1
|
Abstract
DNA damage by chemicals, radiation, or oxidative stress leads to a mutational spectrum, which is complex because it is determined in part by lesion structure, the DNA sequence context of the lesion, lesion repair kinetics, and the type of cells in which the lesion is replicated. Accumulation of mutations may give rise to genetic diseases such as cancer and therefore understanding the process underlying mutagenesis is of immense importance to preserve human health. Chemical or physical agents that cause cancer often leave their mutational fingerprints, which can be used to back-calculate the molecular events that led to disease. To make a clear link between DNA lesion structure and the mutations a given lesion induces, the field of single-lesion mutagenesis was developed. In the last three decades this area of research has seen much growth in several directions, which we attempt to describe in this Perspective.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, The University of Connecticut Storrs, Storrs, Connecticut 06269, United States
| | - John M Essigmann
- Departments of Chemistry, Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Chakraborty S, Steinbach PJ, Paul D, Mu H, Broyde S, Min JH, Ansari A. Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex. Nucleic Acids Res 2019; 46:1240-1255. [PMID: 29267981 PMCID: PMC5815138 DOI: 10.1093/nar/gkx1216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022] Open
Abstract
Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions.
Collapse
Affiliation(s)
- Sagnik Chakraborty
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Peter J Steinbach
- Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debamita Paul
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hong Mu
- Department of Biology, New York University, New York, NY 10003, USA
| | - Suse Broyde
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Anjum Ansari
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
3
|
Abstract
The eukaryotic global genomic nucleotide excision repair (GG-NER) pathway is the major mechanism that removes most bulky and some nonbulky lesions from cellular DNA. There is growing evidence that certain DNA lesions are repaired slowly or are entirely resistant to repair in cells, tissues, and in cell extract model assay systems. It is well established that the eukaryotic DNA lesion-sensing proteins do not detect the damaged nucleotide, but recognize the distortions/destabilizations in the native DNA structure caused by the damaged nucleotides. In this article, the nature of the structural features of certain bulky DNA lesions that render them resistant to NER, or cause them to be repaired slowly, is compared to that of those that are good-to-excellent NER substrates. Understanding the structural features that distinguish NER-resistant DNA lesions from good NER substrates may be useful for interpreting the biological significance of biomarkers of exposure of human populations to genotoxic environmental chemicals. NER-resistant lesions can survive to replication and cause mutations that can initiate cancer and other diseases. Furthermore, NER diminishes the efficacy of certain chemotherapeutic drugs, and the design of more potent pharmaceuticals that resist repair can be advanced through a better understanding of the structural properties of DNA lesions that engender repair-resistance.
Collapse
Affiliation(s)
- Nicholas E. Geacintov
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| | - Suse Broyde
- Chemistry and Biology Departments, New York University, New York, New York 10003-5180, United States
| |
Collapse
|
4
|
Kathuria P, Sharma P, Wetmore SD. Effect of base sequence context on the conformational heterogeneity of aristolactam-I adducted DNA: structural and energetic insights into sequence-dependent repair and mutagenicity. Toxicol Res (Camb) 2016; 5:197-209. [PMID: 30090337 PMCID: PMC6061885 DOI: 10.1039/c5tx00302d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022] Open
Abstract
Aristolochic acids (AAs) are nephrotoxic and potentially carcinogenic plant mutagens that form bulky DNA adducts at the exocyclic amino groups of the purines. The present work utilizes classical molecular dynamics simulations and free energy calculations to investigate the role of lesion site sequence context in dictating the conformational outcomes of DNA containing ALI-N6-dA, the most persistent and mutagenic adduct arising from the AAs. Our calculations reveal that the anti base-displaced intercalated conformer is the lowest energy conformer of damaged DNA in all sequence contexts considered (CXC, CXG, GXC and GXG). However, the experimentally-observed greater mutagenicity of the adduct in the CXG sequence context does not correlate with the relative thermodynamic stability of the adduct in different sequences. Instead, AL-N6-dA adducted DNA is least distorted in the CXG sequence context, which points toward a possible differential repair propensity of the lesion in different sequences. Nevertheless, the structural deviations between adducted DNA with different lesion site sequences are small, and therefore other factors (such as interactions between the adducted DNA and lesion-bypass polymerases during replication) are likely more important for dictating the observed sequence-dependent mutagenicity of ALI-N6-dA.
Collapse
Affiliation(s)
- Preetleen Kathuria
- Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta , Canada T1K 3M4 . ; ; Tel: +1 403-329-2323
| | - Purshotam Sharma
- Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta , Canada T1K 3M4 . ; ; Tel: +1 403-329-2323
- Centre for Computational Sciences , Central University of Punjab , Bathinda , Punjab , India 151001
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta , Canada T1K 3M4 . ; ; Tel: +1 403-329-2323
| |
Collapse
|
5
|
Toxicology of DNA Adducts Formed Upon Human Exposure to Carcinogens. ADVANCES IN MOLECULAR TOXICOLOGY 2016. [DOI: 10.1016/b978-0-12-804700-2.00007-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Savreux-Lenglet G, Depauw S, David-Cordonnier MH. Protein Recognition in Drug-Induced DNA Alkylation: When the Moonlight Protein GAPDH Meets S23906-1/DNA Minor Groove Adducts. Int J Mol Sci 2015; 16:26555-81. [PMID: 26556350 PMCID: PMC4661830 DOI: 10.3390/ijms161125971] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
DNA alkylating drugs have been used in clinics for more than seventy years. The diversity of their mechanism of action (major/minor groove; mono-/bis-alkylation; intra-/inter-strand crosslinks; DNA stabilization/destabilization, etc.) has undoubtedly major consequences on the cellular response to treatment. The aim of this review is to highlight the variety of established protein recognition of DNA adducts to then particularly focus on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) function in DNA adduct interaction with illustration using original experiments performed with S23906-1/DNA adduct. The introduction of this review is a state of the art of protein/DNA adducts recognition, depending on the major or minor groove orientation of the DNA bonding as well as on the molecular consequences in terms of double-stranded DNA maintenance. It reviews the implication of proteins from both DNA repair, transcription, replication and chromatin maintenance in selective DNA adduct recognition. The main section of the manuscript is focusing on the implication of the moonlighting protein GAPDH in DNA adduct recognition with the model of the peculiar DNA minor groove alkylating and destabilizing drug S23906-1. The mechanism of action of S23906-1 alkylating drug and the large variety of GAPDH cellular functions are presented prior to focus on GAPDH direct binding to S23906-1 adducts.
Collapse
Affiliation(s)
- Gaëlle Savreux-Lenglet
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Sabine Depauw
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-Jean-Pierre Aubert Research Centre (JPARC), INSERM, University of Lille, Lille Hospital, Institut pour la Recherche sur le Cancer de Lille, Place de Verdun F-59045 Lille cedex, France.
| |
Collapse
|
7
|
Malla S, Kadimisetty K, Fu YJ, Choudhary D, Jansson I, Schenkman JB, Rusling JF. CHEMICAL SELECTIVITY OF NUCLEOBASE ADDUCTION RELATIVE TO IN VIVO MUTATION SITES ON EXON 7 FRAGMENT OF P53 TUMOR SUPPRESSOR GENE. Chem Sci 2015; 6:5554-5563. [PMID: 26417421 PMCID: PMC4583204 DOI: 10.1039/c5sc01403d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/24/2015] [Indexed: 01/03/2023] Open
Abstract
Damage to p53 tumor suppressor gene is found in half of all human cancers. Databases integrating studies of large numbers of tumors and cancer cell cultures show that mutation sites of specific p53 codons are correlated with specific types of cancers. If the most frequently damaged p53 codons in vivo correlate with the most frequent chemical damage sites in vitro, predictions of organ-specific cancer risks might result. Herein, we describe LC-MS/MS methodology to reveal codons with metabolite-adducted nucleobases by LC-MS/MS for oligonucleotides longer than 20 base pairs. Specifically, we used a known carcinogen, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) to determine the most frequently adducted nucleobases within codons. We used a known sequence of 32 base pairs (bp) representing part of p53 exon 7 with 5 possible reactive hot spots. This is the first nucleobase reactivity study of a double stranded DNA p53 fragment featuring more than 20 base pairs with multiple reactive sites. We reacted the 32 bp fragment with benzo[a]pyrene metabolite BPDE that undergoes nucleophilic substitution by DNA bases. Liquid chromatography-mass spectrometry (LC-MS/MS) was used for sequencing of oligonucleotide products from the reacted 32 bp fragment after fragmentation by a restriction endonuclease. Analysis of the adducted p53 fragment compared with unreacted fragment revealed guanines of codons 248 and 244 as most frequently targeted, which are also mutated with high frequency in human tumors. Codon 248 is mutated in non-small cell and small cell lung, head and neck, colorectal and skin cancer, while codon 244 is mutated in small cell lung cancer, all of which involve possible BDPE exposure. Results suggest the utility of this approach for screening of adducted p53 gene by drugs and environmental chemicals to predict risks for organ specific cancers.
Collapse
Affiliation(s)
- Spundana Malla
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
| | - Karteek Kadimisetty
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
| | - You-Jun Fu
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
| | - Dharamainder Choudhary
- Department of Surgery , University of Connecticut Health Center , Farmington , CT 06032 , USA
| | - Ingela Jansson
- Department of Cell Biology , University of Connecticut Health Center , Farmington , CT 06032 , USA
| | - John B. Schenkman
- Department of Cell Biology , University of Connecticut Health Center , Farmington , CT 06032 , USA
| | - James F. Rusling
- Department of Chemistry , University of Connecticut , Storrs , CT 06269 , USA .
- Department of Cell Biology , University of Connecticut Health Center , Farmington , CT 06032 , USA
- Institute of Material Science , University of Connecticut , Storrs , CT 06269 , USA
- School of Chemistry , National University of Ireland at Galway , Ireland
| |
Collapse
|
8
|
Kucab JE, van Steeg H, Luijten M, Schmeiser HH, White PA, Phillips DH, Arlt VM. TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts. Mutat Res 2015; 773:48-62. [PMID: 25847421 PMCID: PMC4547099 DOI: 10.1016/j.mrfmmm.2015.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/18/2014] [Accepted: 01/18/2015] [Indexed: 01/13/2023]
Abstract
Somatic mutations in the tumour suppressor gene TP53 occur in more than 50% of human tumours; in some instances exposure to environmental carcinogens can be linked to characteristic mutational signatures. The Hupki (human TP53 knock-in) mouse embryo fibroblast (HUF) immortalization assay (HIMA) is a useful model for studying the impact of environmental carcinogens on TP53 mutagenesis. In an effort to increase the frequency of TP53-mutated clones achievable in the HIMA, we generated nucleotide excision repair (NER)-deficient HUFs by crossing the Hupki mouse with an Xpa-knockout (Xpa-Null) mouse. We hypothesized that carcinogen-induced DNA adducts would persist in the TP53 sequence of Xpa-Null HUFs leading to an increased propensity for mismatched base pairing and mutation during replication of adducted DNA. We found that Xpa-Null Hupki mice, and HUFs derived from them, were more sensitive to the environmental carcinogen benzo[a]pyrene (BaP) than their wild-type (Xpa-WT) counterparts. Following treatment with the reactive metabolite of BaP, benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), Xpa-WT and Xpa-Null HUF cultures were subjected to the HIMA. A significant increase in TP53 mutations on the transcribed strand was detected in Xpa-Null HUFs compared to Xpa-WT HUFs, but the TP53-mutant frequency overall was not significantly different between the two genotypes. BPDE induced mutations primarily at G:C base pairs, with approximately half occurring at CpG sites, and the predominant mutation type was G:C>T:A in both Xpa-WT and Xpa-Null cells. Further, several of the TP53 mutation hotspots identified in smokers' lung cancer were mutated by BPDE in HUFs (codons 157, 158, 245, 248, 249, 273). Therefore, the pattern and spectrum of BPDE-induced TP53 mutations in the HIMA are consistent with TP53 mutations detected in lung tumours of smokers. While Xpa-Null HUFs exhibited increased sensitivity to BPDE-induced damage on the transcribed strand, NER-deficiency did not enhance TP53 mutagenesis resulting from damage on the non-transcribed strand in this model.
Collapse
Affiliation(s)
- Jill E Kucab
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Harry van Steeg
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3721 MA, The Netherlands
| | - Mirjam Luijten
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven 3721 MA, The Netherlands
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry (E030), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - David H Phillips
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
9
|
Kim KT, Kim HW, Moon D, Rhee YM, Kim BH. (DNS)C: a fluorescent, environmentally sensitive cytidine derivative for the direct detection of GGG triad sequences. Org Biomol Chem 2014; 11:5605-14. [PMID: 23846401 DOI: 10.1039/c3ob41222a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the goal of developing a fluorescent nucleoside sensitive to its environment, in this study we synthesized (DNS)C, a novel modified 2'-deoxycytidine bearing a 5-(dimethylamino)naphthalene-1-sulfonyl (dansyl) moiety at the N4 position, and tested its properties in monomeric and oligomeric states. (DNS)C undergoes intramolecular photoinduced electron transfer between its dansyl and cytosine units, resulting in remarkable changes in fluorescence that depend on the choice of solvent. In addition, the fluorescence behavior and thermal stability of oligonucleotides containing (DNS)C are dependent on the nature of the flanking and neighboring bases. Notably, (DNS)C exhibits fluorescence enhancement only in fully matched duplex DNA containing a GGG triad sequence. The environmental sensitivity of (DNS)C can be exploited as a fluorescence tool for monitoring the interactions of DNA with other biomolecules, including DNA, RNA, and proteins.
Collapse
Affiliation(s)
- Ki Tae Kim
- Department of Chemistry, BK School of Molecular Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | | | | | | | |
Collapse
|
10
|
Chu HT, Lin H, Tsao TTH, Chang CF, Hsiao WW, Yeh TJ, Chang CM, Liu YW, Wang TY, Yang KC, Chen TJ, Chen JC, Chen KC, Kao CY. Genotyping of human neutrophil antigens (HNA) from whole genome sequencing data. BMC Med Genomics 2013; 6:31. [PMID: 24028078 PMCID: PMC3849977 DOI: 10.1186/1755-8794-6-31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 08/29/2013] [Indexed: 01/06/2023] Open
Abstract
Background Neutrophil antigens are involved in a variety of clinical conditions including transfusion-related acute lung injury (TRALI) and other transfusion-related diseases. Recently, there are five characterized groups of human neutrophil antigen (HNA) systems, the HNA1 to 5. Characterization of all neutrophil antigens from whole genome sequencing (WGS) data may be accomplished for revealing complete genotyping formats of neutrophil antigens collectively at genome level with molecular variations which may respectively be revealed with available genotyping techniques for neutrophil antigens conventionally. Results We developed a computing method for the genotyping of human neutrophil antigens. Six samples from two families, available from the 1000 Genomes projects, were used for a HNA typing test. There are 500 ~ 3000 reads per sample filtered from the adopted human WGS datasets in order for identifying single nucleotide polymorphisms (SNPs) of neutrophil antigens. The visualization of read alignment shows that the yield reads from WGS dataset are enough to cover all of the SNP loci for the antigen system: HNA1, HNA3, HNA4 and HNA5. Consequently, our implemented Bioinformatics tool successfully revealed HNA types on all of the six samples including sequence-based typing (SBT) as well as PCR sequence-specific oligonucleotide probes (SSOP), PCR sequence-specific primers (SSP) and PCR restriction fragment length polymorphism (RFLP) along with parentage possibility. Conclusions The next-generation sequencing technology strives to deliver affordable and non-biased sequencing results, hence the complete genotyping formats of HNA may be reported collectively from mining the output data of WGS. The study shows the feasibility of HNA genotyping through new WGS technologies. Our proposed algorithmic methodology is implemented in a HNATyping software package with user’s guide available to the public at http://sourceforge.net/projects/hnatyping/.
Collapse
Affiliation(s)
- Hsueh-Ting Chu
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kropachev K, Kolbanovskiy M, Liu Z, Cai Y, Zhang L, Schwaid AG, Kolbanovskiy A, Ding S, Amin S, Broyde S, Geacintov NE. Adenine-DNA adducts derived from the highly tumorigenic Dibenzo[a,l]pyrene are resistant to nucleotide excision repair while guanine adducts are not. Chem Res Toxicol 2013; 26:783-93. [PMID: 23570232 DOI: 10.1021/tx400080k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The structural origins of differences in susceptibilities of various DNA lesions to nucleotide excision repair (NER) are poorly understood. Here we compared, in the same sequence context, the relative NER dual incision efficiencies elicited by two stereochemically distinct pairs of guanine (N(2)-dG) and adenine (N(6)-dA) DNA lesions, derived from enantiomeric genotoxic diol epoxides of the highly tumorigenic fjord region polycyclic aromatic hydrocarbon dibenzo[a,l]pyrene (DB[a,l]P). Remarkably, in cell-free HeLa cell extracts, the guanine adduct with R absolute chemistry at the N(2)-dG linkage site is ∼35 times more susceptible to NER dual incisions than the stereochemically identical N(6)-dA adduct. For the guanine and adenine adducts with S stereochemistry, a similar but somewhat smaller effect (factor of ∼15) is observed. The striking resistance of the bulky N(6)-dA in contrast to the modest to good susceptibilities of the N(2)-dG adducts to NER is interpreted in terms of the balance between lesion-induced DNA distorting and DNA stabilizing van der Waals interactions in their structures, that are partly reflected in the overall thermal stabilities of the modified duplexes. Our results are consistent with the hypothesis that the high genotoxic activity of DB[a,l]P is related to the formation of NER-resistant and persistent DB[a,l]P-derived adenine adducts in cellular DNA.
Collapse
Affiliation(s)
- Konstantin Kropachev
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity. Future Med Chem 2012; 4:1981-2007. [PMID: 23088278 DOI: 10.4155/fmc.12.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bulky DNA adducts are formed through the covalent attachment of aryl groups to the DNA nucleobases. Many of these adducts are known to possess conformational heterogeneity, which is responsible for the variety of mutagenic outcomes associated with these lesions. The present contribution reviews several conformational and mutagenic themes that are prevalent among the DNA adducts formed at the C8-site of the guanine nucleobase. The most important conclusions obtained (to date) from experiments are summarized including the anti/syn conformational preference of the adducts, their potential to inflict DNA mutations and mismatch stabilization, and their interactions with DNA polymerases and repair enzymes. Additionally, the unique role that computer calculations can play in understanding the structural properties of these adducts are highlighted.
Collapse
|
13
|
Ross JA, Leavitt SA, Schmid JE, Nelson GB. Quantitative changes in endogenous DNA adducts correlate with conazole in vivo mutagenicity and tumorigenicity. Mutagenesis 2012; 27:541-9. [PMID: 22492202 DOI: 10.1093/mutage/ges017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.
Collapse
Affiliation(s)
- Jeffrey A Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | |
Collapse
|
14
|
Cai Y, Geacintov NE, Broyde S. Nucleotide excision repair efficiencies of bulky carcinogen-DNA adducts are governed by a balance between stabilizing and destabilizing interactions. Biochemistry 2012; 51:1486-99. [PMID: 22242833 DOI: 10.1021/bi201794x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide excision repair (NER) machinery, the primary defense against cancer-causing bulky DNA lesions, is surprisingly inefficient in recognizing certain mutagenic DNA adducts and other forms of DNA damage. However, the biochemical basis of resistance to repair remains poorly understood. To address this problem, we have investigated a series of intercalated DNA-adenine lesions derived from carcinogenic polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites that differ in their response to the mammalian NER apparatus. These stereoisomeric PAH-derived adenine lesions represent ideal model systems for elucidating the effects of structural, dynamic, and thermodynamic properties that determine the recognition of these bulky DNA lesions by NER factors. The objective of this work was to gain a systematic understanding of the relation between aromatic ring topology and adduct stereochemistry with existing experimental NER efficiencies and known thermodynamic stabilities of the damaged DNA duplexes. For this purpose, we performed 100 ns molecular dynamics studies of the lesions embedded in identical double-stranded 11-mer sequences. Our studies show that, depending on topology and stereochemistry, stabilizing PAH-DNA base van der Waals stacking interactions can compensate for destabilizing distortions caused by these lesions that can, in turn, cause resistance to NER. The results suggest that the balance between helix stabilizing and destabilizing interactions between the adduct and nearby DNA residues can account for the variability of NER efficiencies observed in this class of PAH-DNA lesions.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, New York 10003, United States
| | | | | |
Collapse
|
15
|
Stone MP, Huang H, Brown KL, Shanmugam G. Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 2011; 8:1571-615. [PMID: 21922653 PMCID: PMC3714022 DOI: 10.1002/cbdv.201100033] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The formation of adducts by the reaction of chemicals with DNA is a critical step for the initiation of carcinogenesis. The structural analysis of various DNA adducts reveals that conformational and chemical rearrangements and interconversions are a common theme. Conformational changes are modulated both by the nature of adduct and the base sequences neighboring the lesion sites. Equilibria between conformational states may modulate both DNA repair and error-prone replication past these adducts. Likewise, chemical rearrangements of initially formed DNA adducts are also modulated both by the nature of adducts and the base sequences neighboring the lesion sites. In this review, we focus on DNA damage caused by a number of environmental and endogenous agents, and biological consequences.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | |
Collapse
|
16
|
Liu Y, Reeves D, Kropachev K, Cai Y, Ding S, Kolbanovskiy M, Kolbanovskiy A, Bolton JL, Broyde S, Van Houten B, Geacintov NE. Probing for DNA damage with β-hairpins: similarities in incision efficiencies of bulky DNA adducts by prokaryotic and human nucleotide excision repair systems in vitro. DNA Repair (Amst) 2011; 10:684-96. [PMID: 21741328 DOI: 10.1016/j.dnarep.2011.04.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is an important prokaryotic and eukaryotic defense mechanism that removes a large variety of structurally distinct lesions in cellular DNA. While the proteins involved are completely different, the mode of action of these two repair systems is similar, involving a cut-and-patch mechanism in which an oligonucleotide sequence containing the lesion is excised. The prokaryotic and eukaryotic NER damage-recognition factors have common structural features of β-hairpin intrusion between the two DNA strands at the site of the lesion. In the present study, we explored the hypothesis that this common β-hairpin intrusion motif is mirrored in parallel NER incision efficiencies in the two systems. We have utilized human HeLa cell extracts and the prokaryotic UvrABC proteins to determine their relative NER incision efficiencies. We report here comparisons of relative NER efficiencies with a set of stereoisomeric DNA lesions derived from metabolites of benzo[a]pyrene and equine estrogens in different sequence contexts, utilizing 21 samples. We found a general qualitative trend toward similar relative NER incision efficiencies for ∼65% of these substrates; the other cases deviate mostly by ∼30% or less from a perfect correlation, although several more distant outliers are also evident. This resemblance is consistent with the hypothesis that lesion recognition through β-hairpin insertion, a common feature of the two systems, is facilitated by local thermodynamic destabilization induced by the lesions in both cases. In the case of the UvrABC system, varying the nature of the UvrC endonuclease, while maintaining the same UvrA/B proteins, can markedly affect the relative incision efficiencies. These observations suggest that, in addition to recognition involving the initial modified duplexes, downstream events involving UvrC can also play a role in distinguishing and processing different lesions in prokaryotic NER.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry Department, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guza R, Kotandeniya D, Murphy K, Dissanayake T, Lin C, Giambasu GM, Lad RR, Wojciechowski F, Amin S, Sturla SJ, Hudson RH, York DM, Jankowiak R, Jones R, Tretyakova NY. Influence of C-5 substituted cytosine and related nucleoside analogs on the formation of benzo[a]pyrene diol epoxide-dG adducts at CG base pairs of DNA. Nucleic Acids Res 2011; 39:3988-4006. [PMID: 21245046 PMCID: PMC3089471 DOI: 10.1093/nar/gkq1341] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023] Open
Abstract
Endogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE). Synthetic DNA duplexes derived from a frequently mutated region of the p53 gene (5'-CCCGGCACCC GC[(15)N(3),(13)C(1)-G]TCCGCG-3', + strand) were prepared containing [(15)N(3), (13)C(1)]-guanine opposite unsubstituted cytosine, (Me)C, abasic site, or unnatural nucleobase analogs. Following BPDE treatment and hydrolysis of the modified DNA to 2'-deoxynucleosides, N(2)-BPDE-dG adducts formed at the [(15)N(3), (13)C(1)]-labeled guanine and elsewhere in the sequence were quantified by mass spectrometry. We found that C-5 alkylcytosines and related structural analogs specifically enhance the reactivity of the base paired guanine towards BPDE and modify the diastereomeric composition of N(2)-BPDE-dG adducts. Fluorescence and molecular docking studies revealed that 5-alkylcytosines and unnatural nucleobase analogs with extended aromatic systems facilitate the formation of intercalative BPDE-DNA complexes, placing BPDE in a favorable orientation for nucleophilic attack by the N(2) position of guanine.
Collapse
MESH Headings
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/analogs & derivatives
- 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/chemistry
- Base Pairing
- Chromatography, High Pressure Liquid
- Cytosine/analogs & derivatives
- DNA Adducts/chemistry
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Genes, p53
- Guanine/chemistry
- Isotope Labeling
- Models, Molecular
- Oligodeoxyribonucleotides/chemical synthesis
- Oligodeoxyribonucleotides/chemistry
- Spectrometry, Fluorescence
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Rebecca Guza
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Delshanee Kotandeniya
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Thakshila Dissanayake
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Chen Lin
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - George Madalin Giambasu
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Rahul R. Lad
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Filip Wojciechowski
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shantu Amin
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shana J. Sturla
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Robert H.E. Hudson
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ryszard Jankowiak
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Roger Jones
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, Department of Chemistry, Kansas State University, Manhattan, KS 66505, USA, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland, Department of Chemistry, The University of Western Ontario, London, Ontario, Canada, Department of Chemistry, Pennsylvania State University and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
18
|
Wei Y, Lin Y, Zhang AQ, Guo LH, Cao J. Evaluation of the noncovalent binding interactions between polycyclic aromatic hydrocarbon metabolites and human p53 cDNA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:6285-90. [PMID: 20932552 DOI: 10.1016/j.scitotenv.2010.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 09/10/2010] [Accepted: 09/13/2010] [Indexed: 05/22/2023]
Abstract
The binding of reactive polycyclic aromatic hydrocarbon (PAH) metabolites, formed enzymatically, to DNA is a crucial step in PAH carcinogenesis in vivo. We investigated the noncovalent binding interactions between 11 PAH metabolites and human p53 complementary DNA (p53 cDNA) using the fluorescence displacement method and molecular docking analysis. All of the examined metabolites predominantly interacted with p53 cDNA by intercalation instead of groove binding. The dissociation constants ranged from 0.02 to 12.34μM. Of the metabolites tested, 1-hydroxypyrene and 3-hydroxybenzo[a]pyrene showed the strongest binding affinities to DNA, while 2-naphthol was the weakest DNA intercalator. The intercalation of the metabolites was stabilized by stacking the PAH phenyl rings with the DNA base pairs and the formation of hydrogen bonds between the oxide or hydroxyl groups on the metabolites, and DNA bases or backbones. The binding of the metabolites to DNA showed some sequence selectivity. The binding affinities and hydrogen bonds for 3-hydroxybenzo[a]pyrene, benzo[a]pyrene-4,5-dihydroepoxide (BPE) and benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide (BPDE) differed. It seems that the functional groups on the periphery of the PAH aromatic ring play crucial roles in regulating its binding affinity with DNA. Although it was difficult to determine the correlation between DNA noncovalent binding affinity and carcinogenicity for some of the PAH metabolites, the present study improved our understanding of the formation of PAH metabolite-DNA adducts.
Collapse
Affiliation(s)
- Yin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
| | | | | | | | | |
Collapse
|
19
|
Cai Y, Patel DJ, Broyde S, Geacintov NE. Base sequence context effects on nucleotide excision repair. J Nucleic Acids 2010; 2010. [PMID: 20871811 PMCID: PMC2943111 DOI: 10.4061/2010/174252] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 06/16/2010] [Indexed: 01/10/2023] Open
Abstract
Nucleotide excision repair (NER) plays a critical role in maintaining the integrity of the genome when damaged by bulky DNA lesions, since inefficient repair can cause mutations and human diseases notably cancer. The structural properties of DNA lesions that determine their relative susceptibilities to NER are therefore of great interest. As a model system, we have investigated the major mutagenic lesion derived from the environmental carcinogen benzo[a]pyrene (B[a]P),
10S (+)-trans-anti-B[a]P-N2-dG in six different sequence contexts that differ in how the lesion is positioned in relation to nearby guanine amino groups. We have obtained molecular structural data by NMR and MD simulations, bending properties from gel electrophoresis studies, and NER data obtained from human HeLa cell extracts for our six investigated sequence contexts. This model system suggests that disturbed Watson-Crick base pairing is a better recognition signal than a flexible bend, and that these can act in concert to provide an enhanced signal. Steric hinderance between the minor groove-aligned lesion and nearby guanine amino groups determines the exact nature of the disturbances. Both nearest neighbor and more distant neighbor sequence contexts have an impact. Regardless of the exact distortions, we hypothesize that they provide a local thermodynamic destabilization signal for repair.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
20
|
Lenglet G, David-Cordonnier MH. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences. J Nucleic Acids 2010; 2010. [PMID: 20725618 PMCID: PMC2915751 DOI: 10.4061/2010/290935] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 01/06/2023] Open
Abstract
DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs). The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.
Collapse
Affiliation(s)
- Gaëlle Lenglet
- INSERM U-837, Jean-Pierre Aubert Research Center (JPARC), Team 4 Molecular and Cellular Targeting for Cancer Treatment, Institute for Research on Cancer of Lille (IRCL), Lille F-59045, France
| | | |
Collapse
|
21
|
Cai Y, Kropachev K, Xu R, Tang Y, Kolbanovskii M, Kolbanovskii A, Amin S, Patel DJ, Broyde S, Geacintov NE. Distant neighbor base sequence context effects in human nucleotide excision repair of a benzo[a]pyrene-derived DNA lesion. J Mol Biol 2010; 399:397-409. [PMID: 20399214 DOI: 10.1016/j.jmb.2010.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/25/2022]
Abstract
The effects of non-nearest base sequences, beyond the nucleotides flanking a DNA lesion on either side, on nucleotide excision repair (NER) in extracts from human cells were investigated. We constructed two duplexes containing the same minor groove-aligned 10S (+)-trans-anti-B[a]P-N(2)-dG (G*) DNA adduct, derived from the environmental carcinogen benzo[a]pyrene (B[a]P): 5'-C-C-A-T-C-G*-C-T-A-C-C-3' (CG*C-I), and 5'-C-A-C3-A4-C5-G*-C-A-C-A-C-3' (CG*C-II). We used polyacrylamide gel electrophoresis to compare the extent of DNA bending, and molecular dynamics simulations to analyze the structural characteristics of these two DNA duplexes. The NER efficiencies are 1.6(+/-0.2)-fold greater in the case of the CG*C-II than the CG*C-I sequence context in 135-mer duplexes. Gel electrophoresis and self-ligation circularization experiments revealed that the CG*C-II duplex is more bent than the CG*C-I duplex, while molecular dynamics simulations showed that the unique -C3-A4-C5- segment in the CG*C-II duplex plays a key role. The presence of a minor groove-positioned guanine amino group, the Watson-Crick partner to C3, acts as a wedge; facilitated by a highly deformable local -C3-A4- base step, this amino group allows the B[a]P ring system to produce a more enlarged minor groove in CG*C-II than in CG*C-I, as well as a local untwisting and enlarged and flexible Roll only in the CG*C-II sequence. These structural properties fit well with our earlier findings that in the case of the family of minor groove 10S (+)-trans-anti-B[a]P-N(2)-dG lesions, flexible bends and enlarged minor groove widths constitute NER recognition signals, and extend our understanding of sequence context effects on NER to the neighbors that are distant to the lesion.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Biology, New York University, New York, NY 10003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Depauw S, Gaslonde T, Léonce S, Kraus-Berthier L, Laine W, Lenglet G, Chiaroni A, Pfeiffer B, Bailly C, Michel S, Tillequin F, Pierré A, David-Cordonnier MH. Influence of the stereoisomeric position of the reactive acetate groups of the benzo[b]acronycine derivative S23906-1 on its DNA alkylation, helix-opening, cytotoxic, and antitumor activities. Mol Pharmacol 2009; 76:1172-85. [PMID: 19752199 DOI: 10.1124/mol.109.057554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
S23906-1 is a benzo[b]acronycine derivative acting as a DNA-alkylating agent through covalent bonding to the exocyclic amino group of guanines and subsequent local opening of the DNA helix. This compound was selected for phase I clinical trials based on its efficient antitumor activity in experimental models and its unique mode of action. S23906-1 is the racemate of cis-1,2-diacetoxy-6-methoxy-3,3,14-trimethyl-1,2,3,14-tetrahydro-7H-benzo[b]pyrano[3,2-h]acridin-7-one. Here, we evaluated the cytotoxic and antitumor activities of the two pure cis-enantiomers and investigated the mechanism of action of both cis- and trans-racemates and their enantiomers in terms of DNA alkylation potency and locally drug-induced DNA helix opening process. Reaction with glutathione, as a detoxification process, was also studied. The trans-compounds, both as racemate or separated enantiomers, were found less potent than the corresponding cis-derivatives. Among the cis-enantiomers, the most efficient one regarding DNA alkylation bears the acetate on the reactive C1 position in the R configuration, both on purified DNA and genomic DNA extracted from cell cultures. By contrast, the most cytotoxic and tumor-active enantiomer bears the C1-acetate in the S configuration. Distinct cellular DNA-alkylation levels or covalent bonding to glutathione could not explain the differences. However, we showed that the S and R orientations of the acetate on C1 asymmetric carbon lead to different local opening of the DNA, as visualized using nuclease S1 mapping. These different interactions could lead to modulated DNA-repair, protein/DNA interaction, and apoptosis processes.
Collapse
Affiliation(s)
- Sabine Depauw
- INSERM-U837, Centre de Recherches Jean-Pierre Aubert (JPARC), Team-4 "Molecular and Cellular Targeting for Cancer Treatment," Institut pour la Recherche sur le Cancer de Lille, Place de Verdun, F-59045 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moser A, Guza R, Tretyakova N, York DM. Density Functional Study of the Influence of C5 Cytosine Substitution in Base Pairs with Guanine. Theor Chem Acc 2009; 122:179-188. [PMID: 19890472 PMCID: PMC2771868 DOI: 10.1007/s00214-008-0497-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study employs density-functional electronic structure methods to investigate the effect of chemical modification at the C5 position of cytosine. A series of experimentally motivated chemical modifications are considered, including alkyl, halogen, aromatic, fused ring, and strong σ and π withdrawing functional groups. The effect of these modifications on cytosine geometry, electronic structure, proton affinities, gas phase basicities, cytosine-guanine base-pair hydrogen bond network and corresponding nucleophilicity at guanine are examined. Ultimately, these results play a part in dissecting the effect of endogenous cytosine methylation on the reactivity of neighboring guanine toward carcinogens and DNA alkylating agents.
Collapse
Affiliation(s)
- Adam Moser
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455–0431, USA
| | - Rebecca Guza
- Department of Medicinal Chemistry and the Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and the Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Darrin M. York
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455–0431, USA. E-mail:
| |
Collapse
|
24
|
Kropachev K, Kolbanovskii M, Cai Y, Rodríguez F, Kolbanovskii A, Liu Y, Zhang L, Amin S, Patel D, Broyde S, Geacintov NE. The sequence dependence of human nucleotide excision repair efficiencies of benzo[a]pyrene-derived DNA lesions: insights into the structural factors that favor dual incisions. J Mol Biol 2009; 386:1193-203. [PMID: 19162041 DOI: 10.1016/j.jmb.2008.12.082] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/17/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Nucleotide excision repair (NER) is a vital cellular defense system against carcinogen-DNA adducts, which, if not repaired, can initiate cancer development. The structural features of bulky DNA lesions that account for differences in NER efficiencies in mammalian cells are not well understood. In vivo, the predominant DNA adduct derived from metabolically activated benzo[a]pyrene (BP), a prominent environmental carcinogen, is the 10S (+)-trans-anti-[BP]-N(2)-dG adduct (G*), which resides in the B-DNA minor groove 5'-oriented along the modified strand. We have compared the structural distortions in double-stranded DNA, imposed by this adduct, in the different sequence contexts 5'-...CGG*C..., 5'-...CG*GC..., 5'-...CIG*C... (I is 2'-deoxyinosine), and 5'-...CG*C.... On the basis of electrophoretic mobilities, all duplexes manifest moderate bends, except the 5'-...CGG*C...duplex, which exhibits an anomalous, slow mobility attributed to a pronounced flexible kink at the site of the lesion. This kink, resulting from steric hindrance between the 5'-flanking guanine amino group and the BP aromatic rings, both positioned in the minor groove, is abolished in the 5'-...CIG*C...duplex (the 2'-deoxyinosine group, I, lacks this amino group). In contrast, the sequence-isomeric 5'-...CG*GC...duplex exhibits only a moderate bend, but displays a remarkably increased opening rate at the 5'-flanking base pair of G*, indicating a significant destabilization of Watson-Crick hydrogen bonding. The NER dual incision product yields were compared for these different sequences embedded in otherwise identical 135-mer duplexes in cell-free human HeLa extracts. The yields of excision products varied by a factor of as much as approximately 4 in the order 5'-...CG*GC...>5'...CGG*C...>or=5'...CIG*C...>or=5'-...CG*C.... Overall, destabilized Watson-Crick hydrogen bonding, manifested in the 5'-...CG*GC...duplex, elicits the most significant NER response, while the flexible kink displayed in the sequence-isomeric 5'-...CGG*C...duplex represents a less significant signal in this series of substrates. These results demonstrate that the identical lesion can be repaired with markedly variable efficiency in different local sequence contexts that differentially alter the structural features of the DNA duplex around the lesion site.
Collapse
|
25
|
Cai Y, Patel DJ, Geacintov NE, Broyde S. Differential nucleotide excision repair susceptibility of bulky DNA adducts in different sequence contexts: hierarchies of recognition signals. J Mol Biol 2008; 385:30-44. [PMID: 18948114 DOI: 10.1016/j.jmb.2008.09.087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022]
Abstract
The structural origin underlying differential nucleotide excision repair (NER) susceptibilities of bulky DNA lesions remains a challenging problem. We investigated the 10S (+)-trans-anti-[BP]-N(2)-2'-deoxyguanosine (G*) adduct in double-stranded DNA. This adduct arises from the reaction, in vitro and in vivo, of a major genotoxic metabolite of benzo[a]pyrene (BP), (+)-(7R,8S,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene, with the exocyclic amino group of guanine. Removal of this lesion by the NER apparatus in cell-free extracts has been found to depend on the base sequence context in which the lesion is embedded, providing an excellent opportunity for elucidating the properties of the damaged DNA duplexes that favor NER. While the BP ring system is in the B-DNA minor groove, 5' directed along the modified strand, there are orientational distinctions that are sequence dependent and are governed by flanking amino groups [Nucleic Acids Res.35 (2007), 1555-1568]. To elucidate sequence-governed NER susceptibility, we conducted molecular dynamics simulations for the 5'-...CG*GC..., 5'-...CGG*C..., and 5'-...TCG*CT... adduct-containing duplexes. We also investigated the 5'-...CG*IC... and 5'-...CIG*C... sequences, which contain "I" (2'-deoxyinosine), with hydrogen replacing the amino group in 2'-deoxyguanosine, to further characterize the structural and dynamic roles of the flanking amino groups in the damaged duplexes. Our results pinpoint explicit roles for the amino groups in tandem GG sequences on the efficiency of NER and suggest a hierarchy of destabilizing structural features that differentially facilitate NER of the BP lesion in the sequence contexts investigated. Furthermore, combinations of several locally destabilizing features in the hierarchy, consistent with a multipartite model, may provide a relatively strong recognition signal.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|
26
|
Wang Y, Schnetz-Boutaud NC, Kroth H, Yagi H, Sayer JM, Kumar S, Jerina DM, Stone MP. 3'-Intercalation of a N2-dG 1R-trans-anti-benzo[c]phenanthrene DNA adduct in an iterated (CG)3 repeat. Chem Res Toxicol 2008; 21:1348-58. [PMID: 18549249 PMCID: PMC2755548 DOI: 10.1021/tx7004103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conformation of the 1 R,2 S,3 R,4 S-benzo[ c]phenanthrene- N (2)-dG adduct, arising from trans opening of the (+)-1 S,2 R,3 R,4 S- anti-benzo[ c]phenanthrene diol epoxide, was examined in 5'- d(ATCGC XCGGCATG)-3'.5'-d(CATGCCG CGCGAT)-3', where X = 1 R,2 S,3 R,4 S-B[ c]P- N (2)-dG. This duplex, derived from the hisD3052 frameshift tester strain of Salmonella typhimurium, contains a (CG) 3 iterated repeat, a hotspot for frameshift mutagenesis. NMR experiments showed a disconnection in sequential NOE connectivity between X (4) and C (5), and in the complementary strand, they showed another disconnection between G (18) and C (19). In the imino region of the (1)H NMR spectrum, a resonance was observed at the adducted base pair X (4) x C (19). The X (4) N1H and G (18) N1H resonances shifted upfield as compared to the other guanine imino proton resonances. NOEs were observed between X (4) N1H and C (19) N (4)H and between C (5) N (4)H and G (18) N1H, indicating that base pairs X (4) x C (19) and C (5) x G (18) maintained Watson-Crick hydrogen bonding. No NOE connectivity was observed between X (4) and G (18) in the imino region of the spectrum. Chemical shift perturbations of greater than 0.1 ppm were localized at nucleotides X (4) and C (5) in the modified strand and G (18) and C (19) in the complementary strand. A total of 13 NOEs between the protons of the 1 R-B[ c]Ph moiety and the DNA were observed between B[ c]Ph and major groove aromatic or amine protons at base pairs X (4) x C (19) and 3'-neighbor C (5) x G (18). Structural refinement was achieved using molecular dynamics calculations restrained by interproton distances and torsion angle restraints obtained from NMR data. The B[ c]Ph moiety intercalated on the 3'-face of the X (4) x C (19) base pair such that the terminal ring of 1 R-B[ c]Ph threaded the duplex and faced into the major groove. The torsion angle alpha' [X (4)]-N3-C2-N2-B[ c]Ph]-C1 was calculated to be -177 degrees, maintaining an orientation in which the X (4) exocyclic amine remained in plane with the purine. The torsion angle beta' [X (4)]-C2-N2-[B[ c]Ph]-C1-C2 was calculated to be 75 degrees. This value governed the 3'-orientation of the B[ c]Ph moiety with respect to X (4). The helical rise between base pairs X (4) x C (19) and C (5) x G (18) increased and resulted in unwinding of the right-handed helix. The aromatic rings of the B[ c]Ph moiety were below the Watson-Crick hydrogen-bonding face of the modified base pair X (4) x C (19). The B[c]Ph moiety was stacked above nucleotide G (18), in the complementary strand.
Collapse
Affiliation(s)
- Yazhen Wang
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Nathalie C. Schnetz-Boutaud
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| | - Heiko Kroth
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Haruhiko Yagi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Jane M. Sayer
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Subodh Kumar
- Environmental Toxicology and Chemistry Laboratory, Great Lakes Center, State University of New York College at Buffalo, Buffalo, New York 14222
| | - Donald M. Jerina
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892
| | - Michael P. Stone
- Department of Chemistry, Center in Molecular Toxicology, and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
27
|
Cai Y, Patel DJ, Geacintov NE, Broyde S. Dynamics of a benzo[a]pyrene-derived guanine DNA lesion in TGT and CGC sequence contexts: enhanced mobility in TGT explains conformational heterogeneity, flexible bending, and greater susceptibility to nucleotide excision repair. J Mol Biol 2007; 374:292-305. [PMID: 17942115 DOI: 10.1016/j.jmb.2007.09.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 08/07/2007] [Accepted: 09/04/2007] [Indexed: 11/19/2022]
Abstract
The nucleotide excision repair (NER) machinery excises a variety of bulky DNA lesions, but with varying efficiencies. The structural features of the DNA lesions that govern these differences are not well understood. An intriguing model system for studying structure-function relationships in NER is the major adduct derived from the reaction of the highly tumorigenic metabolite of benzo[a]pyrene, (+)-anti-benzo[a]pyrene diol epoxide, with the exocyclic amino group of guanine ((+)-trans-anti-[BP]-N(2)-dG, or G*). The rates of incision of the stereochemically identical lesions catalyzed by the prokaryotic UvrABC system was shown to be greater by a factor of 2.3+/-0.3 in the TG*T than in the CG*C sequence context [Biochemistry 46 (2007) 7006-7015]. Here we employ molecular dynamics simulations to elucidate the origin of the greater excision efficiency in the TG*T case and, more broadly, to delineate structural parameters that enhance NER. Our results show that the BP aromatic ring system is 5'-directed along the modified strand in the B-DNA minor groove in both sequence contexts. However, the TG*T modified duplex is much more dynamically flexible, featuring more perturbed and mobile Watson-Crick hydrogen bonding adjacent to the lesion, a greater impairment in stacking interactions, more dynamic local roll/bending, and more minor groove flexibility. These characteristics explain a number of experimental observations concerning the (+)-trans-anti-[BP]-N(2)-dG adduct in double-stranded DNA with the TG*T sequence context: its conformational heterogeneity in NMR solution studies, its highly flexible bend, and its lower thermal stability. By contrast, the CG*C modified duplex is characterized by a single BP conformation and a rigid bend. While current recognition models of bulky lesions by NER factors have stressed the importance of impaired Watson-Crick pairing/stacking and bending, our results highlight the likelihood of an important role for the local dynamics in the vicinity of the lesion.
Collapse
Affiliation(s)
- Yuqin Cai
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | | | |
Collapse
|