1
|
Weinzierl ROJ. Robotic Affinity Purification of Soluble and Insoluble Recombinant Glutathione-S-Transferase Fusion Proteins. Methods Mol Biol 2022; 2466:93-109. [PMID: 35585313 DOI: 10.1007/978-1-0716-2176-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A completely automated purification of glutathione-S-transferase (GST) fusion proteins, either in soluble form or after renaturation of insoluble inclusion bodies, is described. Depending on the expression levels and the amount of glutathione affinity matrix employed, the protocol yields approximately 30-100 μg of purified GST-fusion protein from 2 mL microplate cultures. The high yield is facilitated by employing an efficient chemical/enzymatic lysis procedure for preparing bacterial cell lysates. Insoluble GST-fusion proteins are automatically refolded by a high-throughput robotic microdialysis procedure that also assesses the degree of successful refolding by integrated GST enzymatic assays and quantitation of soluble protein successfully recovered after affinity purification. For soluble GST-fusion proteins the purification procedure is normally completed within 60 min, whereas urea-based denaturation-renaturation strategies typically require an additional 18 h. The integration of quantitation of cell growth and affinity-purified GST-fusion protein yield allows direct comparisons of different expression constructs and the yield of soluble GST-fusion proteins to be optimized in a systematic manner.
Collapse
|
2
|
Nottebaum S, Weinzierl ROJ. Transcribing Genes the Hard Way: In Vitro Reconstitution of Nanoarchaeal RNA Polymerase Reveals Unusual Active Site Properties. Front Mol Biosci 2021; 8:669314. [PMID: 34141723 PMCID: PMC8204694 DOI: 10.3389/fmolb.2021.669314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Nanoarchaea represent a highly diverged archaeal phylum that displays many unusual biological features. The Nanoarchaeum equitans genome encodes a complete set of RNA polymerase (RNAP) subunits and basal factors. Several of the standard motifs in the active center contain radical substitutions that are normally expected to render the polymerase catalytically inactive. Here we show that, despite these unusual features, a RNAP reconstituted from recombinant Nanoarchaeum subunits is transcriptionally active. Using a sparse-matrix high-throughput screening method we identified an atypical stringent requirement for fluoride ions to maximize its activity under in vitro transcription conditions.
Collapse
Affiliation(s)
- Sven Nottebaum
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Orthomol Pharmazeutische Vertriebs GmbH, Langenfeld, Germany
| | | |
Collapse
|
3
|
Bojórquez-Velázquez E, Barrera-Pacheco A, Espitia-Rangel E, Herrera-Estrella A, Barba de la Rosa AP. Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species. BMC PLANT BIOLOGY 2019; 19:59. [PMID: 30727945 PMCID: PMC6366027 DOI: 10.1186/s12870-019-1656-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Amaranth is a plant naturally resistant to various types of stresses that produces seeds of excellent nutritional quality, so amaranth is a promising system for food production. Amaranth wild relatives have survived climate changes and grow under harsh conditions, however no studies about morphological and molecular characteristics of their seeds are known. Therefore, we carried out a detailed morphological and molecular characterization of wild species A. powellii and A. hybridus, and compared them with the cultivated amaranth species A. hypochondriacus (waxy and non-waxy seeds) and A. cruentus. RESULTS Seed proteins were fractionated according to their polarity properties and were analysed in one-dimensional gel electrophoresis (1-DE) followed by nano-liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS). A total of 34 differentially accumulated protein bands were detected and 105 proteins were successfully identified. Late embryogenesis abundant proteins were detected as species-specific. Oleosins and oil bodies associated proteins were observed preferentially in A. cruentus. Different isoforms of the granule-bound starch synthase I, and several paralogs of 7S and 11S globulins were also identified. The in silico structural analysis from different isoforms of 11S globulins was carried out, including new types of 11S globulin not reported so far. CONCLUSIONS The results provide novel information about 11S globulins and proteins related in seed protection, which could play important roles in the nutritional value and adaptive tolerance to stress in amaranth species.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Alberto Barrera-Pacheco
- Instituto Potosino de Investigación Científica y Tecnológica, A.C, 78216 San Luis Potosí, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, 56250 Texcoco, Estado de México Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV-Irapuato, 36821 Guanajuato, Mexico
| | | |
Collapse
|
4
|
Wiesler SC, Weinzierl ROJ. Robotic high-throughput purification of affinity-tagged recombinant proteins. Methods Mol Biol 2015; 1286:97-106. [PMID: 25749949 DOI: 10.1007/978-1-4939-2447-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.
Collapse
Affiliation(s)
- Simone C Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London, SW7 2AZ, UK
| | | |
Collapse
|
5
|
Affiliation(s)
- Robert O J Weinzierl
- Department of Life Sciences, Division of Biomolecular Sciences, Imperial College London , Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Wiesler SC, Weinzierl ROJ. High-throughput purification of affinity-tagged recombinant proteins. J Vis Exp 2012:e4110. [PMID: 22952005 PMCID: PMC3476752 DOI: 10.3791/4110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
X-ray crystallography is the method of choice for obtaining a detailed view of the structure of proteins. Such studies need to be complemented by further biochemical analyses to obtain detailed insights into structure/function relationships. Advances in oligonucleotide- and gene synthesis technology make large-scale mutagenesis strategies increasingly feasible, including the substitution of target residues by all 19 other amino acids. Gain- or loss-of-function phenotypes then allow systematic conclusions to be drawn, such as the contribution of particular residues to catalytic activity, protein stability and/or protein-protein interaction specificity. In order to attribute the different phenotypes to the nature of the mutation--rather than to fluctuating experimental conditions--it is vital to purify and analyse the proteins in a controlled and reproducible manner. High-throughput strategies and the automation of manual protocols on robotic liquid-handling platforms have created opportunities to perform such complex molecular biological procedures with little human intervention and minimal error rates. Here, we present a general method for the purification of His-tagged recombinant proteins in a high-throughput manner. In a recent study, we applied this method to a detailed structure-function investigation of TFIIB, a component of the basal transcription machinery. TFIIB is indispensable for promoter-directed transcription in vitro and is essential for the recruitment of RNA polymerase into a preinitiation complex. TFIIB contains a flexible linker domain that penetrates the active site cleft of RNA polymerase. This linker domain confers two biochemically quantifiable activities on TFIIB, namely (i) the stimulation of the catalytic activity during the 'abortive' stage of transcript initiation, and (ii) an additional contribution to the specific recruitment of RNA polymerase into the preinitiation complex. We exploited the high-throughput purification method to generate single, double and triple substitution and deletions mutations within the TFIIB linker and to subsequently analyse them in functional assays for their stimulation effect on the catalytic activity of RNA polymerase. Altogether, we generated, purified and analysed 381 mutants--a task which would have been time-consuming and laborious to perform manually. We produced and assayed the proteins in multiplicates which allowed us to appreciate any experimental variations and gave us a clear idea of the reproducibility of our results. This method serves as a generic protocol for the purification of His-tagged proteins and has been successfully used to purify other recombinant proteins. It is currently optimised for the purification of 24 proteins but can be adapted to purify up to 96 proteins.
Collapse
|
7
|
The Bridge Helix of RNA polymerase acts as a central nanomechanical switchboard for coordinating catalysis and substrate movement. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2011:608385. [PMID: 22312317 PMCID: PMC3270539 DOI: 10.1155/2011/608385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/25/2011] [Indexed: 11/17/2022]
Abstract
The availability of in vitro assembly systems to produce recombinant archaeal RNA polymerases (RNAPs) offers one of the most powerful experimental tools for investigating the still relatively poorly understood molecular mechanisms underlying RNAP function. Over the last few years, we pioneered new robot-based high-throughput mutagenesis approaches to study structure/function relationships within various domains surrounding the catalytic center. The Bridge Helix domain, which appears in numerous X-ray structures as a 35-amino-acid-long alpha helix, coordinates the concerted movement of several other domains during catalysis through kinking of two discrete molecular hinges. Mutations affecting these kinking mechanisms have a direct effect on the specific catalytic activity of RNAP and can in some instances more than double it. Molecular dynamics simulations have established themselves as exceptionally useful for providing additional insights and detailed models to explain the underlying structural motions.
Collapse
|
8
|
Abstract
The TFIIB linker domain stimulates the catalytic activity of archaeal RNAP. By characterising a range of super-stimulating mutants we identified a novel rate-limiting step in transcription initiation. Our results help to interpret structural findings and pave the way towards higher-resolution structures of the RNAP-TFIIB linker interface.
Collapse
|
9
|
An Y, Meresse P, Mas PJ, Hart DJ. CoESPRIT: a library-based construct screening method for identification and expression of soluble protein complexes. PLoS One 2011; 6:e16261. [PMID: 21364980 PMCID: PMC3043051 DOI: 10.1371/journal.pone.0016261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/13/2010] [Indexed: 11/29/2022] Open
Abstract
Structural and biophysical studies of protein complexes require multi-milligram quantities of soluble material. Subunits are often unstable when expressed separately so co-expression strategies are commonly employed since in vivo complex formation can provide stabilising effects. Defining constructs for subunit co-expression experiments is difficult if the proteins are poorly understood. Even more problematic is when subunit polypeptide chains co-fold since individually they do not have predictable domains. We have developed CoESPRIT, a modified version of the ESPRIT random library construct screen used previously on single proteins, to express soluble protein complexes. A random library of target constructs is screened against a fixed bait protein to identify stable complexes. In a proof-of-principle study, C-terminal fragments of the influenza polymerase PB2 subunit containing folded domains were isolated using importin alpha as bait. Separately, a C-terminal fragment of the PB1 subunit was used as bait to trap N-terminal fragments of PB2 resulting in co-folded complexes. Subsequent expression of the target protein without the bait indicates whether the target is independently stable, or co-folds with its partner. This highly automated method provides an efficient strategy for obtaining recombinant protein complexes at yields compatible with structural, biophysical and functional studies.
Collapse
Affiliation(s)
- Yingfeng An
- Grenoble Outstation, European Molecular Biology Laboratory, BP181, Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
| | - Patrick Meresse
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
| | - Philippe J. Mas
- Grenoble Outstation, European Molecular Biology Laboratory, BP181, Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
| | - Darren J. Hart
- Grenoble Outstation, European Molecular Biology Laboratory, BP181, Grenoble, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI3265, Grenoble, France
- * E-mail:
| |
Collapse
|
10
|
Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ. Major players on the microbial stage: why archaea are important. MICROBIOLOGY-SGM 2011; 157:919-936. [PMID: 21330437 DOI: 10.1099/mic.0.047837-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As microbiology undergoes a renaissance, fuelled in part by developments in new sequencing technologies, the massive diversity and abundance of microbes becomes yet more obvious. The Archaea have traditionally been perceived as a minor group of organisms forced to evolve into environmental niches not occupied by their more 'successful' and 'vigorous' counterparts, the bacteria. Here we outline some of the evidence gathered by an increasingly large and productive group of scientists that demonstrates not only that the Archaea contribute significantly to global nutrient cycling, but also that they compete successfully in 'mainstream' environments. Recent data suggest that the Archaea provide the major routes for ammonia oxidation in the environment. Archaea also have huge economic potential that to date has only been fully realized in the production of thermostable polymerases. Archaea have furnished us with key paradigms for understanding fundamentally conserved processes across all domains of life. In addition, they have provided numerous exemplars of novel biological mechanisms that provide us with a much broader view of the forms that life can take and the way in which micro-organisms can interact with other species. That this information has been garnered in a relatively short period of time, and appears to represent only a small proportion of what the Archaea have to offer, should provide further incentives to microbiologists to investigate the underlying biology of this fascinating domain.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alison D Walters
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Chitvan Bochiwal
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Juliet M Borgia
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Thomas Dickinson
- Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
11
|
Cation–π interactions induce kinking of a molecular hinge in the RNA polymerase bridge–helix domain. Biochem Soc Trans 2011; 39:31-5. [DOI: 10.1042/bst0390031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNAPs (RNA polymerases) are complex molecular machines that contain a highly conserved catalytic site surrounded by conformationally flexible domains. High-throughput mutagenesis in the archaeal model system Methanocaldococcus jannaschii has demonstrated that the nanomechanical properties of one of these domains, the bridge–helix, exert a key regulatory role on the rate of the NAC (nucleotide-addition cycle). Mutations that increase the probability and/or half-life of kink formation in the BH-HC (bridge–helix C-terminal hinge) cause a substantial increase in specific activity (‘superactivity’). Fully atomistic molecular dynamics simulations show that kinking of the BH-HC appears to be driven by cation–π interactions and involve amino acid side chains that are exceptionally highly conserved in all prokaryotic and eukaryotic species.
Collapse
|
12
|
Weinzierl ROJ. The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the Bridge Helix domain. BMC Biol 2010; 8:134. [PMID: 21034443 PMCID: PMC2988716 DOI: 10.1186/1741-7007-8-134] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/29/2010] [Indexed: 01/24/2023] Open
Abstract
Background Cellular RNA polymerases (RNAPs) are complex molecular machines that combine catalysis with concerted conformational changes in the active center. Previous work showed that kinking of a hinge region near the C-terminus of the Bridge Helix (BH-HC) plays a critical role in controlling the catalytic rate. Results Here, new evidence for the existence of an additional hinge region in the amino-terminal portion of the Bridge Helix domain (BH-HN) is presented. The nanomechanical properties of BH-HN emerge as a direct consequence of the highly conserved primary amino acid sequence. Mutations that are predicted to influence its flexibility cause corresponding changes in the rate of the nucleotide addition cycle (NAC). BH-HN displays functional properties that are distinct from BH-HC, suggesting that conformational changes in the Bridge Helix control the NAC via two independent mechanisms. Conclusions The properties of two distinct molecular hinges in the Bridge Helix of RNAP determine the functional contribution of this domain to key stages of the NAC by coordinating conformational changes in surrounding domains.
Collapse
|
13
|
Abstract
Bacterial lipoproteins are a set of membrane proteins with many different functions. Due to this broad-ranging functionality, these proteins have a considerable significance in many phenomena, from cellular physiology through cell division and virulence. Here we give a general overview of lipoprotein biogenesis and highlight examples of the roles of lipoproteins in bacterial disease caused by a selection of medically relevant Gram-negative and Gram-positive pathogens: Mycobacterium tuberculosis, Streptococcus pneumoniae, Borrelia burgdorferi, and Neisseria meningitidis. Lipoproteins have been shown to play key roles in adhesion to host cells, modulation of inflammatory processes, and translocation of virulence factors into host cells. As such, a number of lipoproteins have been shown to be potential vaccines. This review provides a summary of some of the reported roles of lipoproteins and of how this knowledge has been exploited in some cases for the generation of novel countermeasures to bacterial diseases.
Collapse
|
14
|
Kerrigan JJ, Xie Q, Ames RS, Lu Q. Production of protein complexes via co-expression. Protein Expr Purif 2010; 75:1-14. [PMID: 20692346 DOI: 10.1016/j.pep.2010.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 07/31/2010] [Indexed: 12/21/2022]
Abstract
Multi-protein complexes are involved in essentially all cellular processes. A protein's function is defined by a combination of its own properties, its interacting partners, and the stoichiometry of each. Depending on binding partners, a transcription factor can function as an activator in one instance and a repressor in another. The study of protein function or malfunction is best performed in the relevant context. While many protein complexes can be reconstituted from individual component proteins after being produced individually, many others require co-expression of their native partners in the host cells for proper folding, stability, and activity. Protein co-expression has led to the production of a variety of biological active complexes in sufficient quantities for biochemical, biophysical, structural studies, and high throughput screens. This article summarizes examples of such cases and discusses critical considerations in selecting co-expression partners, and strategies to achieve successful production of protein complexes.
Collapse
Affiliation(s)
- John J Kerrigan
- Biological Reagents & Assay Development, Platform Technology & Science, GlaxoSmithKline R&D, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
15
|
Nanomechanical constraints acting on the catalytic site of cellular RNA polymerases. Biochem Soc Trans 2010; 38:428-32. [PMID: 20298196 DOI: 10.1042/bst0380428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNAPs (RNA polymerases) are complex molecular machines containing structural domains that co-ordinate the movement of nucleic acid and nucleotide substrates through the catalytic site. X-ray images of bacterial, archaeal and eukaryotic RNAPs have provided a wealth of structural detail over the last decade, but many mechanistic features can only be derived indirectly from such structures. We have therefore implemented a robotic high-throughput structure-function experimental system based on the automatic generation and assaying of hundreds of site-directed mutants in the archaeal RNAP from Methanocaldococcus jannaschii. In the present paper, I focus on recent insights obtained from applying this experimental strategy to the bridge-helix domain. Our work demonstrates that the bridge-helix undergoes substantial conformational changes within a narrowly confined region (mjA' Ala(822)-Gln(823)-Ser(824)) during the nucleotide-addition cycle. Naturally occurring radical sequence variations in plant RNAP IV and V enzymes map to this region. In addition, many mutations within this domain cause a substantial increase in the RNAP catalytic activity ('superactivity'), suggesting that the RNAP active site is conformationally constrained.
Collapse
|
16
|
A novel surface antigen of relapsing fever spirochetes can discriminate between relapsing fever and Lyme borreliosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:564-71. [PMID: 20147497 DOI: 10.1128/cvi.00518-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a previous immunoproteome analysis of Borrelia hermsii, candidate antigens that bound IgM antibodies from mice and patients infected with relapsing fever spirochetes were identified. One candidate that was identified is a hypothetical protein with a molecular mass of 57 kDa that we have designated Borrelia immunogenic protein A (BipA). This protein was further investigated as a potential diagnostic antigen for B. hermsii given that it is absent from the Borrelia burgdorferi genome. The bipA locus was amplified and sequenced from 39 isolates of B. hermsii that had been acquired from western North America. bipA was also expressed as a recombinant fusion protein. Serum samples from mice and patients infected with B. hermsii or B. burgdorferi were used to confirm the immunogenicity of the recombinant protein in patients infected with relapsing fever spirochetes. Lastly, in silico and experimental analysis indicated that BipA is a surface-exposed lipoprotein in B. hermsii. These findings enhance the capabilities of diagnosing infection with relapsing fever spirochetes.
Collapse
|
17
|
Quaranfil, Johnston Atoll, and Lake Chad viruses are novel members of the family Orthomyxoviridae. J Virol 2009; 83:11599-606. [PMID: 19726499 DOI: 10.1128/jvi.00677-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arboviral infections are an important cause of emerging infections due to the movements of humans, animals, and hematophagous arthropods. Quaranfil virus (QRFV) is an unclassified arbovirus originally isolated from children with mild febrile illness in Quaranfil, Egypt, in 1953. It has subsequently been isolated in multiple geographic areas from ticks and birds. We used high-throughput sequencing to classify QRFV as a novel orthomyxovirus. The genome of this virus is comprised of multiple RNA segments; five were completely sequenced. Proteins with limited amino acid similarity to conserved domains in polymerase (PA, PB1, and PB2) and hemagglutinin (HA) genes from known orthomyxoviruses were predicted to be present in four of the segments. The fifth sequenced segment shared no detectable similarity to any protein and is of uncertain function. The end-terminal sequences of QRFV are conserved between segments and are different from those of the known orthomyxovirus genera. QRFV is known to cross-react serologically with two other unclassified viruses, Johnston Atoll virus (JAV) and Lake Chad virus (LKCV). The complete open reading frames of PB1 and HA were sequenced for JAV, while a fragment of PB1 of LKCV was identified by mass sequencing. QRFV and JAV PB1 and HA shared 80% and 70% amino acid identity to each other, respectively; the LKCV PB1 fragment shared 83% amino acid identity with the corresponding region of QRFV PB1. Based on phylogenetic analyses, virion ultrastructural features, and the unique end-terminal sequences identified, we propose that QRFV, JAV, and LKCV comprise a novel genus of the family Orthomyxoviridae.
Collapse
|
18
|
Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases. Biochem Soc Trans 2009; 37:18-22. [PMID: 19143595 DOI: 10.1042/bst0370018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent success in reconstitution of RNAPs (RNA polymerases) from hyperthermophilic archaea from bacterially expressed purified subunits opens the way for detailed structure-function analyses of multisubunit RNAPs. The archaeal enzyme shows close structural similarity to eukaryotic RNAP, particularly to polymerase II, and can therefore be used as model for analyses of the eukaryotic transcriptional machinery. The cleft loops in the active centre of RNAP were deleted and modified to unravel their function in interaction with nucleic acids during transcription. The rudder, lid and fork 2 cleft loops were required for promoter-directed initiation and elongation, the rudder was essential for open complex formation. Analyses of transcripts from heteroduplex templates containing stable open complexes revealed that bubble reclosure is required for RNA displacement during elongation. Archaeal transcription systems contain, besides the orthologues of the eukaryotic transcription factors TBP (TATA-box-binding protein) and TF (transcription factor) IIB, an orthologue of the N-terminal part of the alpha subunit of eukaryotic TFIIE, called TFE, whose function is poorly understood. Recent analyses revealed that TFE is involved in open complex formation and, in striking contrast with eukaryotic TFIIE, is also present in elongation complexes. Recombinant archaeal RNAPs lacking specific subunits were used to investigate the functions of smaller subunits. These studies revealed that the subunits P and H, the orthologues of eukaryotic Rpb12 and Rpb5, were not required for RNAP assembly. Subunit P was essential for open complex formation, and the DeltaH enzyme was greatly impaired in all assays, with the exception of promoter recruitment. Recent reconstitution studies indicate that Rpb12 and Rpb5 can be incorporated into archaeal RNAP and can complement for the function of the corresponding archaeal subunit in in vitro transcription assays.
Collapse
|
19
|
Reich C, Zeller M, Milkereit P, Hausner W, Cramer P, Tschochner H, Thomm M. The archaeal RNA polymerase subunit P and the eukaryotic polymerase subunit Rpb12 are interchangeable in vivo and in vitro. Mol Microbiol 2008; 71:989-1002. [PMID: 19183282 PMCID: PMC2680338 DOI: 10.1111/j.1365-2958.2008.06577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The general subunit of all three eukaryotic RNA polymerases, Rpb12, and subunit P of the archaeal enzyme show sequence similarities in their N-terminal zinc ribbon and some highly conserved residues in the C-terminus. We report here that archaeal subunit P under the control of a strong yeast promoter could complement the lethal phenotype of a RPB12 deletion mutant and that subunit Rpb12 from yeast can functionally replace subunit P during reconstitution of the archaeal RNA polymerase. The ΔP enzyme is unable to form stable open complexes, but can efficiently extend a dinucleotide on a premelted template or RNA on an elongation scaffold. This suggests that subunit P is directly or indirectly involved in promoter opening. The activity of the ΔP enzyme can be rescued by the addition of Rpb12 or subunit P to transcription reactions. Mutation of cysteine residues in the zinc ribbon impair the activity of the enzyme in several assays and this mutated form of P is rapidly replaced by wild-type P in transcription reactions. The conserved zinc ribbon in the N-terminus seems to be important for proper interaction of the complete subunit with other RNA polymerase subunits and a 17-amino-acid C-terminal peptide is sufficient to support all basic RNA polymerase functions in vitro.
Collapse
Affiliation(s)
- Christoph Reich
- Lehrstuhl für Mikrobiologie, Universitat Regensburg, Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
A comprehensive survey of single amino-acid substitution mutations critical for RNA polymerase function published in Journal of Biology supports a proposed mechanism for polymerase action in which movement of the polymerase 'bridge helix' promotes transcriptional activity in cooperation with a critical substrate-interaction domain, the 'trigger loop'.
Collapse
Affiliation(s)
- Craig D Kaplan
- Department of Structural Biology, Stanford University, 299 Campus Dr, West, Stanford, CA 94305, USA
| | | |
Collapse
|
21
|
Tan L, Wiesler S, Trzaska D, Carney HC, Weinzierl ROJ. Bridge helix and trigger loop perturbations generate superactive RNA polymerases. J Biol 2008; 7:40. [PMID: 19055851 PMCID: PMC2776397 DOI: 10.1186/jbiol98] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/24/2008] [Accepted: 10/31/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cellular RNA polymerases are highly conserved enzymes that undergo complex conformational changes to coordinate the processing of nucleic acid substrates through the active site. Two domains in particular, the bridge helix and the trigger loop, play a key role in this mechanism by adopting different conformations at various stages of the nucleotide addition cycle. The functional relevance of these structural changes has been difficult to assess from the relatively small number of static crystal structures currently available. RESULTS Using a novel robotic approach we characterized the functional properties of 367 site-directed mutants of the Methanocaldococcus jannaschii RNA polymerase A' subunit, revealing a wide spectrum of in vitro phenotypes. We show that a surprisingly large number of single amino acid substitutions in the bridge helix, including a kink-inducing proline substitution, increase the specific activity of RNA polymerase. Other 'superactivating' substitutions are located in the adjacent base helices of the trigger loop. CONCLUSION The results support the hypothesis that the nucleotide addition cycle involves a kinked bridge helix conformation. The active center of RNA polymerase seems to be constrained by a network of functional interactions between the bridge helix and trigger loop that controls fundamental parameters of RNA synthesis.
Collapse
Affiliation(s)
- Lin Tan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Simone Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Dominika Trzaska
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Hannah C Carney
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| | - Robert OJ Weinzierl
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
22
|
Werner F. Structural evolution of multisubunit RNA polymerases. Trends Microbiol 2008; 16:247-50. [PMID: 18468900 DOI: 10.1016/j.tim.2008.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 11/29/2022]
Abstract
Evolutionarily related multisubunit RNA polymerases (RNAPs) facilitate gene transcription throughout the three domains of life. During the past seven years an increasing number of bacterial and eukaryotic RNAP structures have been solved; however, the archaeal enzyme remained elusive. Two reports from the Murakami and Cramer laboratories have now filled this gap in our knowledge and enable us to hypothesize about the evolution of the structure and function of RNAPs.
Collapse
Affiliation(s)
- Finn Werner
- Research Department of Structural and Molecular Biology, University College London, Gower Street, London, UK.
| |
Collapse
|