1
|
The N-terminal domain of human mitochondrial helicase Twinkle has DNA-binding activity crucial for supporting processive DNA synthesis by polymerase γ. J Biol Chem 2022; 299:102797. [PMID: 36528058 PMCID: PMC9860392 DOI: 10.1016/j.jbc.2022.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022] Open
Abstract
Twinkle is the ring-shaped replicative helicase within the human mitochondria with high homology to bacteriophage T7 gp4 helicase-primase. Unlike many orthologs of Twinkle, the N-terminal domain (NTD) of human Twinkle has lost its primase activity through evolutionarily acquired mutations. The NTD has no demonstrated activity thus far; its role has remained unclear. Here, we biochemically characterize the isolated NTD and C-terminal domain (CTD) with linker to decipher their contributions to full-length Twinkle activities. This novel CTD construct hydrolyzes ATP, has weak DNA unwinding activity, and assists DNA polymerase γ (Polγ)-catalyzed strand-displacement synthesis on short replication forks. However, CTD fails to promote multikilobase length product formation by Polγ in rolling-circle DNA synthesis. Thus, CTD retains all the motor functions but struggles to implement them for processive translocation. We show that NTD has DNA-binding activity, and its presence stabilizes Twinkle oligomerization. CTD oligomerizes on its own, but the loss of NTD results in heterogeneously sized oligomeric species. The CTD also exhibits weaker and salt-sensitive DNA binding compared with full-length Twinkle. Based on these results, we propose that NTD directly contributes to DNA binding and holds the DNA in place behind the central channel of the CTD like a "doorstop," preventing helicase slippages and sustaining processive unwinding. Consistent with this model, mitochondrial single-stranded DNA-binding protein (mtSSB) compensate for the NTD loss and partially restore kilobase length DNA synthesis by CTD and Polγ. The implications of our studies are foundational for understanding the mechanisms of disease-causing Twinkle mutants that lie in the NTD.
Collapse
|
2
|
Neagu AC, Budișteanu M, Gheorghe DC, Mocanu AI, Mocanu H. Rare Gene Mutations in Romanian Hypoacusis Patients: Case Series and a Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091252. [PMID: 36143929 PMCID: PMC9501263 DOI: 10.3390/medicina58091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: In this paper, we report on three cases of hypoacusis as part of a complex phenotype and some rare gene variants. An extensive review of literature completes the newly reported clinical and genetic information. (2) Methods: The cases range from 2- to 11-year-old boys, all with a complex clinical picture and hearing impairment. In all cases, whole exome sequencing (WES) was performed, in the first case in association with mitochondrial DNA study. (3) Results: The detected variants were: two heterozygous variants in the TWNK gene, one likely pathogenic and another of uncertain clinical significance (autosomal recessive mitochondrial DNA depletion syndrome type 7-hepatocerebral type); heterozygous variants of uncertain significance PACS2 and SYT2 genes (autosomal dominant early infantile epileptic encephalopathy) and a homozygous variant of uncertain significance in SUCLG1 gene (mitochondrial DNA depletion syndrome 9). Some of these genes have never been previously reported as associated with hearing problems. (4) Conclusions: Our cases bring new insights into some rare genetic syndromes. Although the role of TWNK gene in hearing impairment is clear and accordingly reflected in published literature as well as in the present article, for the presented gene variants, a correlation to hearing problems could not yet be established and requires more scientific data. We consider that further studies are necessary for a better understanding of the role of these variants.
Collapse
Affiliation(s)
- Alexandra-Cristina Neagu
- Department of ENT&HNS, “Marie Sklodowska Curie” Emergency Children’s Hospital, 041434 Bucharest, Romania
| | - Magdalena Budișteanu
- Department of Medical Genetics, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence: (M.B.); (A.-I.M.); Tel.: +407-2292-9091 (M.B.); +407-2340-0435 (A.-I.M.)
| | - Dan-Cristian Gheorghe
- Department of ENT&HNS, “Marie Sklodowska Curie” Emergency Children’s Hospital, 041434 Bucharest, Romania
- Department of ENT&HNS, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adela-Ioana Mocanu
- Department of ENT&HNS, Polimed Medical Center, 040067 Bucharest, Romania
- Correspondence: (M.B.); (A.-I.M.); Tel.: +407-2292-9091 (M.B.); +407-2340-0435 (A.-I.M.)
| | - Horia Mocanu
- Department of ENT&HNS, Faculty of Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| |
Collapse
|
3
|
Riccio AA, Bouvette J, Longley MJ, Krahn JM, Borgnia MJ, Copeland WC. Method for the structural analysis of Twinkle mitochondrial DNA helicase by cryo-EM. Methods 2022; 205:263-270. [PMID: 35779765 PMCID: PMC9398961 DOI: 10.1016/j.ymeth.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial replisome replicates the 16.6 kb mitochondria DNA (mtDNA). The proper functioning of this multicomponent protein complex is vital for the integrity of the mitochondrial genome. One of the critical protein components of the mitochondrial replisome is the Twinkle helicase, a member of the Superfamily 4 (SF4) helicases. Decades of research has uncovered common themes among SF4 helicases including self-assembly, ATP-dependent translocation, and formation of protein-protein complexes. Some of the molecular details of these processes are still unknown for the mitochondria SF4 helicase, Twinkle. Here, we describe a protocol for expression, purification, and single-particle cryo-electron microscopy of the Twinkle helicase clinical variant, W315L, which resulted in the first high-resolution structure of Twinkle helicase. The methods described here serve as an adaptable protocol to support future high-resolution studies of Twinkle helicase or other SF4 helicases.
Collapse
Affiliation(s)
- Amanda A Riccio
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Jonathan Bouvette
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Matthew J Longley
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Molecular Microscopy Consortium, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - William C Copeland
- Mitochondrial DNA Replication Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
4
|
Kohzaki M. Mammalian Resilience Revealed by a Comparison of Human Diseases and Mouse Models Associated With DNA Helicase Deficiencies. Front Mol Biosci 2022; 9:934042. [PMID: 36032672 PMCID: PMC9403131 DOI: 10.3389/fmolb.2022.934042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/23/2022] [Indexed: 12/01/2022] Open
Abstract
Maintaining genomic integrity is critical for sustaining individual animals and passing on the genome to subsequent generations. Several enzymes, such as DNA helicases and DNA polymerases, are involved in maintaining genomic integrity by unwinding and synthesizing the genome, respectively. Indeed, several human diseases that arise caused by deficiencies in these enzymes have long been known. In this review, the author presents the DNA helicases associated with human diseases discovered to date using recent analyses, including exome sequences. Since several mouse models that reflect these human diseases have been developed and reported, this study also summarizes the current knowledge regarding the outcomes of DNA helicase deficiencies in humans and mice and discusses possible mechanisms by which DNA helicases maintain genomic integrity in mammals. It also highlights specific diseases that demonstrate mammalian resilience, in which, despite the presence of genomic instability, patients and mouse models have lifespans comparable to those of the general population if they do not develop cancers; finally, this study discusses future directions for therapeutic applications in humans that can be explored using these mouse models.
Collapse
|
5
|
Structural insight and characterization of human Twinkle helicase in mitochondrial disease. Proc Natl Acad Sci U S A 2022; 119:e2207459119. [PMID: 35914129 PMCID: PMC9371709 DOI: 10.1073/pnas.2207459119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized. Here, we present 3-dimensional structures of human Twinkle W315L. Employing cryo-electron microscopy (cryo-EM), we characterize the oligomeric assemblies of human full-length Twinkle W315L, define its multimeric interface, and map clinical variants associated with Twinkle in inherited mitochondrial disease. Cryo-EM, crosslinking-mass spectrometry, and molecular dynamics simulations provide insight into the dynamic movement and molecular consequences of the W315L clinical variant. Collectively, this ensemble of structures outlines a framework for studying Twinkle function in mitochondrial DNA replication and associated disease states.
Collapse
|
6
|
The helicase core accessory regions of the phage BFK20 DnaB-like helicase gp43 significantly affect its activity, oligomeric state and DNA binding properties. Virology 2021; 558:96-109. [PMID: 33744744 DOI: 10.1016/j.virol.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/23/2022]
Abstract
The multifunctional phage replication protein gp43 is composed of an N-terminal prim-pol domain and a C-terminal domain similar to the SF4-type replicative helicases. We prepared four mutants all missing the prim-pol domain with the helicase core flanked by accessory N- and C-terminal regions truncated to varying extents. The shortest fragment still possessing strong ssDNA-dependent ATPase activity and helicase activity was gp43HEL519-983. The other proteins tested were gp43HEL557-983, gp43HEL519-855 and gp43HEL519-896. Removal of the 38 N-terminal residues in gp43HEL557-983, or the 128 and 87 C-terminal residues in gp43HEL519-855 and gp43HEL519-896, resulted in a significant decrease in the ATPase activities. The 38-amino acid N-terminal region has probably a function in modulating DNA binding and protein oligomerization. Deletion of the 87 C-terminal residues resulted in a twofold increase in the unwinding rate. This region is likely indispensable for binding to DNA substrates.
Collapse
|
7
|
Rey T, Zaganelli S, Cuillery E, Vartholomaiou E, Croisier M, Martinou JC, Manley S. Mitochondrial RNA granules are fluid condensates positioned by membrane dynamics. Nat Cell Biol 2020; 22:1180-1186. [PMID: 32989247 PMCID: PMC7610405 DOI: 10.1038/s41556-020-00584-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/25/2020] [Indexed: 12/21/2022]
Abstract
Mitochondria contain the genetic information and expression machinery to produce essential respiratory chain proteins. Within the mitochondrial matrix, newly synthesized RNA, RNA processing proteins and mitoribosome assembly factors form punctate sub-compartments referred to as mitochondrial RNA granules (MRGs)1-3. Despite their proposed importance in regulating gene expression, the structural and dynamic properties of MRGs remain largely unknown. We investigated the internal architecture of MRGs using fluorescence super-resolution localization microscopy and correlative electron microscopy, and found that the MRG ultrastructure consists of compacted RNA embedded within a protein cloud. Using live-cell super-resolution structured illumination microscopy and fluorescence recovery after photobleaching, we reveal that MRGs rapidly exchange components and can undergo fusion, characteristic properties of fluid condensates4. Furthermore, MRGs associate with the inner mitochondrial membrane and their fusion coincides with mitochondrial remodelling. Inhibition of mitochondrial fission or fusion leads to an aberrant accumulation of MRGs into concentrated pockets, where they remain as distinct individual units despite their close apposition. Together, our findings reveal that MRGs are nanoscale fluid compartments, which are dispersed along mitochondria via membrane dynamics.
Collapse
Affiliation(s)
- Timo Rey
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Sofia Zaganelli
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Cell Biology, University of Geneva, Genève, Switzerland
| | | | | | - Marie Croisier
- BioEM Core Facility and Technology Platform, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Suliana Manley
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Kaur P, Longley MJ, Pan H, Wang W, Countryman P, Wang H, Copeland WC. Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase. J Biol Chem 2020; 295:5564-5576. [PMID: 32213598 PMCID: PMC7186178 DOI: 10.1074/jbc.ra120.012795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/24/2020] [Indexed: 11/06/2022] Open
Abstract
Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA-binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695.
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Wendy Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Preston Countryman
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695; Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
9
|
Peter B, Falkenberg M. TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel) 2020; 11:genes11040408. [PMID: 32283748 PMCID: PMC7231222 DOI: 10.3390/genes11040408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Mammalian mitochondria contain a circular genome (mtDNA) which encodes subunits of the oxidative phosphorylation machinery. The replication and maintenance of mtDNA is carried out by a set of nuclear-encoded factors—of which, helicases form an important group. The TWINKLE helicase is the main helicase in mitochondria and is the only helicase required for mtDNA replication. Mutations in TWINKLE cause a number of human disorders associated with mitochondrial dysfunction, neurodegeneration and premature ageing. In addition, a number of other helicases with a putative role in mitochondria have been identified. In this review, we discuss our current knowledge of TWINKLE structure and function and its role in diseases of mtDNA maintenance. We also briefly discuss other potential mitochondrial helicases and postulate on their role(s) in mitochondria.
Collapse
|
10
|
Cluett TJ, Akman G, Reyes A, Kazak L, Mitchell A, Wood SR, Spinazzola A, Spelbrink JN, Holt IJ. Transcript availability dictates the balance between strand-asynchronous and strand-coupled mitochondrial DNA replication. Nucleic Acids Res 2019; 46:10771-10781. [PMID: 30239839 PMCID: PMC6237803 DOI: 10.1093/nar/gky852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/12/2018] [Indexed: 11/15/2022] Open
Abstract
Mammalian mitochondria operate multiple mechanisms of DNA replication. In many cells and tissues a strand-asynchronous mechanism predominates over coupled leading and lagging-strand DNA synthesis. However, little is known of the factors that control or influence the different mechanisms of replication, and the idea that strand-asynchronous replication entails transient incorporation of transcripts (aka bootlaces) is controversial. A firm prediction of the bootlace model is that it depends on mitochondrial transcripts. Here, we show that elevated expression of Twinkle DNA helicase in human mitochondria induces bidirectional, coupled leading and lagging-strand DNA synthesis, at the expense of strand-asynchronous replication; and this switch is accompanied by decreases in the steady-state level of some mitochondrial transcripts. However, in the so-called minor arc of mitochondrial DNA where transcript levels remain high, the strand-asynchronous replication mechanism is instated. Hence, replication switches to a strand-coupled mechanism only where transcripts are scarce, thereby establishing a direct correlation between transcript availability and the mechanism of replication. Thus, these findings support a critical role of mitochondrial transcripts in the strand-asynchronous mechanism of mitochondrial DNA replication; and, as a corollary, mitochondrial RNA availability and RNA/DNA hybrid formation offer means of regulating the mechanisms of DNA replication in the organelle.
Collapse
Affiliation(s)
- Tricia J Cluett
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | | | - Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Lawrence Kazak
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Alice Mitchell
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Stuart R Wood
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB1 9SY, UK
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Johannes N Spelbrink
- Department of Pediatrics, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands
| | - Ian J Holt
- Department of Clinical Movement Neurosciences, Institute of Neurology, Royal Free Campus, University College London, London NW3 2PF, UK.,Biodonostia Health Research Institute, 20014 San Sebastián, Spain and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Peter B, Farge G, Pardo-Hernandez C, Tångefjord S, Falkenberg M. Structural basis for adPEO-causing mutations in the mitochondrial TWINKLE helicase. Hum Mol Genet 2019; 28:1090-1099. [PMID: 30496414 PMCID: PMC6423418 DOI: 10.1093/hmg/ddy415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/13/2022] Open
Abstract
TWINKLE is the helicase involved in replication and maintenance of mitochondrial DNA (mtDNA) in mammalian cells. Structurally, TWINKLE is closely related to the bacteriophage T7 gp4 protein and comprises a helicase and primase domain joined by a flexible linker region. Mutations in and around this linker region are responsible for autosomal dominant progressive external ophthalmoplegia (adPEO), a neuromuscular disorder associated with deletions in mtDNA. The underlying molecular basis of adPEO-causing mutations remains unclear, but defects in TWINKLE oligomerization are thought to play a major role. In this study, we have characterized these disease variants by single-particle electron microscopy and can link the diminished activities of the TWINKLE variants to altered oligomeric properties. Our results suggest that the mutations can be divided into those that (i) destroy the flexibility of the linker region, (ii) inhibit ring closure and (iii) change the number of subunits within a helicase ring. Furthermore, we demonstrate that wild-type TWINKLE undergoes large-scale conformational changes upon nucleoside triphosphate binding and that this ability is lost in the disease-causing variants. This represents a substantial advancement in the understanding of the molecular basis of adPEO and related pathologies and may aid in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Bradley Peter
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden
| | - Geraldine Farge
- Centre Nacionale de la Recherche Scientifique/Institut National de Physique Nucléaire et des Particules, Laboratoire de Physique de Clermont, Université Clermont Auvergne, BP 10448, Clermont-Ferrand, France
| | | | - Stefan Tångefjord
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Sweden
| |
Collapse
|
12
|
Harman A, Barth C. The Dictyostelium discoideum homologue of Twinkle, Twm1, is a mitochondrial DNA helicase, an active primase and promotes mitochondrial DNA replication. BMC Mol Biol 2018; 19:12. [PMID: 30563453 PMCID: PMC6299598 DOI: 10.1186/s12867-018-0114-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/07/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND DNA replication requires contributions from various proteins, such as DNA helicases; in mitochondria Twinkle is important for maintaining and replicating mitochondrial DNA. Twinkle helicases are predicted to also possess primase activity, as has been shown in plants; however this activity appears to have been lost in metazoans. Given this, the study of Twinkle in other organisms is required to better understand the evolution of this family and the roles it performs within mitochondria. RESULTS Here we describe the characterization of a Twinkle homologue, Twm1, in the amoeba Dictyostelium discoideum, a model organism for mitochondrial genetics and disease. We show that Twm1 is important for mitochondrial function as it maintains mitochondrial DNA copy number in vivo. Twm1 is a helicase which unwinds DNA resembling open forks, although it can act upon substrates with a single 3' overhang, albeit less efficiently. Furthermore, unlike human Twinkle, Twm1 has primase activity in vitro. Finally, using a novel in bacterio approach, we demonstrated that Twm1 promotes DNA replication. CONCLUSIONS We conclude that Twm1 is a replicative mitochondrial DNA helicase which is capable of priming DNA for replication. Our results also suggest that non-metazoan Twinkle could function in the initiation of mitochondrial DNA replication. While further work is required, this study has illuminated several alternative processes of mitochondrial DNA maintenance which might also be performed by the Twinkle family of helicases.
Collapse
Affiliation(s)
- Ashley Harman
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC Australia
- Present Address: Cell Biology Unit, Children’s Medical Research Institute, University of Sydney, Westmead, NSW Australia
| | - Christian Barth
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC Australia
| |
Collapse
|
13
|
Khan I, Crouch JD, Bharti SK, Sommers JA, Carney SM, Yakubovskaya E, Garcia-Diaz M, Trakselis MA, Brosh RM. Biochemical Characterization of the Human Mitochondrial Replicative Twinkle Helicase: SUBSTRATE SPECIFICITY, DNA BRANCH MIGRATION, AND ABILITY TO OVERCOME BLOCKADES TO DNA UNWINDING. J Biol Chem 2016; 291:14324-14339. [PMID: 27226550 DOI: 10.1074/jbc.m115.712026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
Mutations in the c10orf2 gene encoding the human mitochondrial DNA replicative helicase Twinkle are linked to several rare genetic diseases characterized by mitochondrial defects. In this study, we have examined the catalytic activity of Twinkle helicase on model replication fork and DNA repair structures. Although Twinkle behaves as a traditional 5' to 3' helicase on conventional forked duplex substrates, the enzyme efficiently dissociates D-loop DNA substrates irrespective of whether it possesses a 5' or 3' single-stranded tailed invading strand. In contrast, we report for the first time that Twinkle branch-migrates an open-ended mobile three-stranded DNA structure with a strong 5' to 3' directionality preference. To determine how well Twinkle handles potential roadblocks to mtDNA replication, we tested the ability of the helicase to unwind substrates with site-specific oxidative DNA lesions or bound by the mitochondrial transcription factor A. Twinkle helicase is inhibited by DNA damage in a unique manner that is dependent on the type of oxidative lesion and the strand in which it resides. Novel single molecule FRET binding and unwinding assays show an interaction of the excluded strand with Twinkle as well as events corresponding to stepwise unwinding and annealing. TFAM inhibits Twinkle unwinding, suggesting other replisome proteins may be required for efficient removal. These studies shed new insight on the catalytic functions of Twinkle on the key DNA structures it would encounter during replication or possibly repair of the mitochondrial genome and how well it tolerates potential roadblocks to DNA unwinding.
Collapse
Affiliation(s)
- Irfan Khan
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Jack D Crouch
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224
| | - Sean M Carney
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Michael A Trakselis
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, Pennsylvania 15260,; Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224,.
| |
Collapse
|
14
|
Abstract
Recent advances in the field of mitochondrial DNA (mtDNA) replication highlight the diversity of both the mechanisms utilized and the structural and functional organization of the proteins at mtDNA replication fork, despite the relative simplicity of the animal mtDNA genome. DNA polymerase γ, mtDNA helicase and mitochondrial single-stranded DNA-binding protein-the key replisome proteins, have evolved distinct structural features and biochemical properties. These appear to be correlated with mtDNA genomic features in different metazoan taxa and with their modes of DNA replication, although substantial integrative research is warranted to establish firmly these links. To date, several modes of mtDNA replication have been described for animals: rolling circle, theta, strand-displacement, and RITOLS/bootlace. Resolution of a continuing controversy relevant to mtDNA replication in mammals/vertebrates will have a direct impact on the mechanistic interpretation of mtDNA-related human diseases. Here we review these subjects, integrating earlier and recent data to provide a perspective on the major challenges for future research.
Collapse
Affiliation(s)
- G L Ciesielski
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States
| | - M T Oliveira
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - L S Kaguni
- Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland; Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
15
|
Sen D, Patel G, Patel SS. Homologous DNA strand exchange activity of the human mitochondrial DNA helicase TWINKLE. Nucleic Acids Res 2016; 44:4200-10. [PMID: 26887820 PMCID: PMC4872091 DOI: 10.1093/nar/gkw098] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/08/2016] [Indexed: 01/03/2023] Open
Abstract
A crucial component of the human mitochondrial DNA replisome is the ring-shaped helicase TWINKLE-a phage T7-gene 4-like protein expressed in the nucleus and localized in the human mitochondria. Our previous studies showed that despite being a helicase, TWINKLE has unique DNA annealing activity. At the time, the implications of DNA annealing by TWINKLE were unclear. Herein, we report that TWINKLE uses DNA annealing function to actively catalyze strand-exchange reaction between the unwinding substrate and a homologous single-stranded DNA. Using various biochemical experiments, we demonstrate that the mechanism of strand-exchange involves active coupling of unwinding and annealing reactions by the TWINKLE. Unlike strand-annealing, the strand-exchange reaction requires nucleotide hydrolysis and greatly stimulated by short region of homology between the recombining DNA strands that promote joint molecule formation to initiate strand-exchange. Furthermore, we show that TWINKLE catalyzes branch migration by resolving homologous four-way junction DNA. These four DNA modifying activities of TWINKLE: strand-separation, strand-annealing, strand-exchange and branch migration suggest a dual role of TWINKLE in mitochondrial DNA maintenance. In addition to playing a major role in fork progression during leading strand DNA synthesis, we propose that TWINKLE is involved in recombinational repair of the human mitochondrial DNA.
Collapse
Affiliation(s)
- Doyel Sen
- Rutgers University, Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, NJ 08854, USA
| | - Gayatri Patel
- Rutgers University, Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, NJ 08854, USA
| | - Smita S Patel
- Rutgers University, Robert Wood Johnson Medical School, Department of Biochemistry and Molecular Biology, NJ 08854, USA
| |
Collapse
|
16
|
Halgasova N, Solteszova B, Pevala V, Košťan J, Kutejová E, Bukovska G. A RepA-like protein from bacteriophage BFK20 is a multifunctional protein with primase, polymerase, NTPase and helicase activities. Virus Res 2015; 210:178-87. [DOI: 10.1016/j.virusres.2015.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 11/17/2022]
|
17
|
Kaguni LS, Oliveira MT. Structure, function and evolution of the animal mitochondrial replicative DNA helicase. Crit Rev Biochem Mol Biol 2015; 51:53-64. [PMID: 26615986 DOI: 10.3109/10409238.2015.1117056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial replicative DNA helicase is essential for animal mitochondrial DNA (mtDNA) maintenance. Deleterious mutations in the gene that encodes it cause mitochondrial dysfunction manifested in developmental delays, defects and arrest, limited life span, and a number of human pathogenic phenotypes that are recapitulated in animals across taxa. In fact, the replicative mtDNA helicase was discovered with the identification of human disease mutations in its nuclear gene, and based upon its deduced amino acid sequence homology with bacteriophage T7 gene 4 protein (T7 gp4), a bi-functional primase-helicase. Since that time, numerous investigations of its structure, mechanism, and physiological relevance have been reported, and human disease alleles have been modeled in the human, mouse, and Drosophila systems. Here, we review this literature and draw evolutionary comparisons that serve to shed light on its divergent features.
Collapse
Affiliation(s)
- Laurie S Kaguni
- a Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine , Michigan State University , East Lansing , MI , USA .,b Institute of Biosciences and Medical Technology, University of Tampere , Tampere , Finland , and
| | - Marcos T Oliveira
- c Departamento de Tecnologia , Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Jaboticabal , Brazil
| |
Collapse
|
18
|
Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem 2015; 409:283-305. [DOI: 10.1007/s11010-015-2532-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022]
|
19
|
Abstract
Ataxia is a disorder of balance and coordination resulted from dysfunctions involving cerebellum and its afferent and efferent connections. While a variety of disorders can cause secondary ataxias, the list of genetic causes of ataxias is growing longer. Genetic abnormalities may involve mitochondrial dysfunction, oxidative stress, abnormal mechanisms of DNA repair, possible protein misfolding, and abnormalities in cytoskeletal proteins. Few ataxias are fully treatable while hope for efficacious gene therapy and pharmacotherapy is emerging. A discussion of the ataxias is presented here with brief mention of acquired ataxias, and a greater focus on inherited ataxias.
Collapse
Affiliation(s)
- Umar Akbar
- Department of Neurology, Center for Movement Disorders and Neurorestoration College of Medicine, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, L3-100, Gainesville, FL 32611, USA
| | - Tetsuo Ashizawa
- Department of Neurology, Center for Movement Disorders and Neurorestoration College of Medicine, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, L3-100, Gainesville, FL 32611, USA.
| |
Collapse
|
20
|
Ding L, Liu Y. Borrowing nuclear DNA helicases to protect mitochondrial DNA. Int J Mol Sci 2015; 16:10870-87. [PMID: 25984607 PMCID: PMC4463680 DOI: 10.3390/ijms160510870] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer's disease, premature aging and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases.
Collapse
Affiliation(s)
- Lin Ding
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| | - Yilun Liu
- Department of Radiation Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010-3000, USA.
| |
Collapse
|
21
|
Fernández-Millán P, Lázaro M, Cansız-Arda Ş, Gerhold JM, Rajala N, Schmitz CA, Silva-Espiña C, Gil D, Bernadó P, Valle M, Spelbrink JN, Solà M. The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Res 2015; 43:4284-95. [PMID: 25824949 PMCID: PMC4417153 DOI: 10.1093/nar/gkv189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 12/21/2014] [Accepted: 02/23/2015] [Indexed: 01/28/2023] Open
Abstract
The mitochondrial replicative helicase Twinkle is involved in strand separation at the replication fork of mitochondrial DNA (mtDNA). Twinkle malfunction is associated with rare diseases that include late onset mitochondrial myopathies, neuromuscular disorders and fatal infantile mtDNA depletion syndrome. We examined its 3D structure by electron microscopy (EM) and small angle X-ray scattering (SAXS) and built the corresponding atomic models, which gave insight into the first molecular architecture of a full-length SF4 helicase that includes an N-terminal zinc-binding domain (ZBD), an intermediate RNA polymerase domain (RPD) and a RecA-like hexamerization C-terminal domain (CTD). The EM model of Twinkle reveals a hexameric two-layered ring comprising the ZBDs and RPDs in one layer and the CTDs in another. In the hexamer, contacts in trans with adjacent subunits occur between ZBDs and RPDs, and between RPDs and CTDs. The ZBDs show important structural heterogeneity. In solution, the scattering data are compatible with a mixture of extended hexa- and heptameric models in variable conformations. Overall, our structural data show a complex network of dynamic interactions that reconciles with the structural flexibility required for helicase activity.
Collapse
Affiliation(s)
- Pablo Fernández-Millán
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Melisa Lázaro
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Şirin Cansız-Arda
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Joachim M Gerhold
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands
| | - Nina Rajala
- Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Claus-A Schmitz
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - Cristina Silva-Espiña
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| | - David Gil
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM-U1054, CNRS UMR-5048, Université de Montpellier I&II. Montpellier, F-34090, France
| | - Mikel Valle
- Structural Biology Unit. Centre for Cooperative Research in Biosciences, CICbioGUNE, Derio, E-48160, Spain
| | - Johannes N Spelbrink
- Department of Pediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Medical Centre, Nijmegen, 6525 GA, The Netherlands Mitochondrial DNA Maintenance Group, BioMediTech, University of Tampere, Tampere, FI-33014, Finland
| | - Maria Solà
- Structural MitoLab; Department of Structural Biology, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, E-08028, Spain
| |
Collapse
|
22
|
Subramony S, Moscovich M, Ashizawa T. Genetics and Clinical Features of Inherited Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Bharti SK, Sommers JA, Zhou J, Kaplan DL, Spelbrink JN, Mergny JL, Brosh RM. DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase. J Biol Chem 2014; 289:29975-93. [PMID: 25193669 DOI: 10.1074/jbc.m114.567073] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- From the Laboratory of Molecular Gerontology, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224
| | - Joshua A Sommers
- From the Laboratory of Molecular Gerontology, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224
| | - Jun Zhou
- the ARNA Laboratory, University of Bordeaux, F-33000 Bordeaux, France, INSERM U869, Institut Européen de Chimie et Biologie (IECB), F-33600 Pessac, France
| | - Daniel L Kaplan
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32312
| | - Johannes N Spelbrink
- the FinMIT Centre of Excellence, BioMediTech and Tampere University Hospital, Pirkanmaa Hospital District, University of Tampere, FI-33014 Tampere, Finland, and the Department of Pediatrics, Nijmegan Centre for Mitochondrial Disorders, Radboud University Medical Centre, Geert Grooteplein 10, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Jean-Louis Mergny
- the ARNA Laboratory, University of Bordeaux, F-33000 Bordeaux, France, INSERM U869, Institut Européen de Chimie et Biologie (IECB), F-33600 Pessac, France
| | - Robert M Brosh
- From the Laboratory of Molecular Gerontology, NIA, National Institutes of Health, NIH Biomedical Research Center, Baltimore, Maryland 21224,
| |
Collapse
|
24
|
Towle-Weicksel JB, Cao Y, Crislip LJ, Thurlow DL, Crampton DJ. Chimeric proteins constructed from bacteriophage T7 gp4 and a putative primase-helicase from Arabidopsis thaliana. Mol Biol Rep 2014; 41:7783-95. [PMID: 25098604 DOI: 10.1007/s11033-014-3671-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/29/2014] [Indexed: 11/24/2022]
Abstract
An open reading frame from Arabidopsis thaliana, which is highly homologous to the human mitochondrial DNA helicase TWINKLE, was previously cloned, expressed, and shown to have DNA primase and DNA helicase activity. The level of DNA primase activity of this Arabidopsis Twinkle homolog (ATH) was low, perhaps due to an incomplete zinc binding domain (ZBD). In this study, N-terminal truncations of ATH implicate residues 80-102 interact with the RNA polymerase domain (RPD). In addition, chimeric proteins, constructed using domains from ATH and the well-characterized T7 phage DNA primase-helicase gp4, were created to determine if the weak primase activity of ATH could be enhanced. Two chimeric proteins were constructed: ATHT7 contains the ZBD and RPD domains of ATH tethered to the helicase domain of T7, while T7ATH contains the ZBD and RPD domains of T7 tethered to the helicase domain of ATH. Both chimeric proteins were successfully expressed and purified in E. coli, and assayed for traditional primase and helicase activities. T7ATH was able to generate short oligoribonucleotide primers, but these primers could not be cooperatively extended by a DNA polymerase. Although T7ATH contains the ATH helicase domain, it exhibited few of the characteristics of a functional helicase. ATHT7 lacked primase activity altogether and also demonstrated only weak helicase activities. This work demonstrates the importance of interactions between structurally and functionally distinct domains, especially in recombinant, chimeric proteins.
Collapse
Affiliation(s)
- Jamie B Towle-Weicksel
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA, 01610, USA,
| | | | | | | | | |
Collapse
|
25
|
Stiban J, Farnum GA, Hovde SL, Kaguni LS. The N-terminal domain of the Drosophila mitochondrial replicative DNA helicase contains an iron-sulfur cluster and binds DNA. J Biol Chem 2014; 289:24032-42. [PMID: 25023283 DOI: 10.1074/jbc.m114.587774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys(68), Cys(71), Cys(102), and Cys(105)) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.
Collapse
Affiliation(s)
- Johnny Stiban
- From the Department of Biochemistry and Molecular Biology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824 and the Department of Biology and Biochemistry, Birzeit University, P. O. Box 14, West Bank 627, Palestine
| | - Gregory A Farnum
- From the Department of Biochemistry and Molecular Biology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824 and
| | - Stacy L Hovde
- From the Department of Biochemistry and Molecular Biology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824 and
| | - Laurie S Kaguni
- From the Department of Biochemistry and Molecular Biology, and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824 and
| |
Collapse
|
26
|
Sobek S, Boege F. DNA topoisomerases in mtDNA maintenance and ageing. Exp Gerontol 2014; 56:135-41. [PMID: 24440386 DOI: 10.1016/j.exger.2014.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/26/2022]
Abstract
DNA topoisomerases pass DNA strands through each other, a function essential for all DNA metabolic processes that create supercoils or entanglements of DNA. Topoisomerases play an ambivalent role in nuclear genome maintenance: Deficiency compromises gene transcription, replication and chromosome segregation, while the inherent DNA-cleavage activity of the enzymes endangers DNA integrity. Indeed, many DNA-damaging agents act through enhancing topoisomerase DNA cleavage. Mitochondrial DNA (mtDNA) clearly requires topoisomerase activity for transcription and replication, because it is a closed, double-stranded DNA molecule. Three topoisomerases have so far been found in mammalian mitochondria (I, IIβ, IIIα), but their precise role in mtDNA metabolism, mitochondrial maintenance and respiratory function remains mostly unclear. It is a reasonable surmise that these enzymes exhibit similar ambiguity with respect to genome maintenance and gene transcription as their nuclear counterparts. Here, we review what is known about the physiological roles of mitochondrial topoisomerases and draft three scenarios of how these enzymes possibly contribute to ageing-related mtDNA attrition and respiratory chain dysfunction. These scenarios are: mtDNA attrition by exogenously stimulated topoisomerase DNA cleavage, unbalancing of mitochondrial and nuclear transcription by direct effects on mitochondrial transcription, and contributions to enhanced mtDNA entanglement and recombination.
Collapse
Affiliation(s)
- Stefan Sobek
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich Heine University, Med. Faculty, Düsseldorf, Germany.
| |
Collapse
|
27
|
Meersseman C, Léjard V, Rebours E, Boussaha M, Maftah A, Petit D, Rocha D. Bovine TWINKLE and mitochondrial ribosomal protein L43 genes are regulated by an evolutionary conserved bidirectional promoter. Gene 2013; 537:154-63. [PMID: 24361965 DOI: 10.1016/j.gene.2013.11.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/30/2013] [Indexed: 11/16/2022]
Abstract
TWINKLE is a mitochondrial DNA helicase playing an important role in mitochondrial DNA replication. In human, mutations in this gene cause progressive external ophtalmoplegia and mitochondrial DNA depletion syndrome-7. TWINKLE is well conserved among multicellular eukaryotes and is believed to be a key regulator of mitochondrial DNA copy number in mammals. Despite its involvement in several diseases and its important function in mitochondrial DNA metabolism, nothing is known about the regulation of the expression of TWINKLE. We have analysed the 5'-flanking genomic region of the bovine TWINKLE gene and found it was localised adjacent to the MRPL43 gene in a head-to-head orientation, suggesting that both genes are regulated by a shared bidirectional promoter. The bovine 75-bp long intergenic region shows substantial homology across different species and contains several conserved putative transcription factor binding sites. A TATA box, however, was lacking. Using a dual fluorescent reporter system and transient transfection assays, we have analysed the bovine intergenic region between TWINKLE and MRPL43. This small genomic fragment showed a bidirectional promoter activity. As the TWINKLE/MRPL43 bidirectional promoter tested was highly conserved, it is likely that the results we obtained here in cattle may be extended to the other species.
Collapse
Affiliation(s)
- Cédric Meersseman
- INRA, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; INRA, UMR1061 Génétique Moléculaire Animale, F-87060 Limoges, France; Université de Limoges, UMR1061 Génétique Moléculaire Animale, F-87060 Limoges, France
| | - Véronique Léjard
- INRA, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France
| | - Emmanuelle Rebours
- INRA, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France
| | - Mekki Boussaha
- INRA, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France
| | - Abderrahman Maftah
- INRA, UMR1061 Génétique Moléculaire Animale, F-87060 Limoges, France; Université de Limoges, UMR1061 Génétique Moléculaire Animale, F-87060 Limoges, France
| | - Daniel Petit
- INRA, UMR1061 Génétique Moléculaire Animale, F-87060 Limoges, France; Université de Limoges, UMR1061 Génétique Moléculaire Animale, F-87060 Limoges, France
| | - Dominique Rocha
- INRA, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France; AgroParisTech, UMR1313, Unité Génétique Animale et Biologie Intégrative, Domaine de Vilvert, F-78352 Jouy-en-Josas, France.
| |
Collapse
|
28
|
McKinney EA, Oliveira MT. Replicating animal mitochondrial DNA. Genet Mol Biol 2013; 36:308-15. [PMID: 24130435 PMCID: PMC3795181 DOI: 10.1590/s1415-47572013000300002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/11/2013] [Indexed: 11/22/2022] Open
Abstract
The field of mitochondrial DNA (mtDNA) replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s) used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark) has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading- and lagging-strand synthesis (resembling bacterial genome replication) and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS). The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase γ, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase). Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.
Collapse
Affiliation(s)
- Emily A McKinney
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | | |
Collapse
|
29
|
Szczesny RJ, Wojcik MA, Borowski LS, Szewczyk MJ, Skrok MM, Golik P, Stepien PP. Yeast and human mitochondrial helicases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:842-53. [PMID: 23454114 DOI: 10.1016/j.bbagrm.2013.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 11/19/2022]
Abstract
Mitochondria are semiautonomous organelles which contain their own genome. Both maintenance and expression of mitochondrial DNA require activity of RNA and DNA helicases. In Saccharomyces cerevisiae the nuclear genome encodes four DExH/D superfamily members (MSS116, SUV3, MRH4, IRC3) that act as helicases and/or RNA chaperones. Their activity is necessary for mitochondrial RNA splicing, degradation, translation and genome maintenance. In humans the ortholog of SUV3 (hSUV3, SUPV3L1) so far is the best described mitochondrial RNA helicase. The enzyme, together with the matrix-localized pool of PNPase (PNPT1), forms an RNA-degrading complex called the mitochondrial degradosome, which localizes to distinct structures (D-foci). Global regulation of mitochondrially encoded genes can be achieved by changing mitochondrial DNA copy number. This way the proteins involved in its replication, like the Twinkle helicase (c10orf2), can indirectly regulate gene expression. Here, we describe yeast and human mitochondrial helicases that are directly involved in mitochondrial RNA metabolism, and present other helicases that participate in mitochondrial DNA replication and maintenance. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
30
|
Chang YM, Chen CKM, Chang YC, Jeng WY, Hou MH, Wang AHJ. Functional studies of ssDNA binding ability of MarR family protein TcaR from Staphylococcus epidermidis. PLoS One 2012; 7:e45665. [PMID: 23029170 PMCID: PMC3448645 DOI: 10.1371/journal.pone.0045665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/20/2012] [Indexed: 01/21/2023] Open
Abstract
The negative transcription regulator of the ica locus, TcaR, regulates proteins involved in the biosynthesis of poly-N-acetylglucosamine (PNAG). Absence of TcaR increases PNAG production and promotes biofilm formation in Staphylococci. Previously, the 3D structure of TcaR in its apo form and its complex structure with several antibiotics have been analyzed. However, the detailed mechanism of multiple antibiotic resistance regulator (MarR) family proteins such as TcaR is unclear and only restricted on the binding ability of double-strand DNA (dsDNA). Here we show by electrophoretic mobility shift assay (EMSA), electron microscopy (EM), circular dichroism (CD), and Biacore analysis that TcaR can interact strongly with single-stranded DNA (ssDNA), thereby identifying a new role in MarR family proteins. Moreover, we show that TcaR preferentially binds 33-mer ssDNA over double-stranded DNA and inhibits viral ssDNA replication. In contrast, such ssDNA binding properties were not observed for other MarR family protein and TetR family protein, suggesting that the results from our studies are not an artifact due to simple charge interactions between TcaR and ssDNA. Overall, these results suggest a novel role for TcaR in regulation of DNA replication. We anticipate that the results of this work will extend our understanding of MarR family protein and broaden the development of new therapeutic strategies for Staphylococci.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Yuan-Chih Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Yih Jeng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Hon Hou
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Andrew H. -J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Core Facilities for Protein Structural Analysis, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Abstract
Threading of DNA through the central channel of a replicative ring helicase is known as helicase loading, and is a pivotal event during replication initiation at replication origins. Once loaded, the helicase recruits the primase through a direct protein-protein interaction to complete the initial 'priming step' of DNA replication. Subsequent assembly of the polymerases and processivity factors completes the structure of the replisome. Two replisomes are assembled, one on each strand, and move in opposite directions to replicate the parental DNA during the 'elongation step' of DNA replication. Replicative helicases are the motor engines of replisomes powered by the conversion of chemical energy to mechanical energy through ATP binding and hydrolysis. Bidirectional loading of two ring helicases at a replication origin is achieved by strictly regulated and intricately choreographed mechanisms, often through the action of replication initiation and helicase-loader proteins. Current structural and biochemical data reveal a wide range of different helicase-loading mechanisms. Here we review advances in this area and discuss their implications.
Collapse
Affiliation(s)
- Panos Soultanas
- School of Chemistry, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
32
|
Sen D, Nandakumar D, Tang GQ, Patel SS. Human mitochondrial DNA helicase TWINKLE is both an unwinding and annealing helicase. J Biol Chem 2012; 287:14545-56. [PMID: 22383523 DOI: 10.1074/jbc.m111.309468] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TWINKLE is a nucleus-encoded human mitochondrial (mt)DNA helicase. Point mutations in TWINKLE are associated with heritable neuromuscular diseases characterized by deletions in the mtDNA. To understand the biochemical basis of these diseases, it is important to define the roles of TWINKLE in mtDNA metabolism by studying its enzymatic activities. To this end, we purified native TWINKLE from Escherichia coli. The recombinant TWINKLE assembles into hexamers and higher oligomers, and addition of MgUTP stabilizes hexamers over higher oligomers. Probing into the DNA unwinding activity, we discovered that the efficiency of unwinding is greatly enhanced in the presence of a heterologous single strand-binding protein or a single-stranded (ss) DNA that is complementary to the unwound strand. We show that TWINKLE, although a helicase, has an antagonistic activity of annealing two complementary ssDNAs that interferes with unwinding in the absence of gp2.5 or ssDNA trap. Furthermore, only ssDNA and not double-stranded (ds)DNA competitively inhibits the annealing activity, although both DNAs bind with high affinities. This implies that dsDNA binds to a site that is distinct from the ssDNA-binding site that promotes annealing. Fluorescence anisotropy competition binding experiments suggest that TWINKLE has more than one ssDNA-binding sites, and we speculate that a surface-exposed ssDNA-specific site is involved in catalyzing DNA annealing. We propose that the strand annealing activity of TWINKLE may play a role in recombination-mediated replication initiation found in the mitochondria of mammalian brain and heart or in replication fork regression during repair of damaged DNA replication forks.
Collapse
Affiliation(s)
- Doyel Sen
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
33
|
Lo YH, Liu SW, Sun YJ, Li HW, Hsiao CD. Mutations altering the interplay between GkDnaC helicase and DNA reveal an insight into helicase unwinding. PLoS One 2011; 6:e29016. [PMID: 22174946 PMCID: PMC3236778 DOI: 10.1371/journal.pone.0029016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/17/2011] [Indexed: 11/18/2022] Open
Abstract
Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Wei Liu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yuh-Ju Sun
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- * ;
| | - Chwan-Deng Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * ;
| |
Collapse
|
34
|
Jemt E, Farge G, Bäckström S, Holmlund T, Gustafsson CM, Falkenberg M. The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis. Nucleic Acids Res 2011; 39:9238-49. [PMID: 21840902 PMCID: PMC3241658 DOI: 10.1093/nar/gkr653] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial DNA replication is performed by a simple machinery, containing the TWINKLE DNA helicase, a single-stranded DNA-binding protein, and the mitochondrial DNA polymerase γ. In addition, mitochondrial RNA polymerase is required for primer formation at the origins of DNA replication. TWINKLE adopts a hexameric ring-shaped structure that must load on the closed circular mtDNA genome. In other systems, a specialized helicase loader often facilitates helicase loading. We here demonstrate that TWINKLE can function without a specialized loader. We also show that the mitochondrial replication machinery can assemble on a closed circular DNA template and efficiently elongate a DNA primer in a manner that closely resembles initiation of mtDNA synthesis in vivo.
Collapse
Affiliation(s)
- Elisabeth Jemt
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Although the origin of mitochondria from the endosymbiosis of an α-proteobacterium is well established, the nature of the host cell, the metabolic complexity of the endosymbiont and the subsequent evolution of the proto-mitochondrion into all its current appearances are still the subject of discovery and sometimes debate. Here we review what has been inferred about the original composition and subsequent evolution of the mitochondrial proteome and essential mitochondrial systems. The evolutionary mosaic that currently constitutes mitochondrial proteomes contains (i) endosymbiotic proteins (15-45%), (ii) proteins without detectable orthologs outside the eukaryotic lineage (40%), and (iii) proteins that are derived from non-proteobacterial Bacteria, Bacteriophages and Archaea (15%, specifically multiple tRNA-modification proteins). Protein complexes are of endosymbiotic origin, but have greatly expanded with novel eukaryotic proteins; in contrast to mitochondrial enzymes that are both of proteobacterial and non-proteobacterial origin. This disparity is consistent with the complexity hypothesis, which argues that proteins that are a part of large, multi-subunit complexes are unlikely to undergo horizontal gene transfer. We observe that they neither change their subcellular compartments in the course of evolution, even when their genes do.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Radboud University Nijmegen Medical Centre, CMBI/NCMLS, Nijmegen, The Netherlands
| | | |
Collapse
|
36
|
Longley MJ, Humble MM, Sharief FS, Copeland WC. Disease variants of the human mitochondrial DNA helicase encoded by C10orf2 differentially alter protein stability, nucleotide hydrolysis, and helicase activity. J Biol Chem 2010; 285:29690-702. [PMID: 20659899 DOI: 10.1074/jbc.m110.151795] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Missense mutations in the human C10orf2 gene, encoding the mitochondrial DNA (mtDNA) helicase, co-segregate with mitochondrial diseases such as adult-onset progressive external ophthalmoplegia, hepatocerebral syndrome with mtDNA depletion syndrome, and infantile-onset spinocerebellar ataxia. To understand the biochemical consequences of C10orf2 mutations, we overproduced wild type and 20 mutant forms of human mtDNA helicase in Escherichia coli and developed novel schemes to purify the recombinant enzymes to near homogeneity. A combination of molecular crowding, non-ionic detergents, Mg(2+) ions, and elevated ionic strength was required to combat insolubility and intrinsic instability of certain mutant variants. A systematic biochemical assessment of the enzymes included analysis of DNA binding affinity, DNA helicase activity, the kinetics of nucleotide hydrolysis, and estimates of thermal stability. In contrast to other studies, we found that all 20 mutant variants retain helicase function under optimized in vitro conditions despite partial reductions in DNA binding affinity, nucleotide hydrolysis, or thermal stability for some mutants. Such partial defects are consistent with the delayed presentation of mitochondrial diseases associated with mutation of C10orf2.
Collapse
Affiliation(s)
- Matthew J Longley
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
37
|
Mitochondrial helicases and mitochondrial genome maintenance. Mech Ageing Dev 2010; 131:503-10. [PMID: 20576512 DOI: 10.1016/j.mad.2010.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/26/2010] [Accepted: 04/28/2010] [Indexed: 12/28/2022]
Abstract
Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus.
Collapse
|
38
|
Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1378-88. [PMID: 20417176 DOI: 10.1016/j.bbabio.2010.04.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 11/16/2022]
Abstract
Mitochondria are organelles whose main function is to generate power by oxidative phosphorylation. Some of the essential genes required for this energy production are encoded by the mitochondrial genome, a small circular double stranded DNA molecule. Human mtDNA is replicated by a specialized machinery distinct from the nuclear replisome. Defects in the mitochondrial replication machinery can lead to loss of genetic information by deletion and/or depletion of the mtDNA, which subsequently may cause disturbed oxidative phosphorylation and neuromuscular symptoms in patients. We discuss here the different components of the mitochondrial replication machinery and their role in disease. We also review the mode of mammalian mtDNA replication.
Collapse
Affiliation(s)
- Sjoerd Wanrooij
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-40530 Gothenburg, Sweden.
| | | |
Collapse
|
39
|
Ziebarth TD, Gonzalez-Soltero R, Makowska-Grzyska MM, Núñez-Ramírez R, Carazo JM, Kaguni LS. Dynamic effects of cofactors and DNA on the oligomeric state of human mitochondrial DNA helicase. J Biol Chem 2010; 285:14639-47. [PMID: 20212038 DOI: 10.1074/jbc.m109.099663] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the effects of cofactors and DNA on the stability, oligomeric state and conformation of the human mitochondrial DNA helicase. We demonstrate that low salt conditions result in protein aggregation that may cause dissociation of oligomeric structure. The low salt sensitivity of the mitochondrial DNA helicase is mitigated by the presence of magnesium, nucleotide, and increased temperature. Electron microscopic and glutaraldehyde cross-linking analyses provide the first evidence of a heptameric oligomer and its interconversion from a hexameric form. Limited proteolysis by trypsin shows that binding of nucleoside triphosphate produces a conformational change that is distinct from the conformation observed in the presence of nucleoside diphosphate. We find that single-stranded DNA binding occurs in the absence of cofactors and renders the mitochondrial DNA helicase more susceptible to proteolytic digestion. Our studies indicate that the human mitochondrial DNA helicase shares basic properties with the SF4 replicative helicases, but also identify common features with helicases outside the superfamily, including dynamic conformations similar to other AAA(+) ATPases.
Collapse
Affiliation(s)
- Tawn D Ziebarth
- Department of Biochemistry and Molecular Biology and the Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 49924-1319, USA
| | | | | | | | | | | |
Collapse
|
40
|
Animal models of mitochondrial DNA transactions in disease and ageing. Exp Gerontol 2010; 45:489-502. [PMID: 20123011 DOI: 10.1016/j.exger.2010.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 01/11/2010] [Accepted: 01/26/2010] [Indexed: 11/21/2022]
Abstract
Mitochondrial DNA (mtDNA) transactions, processes that include mtDNA replication, repair, recombination and transcription constitute the initial stages of mitochondrial biogenesis, and are at the core of understanding mitochondrial biology and medicine. All of the protein players are encoded in nuclear genes: some are proteins with well-known functions in the nucleus, others are well-known mitochondrial proteins now ascribed new functions, and still others are newly discovered factors. In this article we review recent advances in the field of mtDNA transactions with a special focus on physiological studies. In particular, we consider the expression of variant proteins, or altered expression of factors involved in these processes in powerful model organisms, such as Drosophila melanogaster and the mouse, which have promoted recognition of the broad relevance of oxidative phosphorylation defects resulting from improper maintenance of mtDNA. Furthermore, the animal models recapitulate many phenotypes related to human ageing and a variety of different diseases, a feature that has enhanced our understanding of, and inspired theories about, the molecular mechanisms of such biological processes.
Collapse
|
41
|
Torraco A, Diaz F, Vempati UD, Moraes CT. Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:171-80. [PMID: 18601959 PMCID: PMC2652735 DOI: 10.1016/j.bbamcr.2008.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 01/14/2023]
Abstract
Defects in the oxidative phosphorylation system (OXPHOS) are responsible for a group of extremely heterogeneous and pleiotropic pathologies commonly known as mitochondrial diseases. Although many mutations have been found to be responsible for OXPHOS defects, their pathogenetic mechanisms are still poorly understood. An important contribution to investigate the in vivo function of several mitochondrial proteins and their role in mitochondrial dysfunction, has been provided by mouse models. Thanks to their genetic and physiologic similarity to humans, mouse models represent a powerful tool to investigate the impact of pathological mutations on metabolic pathways. In this review we discuss the main mouse models of mitochondrial disease developed, focusing on the ones that directly affect the OXPHOS system.
Collapse
Affiliation(s)
- Alessandra Torraco
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Uma D. Vempati
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
42
|
Holmlund T, Farge G, Pande V, Korhonen J, Nilsson L, Falkenberg M. Structure-function defects of the twinkle amino-terminal region in progressive external ophthalmoplegia. Biochim Biophys Acta Mol Basis Dis 2008; 1792:132-9. [PMID: 19084593 DOI: 10.1016/j.bbadis.2008.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/28/2022]
Abstract
TWINKLE is a DNA helicase needed for mitochondrial DNA replication. In lower eukaryotes the protein also harbors a primase activity, which is lost from TWINKLE encoded by mammalian cells. Mutations in TWINKLE underlie autosomal dominant progressive external ophthalmoplegia (adPEO), a disorder associated with multiple deletions in the mtDNA. Four different adPEO-causing mutations (W315L, K319T, R334Q, and P335L) are located in the N-terminal domain of TWINKLE. The mutations cause a dramatic decrease in ATPase activity, which is partially overcome in the presence of single-stranded DNA. The mutated proteins have defects in DNA helicase activity and cannot support normal levels of DNA replication. To explain the phenotypes, we use a molecular model of TWINKLE based on sequence similarities with the phage T7 gene 4 protein. The four adPEO-causing mutations are located in a region required to bind single-stranded DNA. These mutations may therefore impair an essential element of the catalytic cycle in hexameric helicases, i.e. the interplay between single-stranded DNA binding and ATP hydrolysis.
Collapse
Affiliation(s)
- Teresa Holmlund
- Department of Laboratory Medicine, Division of Metabolic Diseases, Karolinska Institutet, Novum, SE-141 86 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Functional importance of the conserved N-terminal domain of the mitochondrial replicative DNA helicase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:290-5. [PMID: 19063859 DOI: 10.1016/j.bbabio.2008.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 11/23/2022]
Abstract
The mitochondrial replicative DNA helicase is an essential cellular protein that shows high similarity with the bifunctional primase-helicase of bacteriophage T7, the gene 4 protein (T7 gp4). The N-terminal primase domain of T7 gp4 comprises seven conserved sequence motifs, I, II, III, IV, V, VI, and an RNA polymerase basic domain. The putative primase domain of metazoan mitochondrial DNA helicases has diverged from T7 gp4 and in particular, the primase domain of vertebrates lacks motif I, which comprises a zinc binding domain. Interestingly, motif I is conserved in insect mtDNA helicases. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying mutations in conserved amino acids in the N-terminal region, including the zinc binding domain. Overexpression of alanine substitution mutants of conserved amino acids in motifs I, IV, V and VI and the RNA polymerase basic domain results in increased mtDNA copy number as is observed with overexpression of the wild type enzyme. In contrast, overexpression of three N-terminal mutants W282L, R301Q and P302L that are analogous to human autosomal dominant progressive external ophthalmoplegia mutations results in mitochondrial DNA depletion, and in the case of R301Q, a dominant negative cellular phenotype. Thus whereas our data suggest lack of a DNA primase activity in Drosophila mitochondrial DNA helicase, they show that specific N-terminal amino acid residues that map close to the central linker region likely play a physiological role in the C-terminal helicase function of the protein.
Collapse
|
44
|
Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A, Spelbrink JN. Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 2008; 18:328-40. [PMID: 18971204 PMCID: PMC2638771 DOI: 10.1093/hmg/ddn359] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the mitochondrial helicase Twinkle underlie autosomal dominant progressive external ophthalmoplegia (PEO), as well as recessively inherited infantile-onset spinocerebellar ataxia and rare forms of mitochondrial DNA (mtDNA) depletion syndrome. Familial PEO is typically associated with the occurrence of multiple mtDNA deletions, but the mechanism by which Twinkle dysfunction induces deletion formation has been under debate. Here we looked at the effects of Twinkle adPEO mutations in human cell culture and studied the mtDNA replication in the Deletor mouse model, which expresses a dominant PEO mutation in Twinkle and accumulates multiple mtDNA deletions during life. We show that expression of dominant Twinkle mutations results in the accumulation of mtDNA replication intermediates in cell culture. This indicated severe replication pausing or stalling and caused mtDNA depletion. A strongly enhanced accumulation of replication intermediates was evident also in six-week-old Deletor mice compared with wild-type littermates, even though mtDNA deletions accumulate in a late-onset fashion in this model. In addition, our results in cell culture pointed to a problem of transcription that preceded the mtDNA depletion phenotype and might be of relevance in adPEO pathophysiology. Finally, in vitro assays showed functional defects in the various Twinkle mutants and broadly agreed with the cell culture phenotypes such as the level of mtDNA depletion and the level of accumulation of replication intermediates. On the basis of our results we suggest that mtDNA replication pausing or stalling is the common consequence of Twinkle PEO mutations that predisposes to multiple deletion formation.
Collapse
Affiliation(s)
- Steffi Goffart
- Institute of Medical Technology and Tampere University Hospital, Biokatu 6, 33014, Tampere, Finland
| | | | | | | | | | | |
Collapse
|
45
|
Hakonen AH, Goffart S, Marjavaara S, Paetau A, Cooper H, Mattila K, Lampinen M, Sajantila A, Lonnqvist T, Spelbrink JN, Suomalainen A. Infantile-onset spinocerebellar ataxia and mitochondrial recessive ataxia syndrome are associated with neuronal complex I defect and mtDNA depletion. Hum Mol Genet 2008; 17:3822-35. [DOI: 10.1093/hmg/ddn280] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci U S A 2008; 105:11122-7. [PMID: 18685103 DOI: 10.1073/pnas.0805399105] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial transcription machinery synthesizes the RNA primers required for initiation of leading-strand DNA synthesis in mammalian mitochondria. RNA primers are also required for initiation of lagging-strand DNA synthesis, but the responsible enzyme has so far remained elusive. Here, we present a series of observations that suggests that mitochondrial RNA polymerase (POLRMT) can act as lagging-strand primase in mammalian cells. POLRMT is highly processive on double-stranded DNA, but synthesizes RNA primers with a length of 25 to 75 nt on a single-stranded template. The short RNA primers synthesized by POLRMT are used by the mitochondrial DNA polymerase gamma to initiate DNA synthesis in vitro. Addition of mitochondrial single-stranded DNA binding protein (mtSSB) reduces overall levels of primer synthesis, but stimulates primer-dependent DNA synthesis. Furthermore, when combined, POLRMT, DNA polymerase gamma, the DNA helicase TWINKLE, and mtSSB are capable of simultaneous leading- and lagging-strand DNA synthesis in vitro. Based on our observations, we suggest that POLRMT is the lagging-strand primase in mammalian mitochondria.
Collapse
|
47
|
Matsushima Y, Farr CL, Fan L, Kaguni LS. Physiological and biochemical defects in carboxyl-terminal mutants of mitochondrial DNA helicase. J Biol Chem 2008; 283:23964-71. [PMID: 18593709 DOI: 10.1074/jbc.m803674200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA helicase, also called Twinkle, is essential for mtDNA maintenance. Its helicase domain shares high homology with helicases from superfamily 4. Structural analyses of helicases from this family indicate that carboxyl-terminal residues contribute to NTP hydrolysis required for translocation and DNA unwinding, yet genetic and biochemical information is very limited. Here, we evaluate the effects of overexpression in Drosophila cell culture of variants carrying a series of deletion and alanine substitution mutations in the carboxyl terminus and identify critical residues between amino acids 572 and 596 of the 613 amino acid polypeptide that are essential for mitochondrial DNA helicase function in vivo. Likewise, amino acid substitution mutants K574A, R576A, Y577A, F588A, and F595A show dose-dependent dominant-negative phenotypes. Arg-576 and Phe-588 are analogous to the arginine finger and base stack of other helicases, including the bacteriophage T7 gene 4 protein and bacterial DnaB helicase, respectively. We show here that representative human recombinant proteins that are analogous to the alanine substitution mutants exhibit defects in nucleotide hydrolysis. Our findings may be applicable to understand the role of the carboxyl-terminal region in superfamily 4 DNA helicases in general.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | | | |
Collapse
|
48
|
Korhonen JA, Pande V, Holmlund T, Farge G, Pham XH, Nilsson L, Falkenberg M. Structure–Function Defects of the TWINKLE Linker Region in Progressive External Ophthalmoplegia. J Mol Biol 2008; 377:691-705. [DOI: 10.1016/j.jmb.2008.01.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/28/2007] [Accepted: 01/15/2008] [Indexed: 02/06/2023]
|