rapidly investigate the presence of variable DNA methylation patterns. The use of pools and serial pyrosequencing, that is, the successive use of several pyrosequencing primers on the same DNA template, significantly reduces cost, labor, and analysis time as well as saving precious DNA samples for the analysis of gene-specific DNA methylation patterns.
Collapse
Affiliation(s)
- Emelyne Dejeux
- Laboratory for Epigenetics, Centre National de Génotypage, CEA - Institut de Génomique, Evry, France
| | | | | | | |
Collapse
|
27
|
Abstract
The HeavyMethyl (HM) assay is a real-time PCR assay suitable for the qualitative and quantitative DNA methylation analysis of fresh, frozen, or formalin-fixed paraffin-embedded tissues and remote samples, such as serum, plasma, and urine. The HM uses a methylation-specific oligonucleotide blocker and a methylation-specific probe to achieve methylation-specific amplification and detection. A protocol for a duplex real-time PCR for the analysis of the methylation status of the GSTP1 exon1 in prostate tissue samples is presented. This chapter describes the preparation and analysis of a combined HM GSTP1 Exon1 and GSTP1 reference assay.
Collapse
|
28
|
Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 2008; 3:e3759. [PMID: 19018278 PMCID: PMC2582436 DOI: 10.1371/journal.pone.0003759] [Citation(s) in RCA: 298] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 10/21/2008] [Indexed: 02/06/2023] Open
Abstract
Background Colorectal cancer (CRC) is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC. Methodology/Principal Findings Using a PCR assay for analysis of Septin 9 (SEPT9) hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls) and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls). 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48%) and 7/102 controls (7%). In the test study 73/126 CRCs (58%) and 18/183 control samples (10%) were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected) while maintaining 90% specificity (19/183 for controls). Positive rates for plasmas from the other cancers (11/96) and non-cancerous conditions (41/315) were low. The rate of polyp detection (>1 cm) was ∼20%. Conclusions/Significance Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted.
Collapse
|
29
|
Locateli D, Stoco PH, Zanetti CR, Pinto AR, Grisard EC. An optimized nested polymerase chain reaction (PCR) approach allows detection and characterization of human immunodeficiency virus type 1 (HIV-1) env and gag genes from clinical samples. J Clin Lab Anal 2008; 22:106-13. [PMID: 18348315 DOI: 10.1002/jcla.20229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The needs for development and/or improvement of molecular approaches for microorganism detection and characterization such as polymerase chain reaction (PCR) are of high interest due their sensitivity and specificity when compared to traditional microbiological techniques. Considering the worldwide importance of human immunodeficiency virus type 1 (HIV-1) infection, it is essential that such approaches consider the genetic variability of the virus, the heterogeneous nature of the clinical samples, the existence of contaminants and inhibitors, and the consequent needs for standardization in order to guarantee the reproducibility of the methods. In this work we describe a nested PCR assay targeting HIV-1 virus gag and env genes, allowing specific and sensitive diagnosis and further direct characterization of clinical samples. The method described herein was tested on clinical samples and allowed the detection of HIV-1 presence in all samples tested for the gag gene and 90.9% for the env gene, revealing sensitivities of 1 fg and 100 fg, respectively. Also, no cross-reactions were observed with DNA from infected and noninfected patients and the method allowed detection of the env and gag genes on an excess of 10(8) and 10(4) of human deoxyribonucleic acid (DNA), respectively. Furthermore, it was possible to direct sequence all amplified products, which allowed the sub typing of the virus in clinical samples.
Collapse
Affiliation(s)
- Dayse Locateli
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
30
|
van der Gun BT, Wasserkort R, Monami A, Jeltsch A, Raskó T, Ślaska-Kiss K, Cortese R, Rots MG, de Leij LF, Ruiters MH, Kiss A, Weinhold E, McLaughlin PM. Persistent downregulation of the pancarcinoma-associated epithelial cell adhesion moleculeviaactive intranuclear methylation. Int J Cancer 2008; 123:484-489. [DOI: 10.1002/ijc.23476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, Song X, Lesche R, Liebenberg V, Ebert M, Molnar B, Grützmann R, Pilarsky C, Sledziewski A. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 2007; 54:414-23. [PMID: 18089654 DOI: 10.1373/clinchem.2007.095992] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sensitive, specific blood-based tests are difficult to develop unless steps are taken to maximize performance characteristics at every stage of marker discovery and development. We describe a sieving strategy for identifying high-performing marker assays that detect colorectal cancer (CRC)-specific methylated DNA in plasma. METHODS We first used restriction enzyme-based discovery methods to identify marker candidates with obviously different methylation patterns in CRC tissue and nonpathologic tissue. We then used a selection process incorporating microarrays and/or real-time PCR analysis of tissue samples to further test marker candidates for maximum methylation in CRC tissue and minimum amplification in tissues from both healthy individuals and patients with other diseases. Real-time assays of 3 selected markers were validated with plasma samples from 133 CRC patients and 179 healthy control individuals in the same age range. RESULTS Restriction enzyme-based testing identified 56 candidate markers. This group was reduced to 6 with microarray and real-time PCR testing. Three markers, TMEFF2, NGFR, and SEPT9, were tested with plasma samples. TMEFF2 methylation was detected in 65% [95% confidence interval, 56%-73%] of plasma samples from CRC patients and not detected in 69% (62%-76%) of the controls. The corresponding results for NGFR were 51% (42%-60%) and 84% (77%-89%); for SEPT9, the values were 69% (60%-77%) and 86% (80%-91%). CONCLUSIONS The stringent criteria applied at all steps of the selection and validation process enabled successful identification and ranking of blood-based marker candidates.
Collapse
|
32
|
van der Gun BTF, Monami A, Laarmann S, Raskó T, Slaska-Kiss K, Weinhold E, Wasserkort R, de Leij LFMH, Ruiters MHJ, Kiss A, McLaughlin PMJ. Serum insensitive, intranuclear protein delivery by the multipurpose cationic lipid SAINT-2. J Control Release 2007; 123:228-38. [PMID: 17884225 DOI: 10.1016/j.jconrel.2007.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/18/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Cationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Labeling studies demonstrated equal delivery efficiency for protein as for DNA and siRNA. Moreover, proteins complexed with Saint-2:DOPE were successfully delivered, irrespective of the presence of serum, and the profection efficiency was not influenced by the size or the charge of the protein:cationic liposomal complex. Using beta-galactosidase as a reporter protein, enzymatic activity was detected in up to 98% of the adherent cells, up to 83% of the suspension cells and up to 70% of the primary cells after profection. A delivered antibody was detected in the cytoplasm for up to 7 days after profection. Delivery of the methyltransferase M.SssI resulted in DNA methylation, leading to a decrease in E-cadherin expression. The lipid-mediated multipurpose transport system reported here can introduce proteins into the cell with an equal delivery efficiency as for nucleotides. Delivery is irrespective of the presence of serum, and the protein can exert its function both in the cytoplasm and in the nucleus. Furthermore, DNA methylation by M.SssI delivery as a novel tool for gene silencing has potential applications in basic research and therapy.
Collapse
Affiliation(s)
- Bernardina T F van der Gun
- Department of Pathology and Laboratory Medicine, Section Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|