1
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
2
|
Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability. Proc Natl Acad Sci U S A 2020; 117:1628-1637. [PMID: 31911468 PMCID: PMC6983365 DOI: 10.1073/pnas.1913416117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Expansions of GAA repeats cause a severe hereditary neurodegenerative disease, Friedreich’s ataxia. In this study, we characterized the mechanisms of GAA repeat contractions in a yeast experimental system. These mechanisms might, in the long run, aid development of a therapy for this currently incurable disease. We show that GAA repeats contract during DNA replication, which can explain the high level of somatic instability of this repeat in patient tissues. We also provided evidence that a triple-stranded DNA structure is at the heart of GAA repeat instability. This discovery highlights the role of triplex DNA in genome instability and human disease. Friedreich’s ataxia (FRDA) is a human hereditary disease caused by the presence of expanded (GAA)n repeats in the first intron of the FXN gene [V. Campuzano et al., Science 271, 1423–1427 (1996)]. In somatic tissues of FRDA patients, (GAA)n repeat tracts are highly unstable, with contractions more common than expansions [R. Sharma et al., Hum. Mol. Genet. 11, 2175–2187 (2002)]. Here we describe an experimental system to characterize GAA repeat contractions in yeast and to conduct a genetic analysis of this process. We found that large-scale contraction is a one-step process, resulting in a median loss of ∼60 triplet repeats. Our genetic analysis revealed that contractions occur during DNA replication, rather than by various DNA repair pathways. Repeats contract in the course of lagging-strand synthesis: The processivity subunit of DNA polymerase δ, Pol32, and the catalytic domain of Rev1, a translesion polymerase, act together in the same pathway to counteract contractions. Accumulation of single-stranded DNA (ssDNA) in the lagging-strand template greatly increases the probability that (GAA)n repeats contract, which in turn promotes repeat instability in rfa1, rad27, and dna2 mutants. Finally, by comparing contraction rates for homopurine-homopyrimidine repeats differing in their mirror symmetry, we found that contractions depend on a repeat’s triplex-forming ability. We propose that accumulation of ssDNA in the lagging-strand template fosters the formation of a triplex between the nascent and fold-back template strands of the repeat. Occasional jumps of DNA polymerase through this triplex hurdle, result in repeat contractions in the nascent lagging strand.
Collapse
|
3
|
McGinty RJ, Mirkin SM. Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 2018; 34:448-465. [PMID: 29567336 PMCID: PMC5959756 DOI: 10.1016/j.tig.2018.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.
Collapse
Affiliation(s)
- Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
4
|
Homologous recombination occurs frequently at innate GT microsatellites in normal somatic and germ cells in vivo. BMC Genomics 2018; 19:359. [PMID: 29751739 PMCID: PMC5948810 DOI: 10.1186/s12864-018-4758-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background In somatic cells, homologous recombination (HR) is a rare event caused by eventual DNA double-strand breaks (DSBs). In contrast, germ cells show high frequency of HR caused by programmed DSBs. Microsatellites are prone to DSBs during genome replication and, thereby, capable of promoting HR. It remains unclear whether HR occurs frequently at microsatellites both in normal somatic cells and germ cells in a similar manner. Results By examining the linkage pattern of multiple paternal and maternal markers flanking innate GT microsatellites, we measured HR at the GT microsatellites in various somatic cells and germ cells in a goldfish intraspecific heterozygote. During embryogenesis, the HR products accumulate gradually with the increase of the number of cell divisions. The frequency of HR at the GT microsatellites in advanced embryos, adult tissues and germ cells is surprisingly high. The type of exchanges between the homologous chromosomes is similar in normal advanced embryos and germ cells. Furthermore, a long GT microsatellite is more active than a short one in promoting HR in both somatic and germ cells. Conclusions HR occurs frequently at innate GT microsatellites in normal somatic cells and germ cells in a similar manner. Electronic supplementary material The online version of this article (10.1186/s12864-018-4758-y) contains supplementary material, which is available to authorized users.
Collapse
|
5
|
Lai Y, Beaver JM, Lorente K, Melo J, Ramjagsingh S, Agoulnik IU, Zhang Z, Liu Y. Base excision repair of chemotherapeutically-induced alkylated DNA damage predominantly causes contractions of expanded GAA repeats associated with Friedreich's ataxia. PLoS One 2014; 9:e93464. [PMID: 24691413 PMCID: PMC3972099 DOI: 10.1371/journal.pone.0093464] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/06/2014] [Indexed: 11/18/2022] Open
Abstract
Expansion of GAA·TTC repeats within the first intron of the frataxin gene is the cause of Friedreich's ataxia (FRDA), an autosomal recessive neurodegenerative disorder. However, no effective treatment for the disease has been developed as yet. In this study, we explored a possibility of shortening expanded GAA repeats associated with FRDA through chemotherapeutically-induced DNA base lesions and subsequent base excision repair (BER). We provide the first evidence that alkylated DNA damage induced by temozolomide, a chemotherapeutic DNA damaging agent can induce massive GAA repeat contractions/deletions, but only limited expansions in FRDA patient lymphoblasts. We showed that temozolomide-induced GAA repeat instability was mediated by BER. Further characterization of BER of an abasic site in the context of (GAA)20 repeats indicates that the lesion mainly resulted in a large deletion of 8 repeats along with small expansions. This was because temozolomide-induced single-stranded breaks initially led to DNA slippage and the formation of a small GAA repeat loop in the upstream region of the damaged strand and a small TTC loop on the template strand. This allowed limited pol β DNA synthesis and the formation of a short 5'-GAA repeat flap that was cleaved by FEN1, thereby leading to small repeat expansions. At a later stage of BER, the small template loop expanded into a large template loop that resulted in the formation of a long 5'-GAA repeat flap. Pol β then performed limited DNA synthesis to bypass the loop, and FEN1 removed the long repeat flap ultimately causing a large repeat deletion. Our study indicates that chemotherapeutically-induced alkylated DNA damage can induce large contractions/deletions of expanded GAA repeats through BER in FRDA patient cells. This further suggests the potential of developing chemotherapeutic alkylating agents to shorten expanded GAA repeats for treatment of FRDA.
Collapse
Affiliation(s)
- Yanhao Lai
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jill M. Beaver
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Karla Lorente
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Jonathan Melo
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Shyama Ramjagsingh
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
| | - Irina U. Agoulnik
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, Florida, United States of America
| | - Zunzhen Zhang
- Department of Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, P. R. China
- * E-mail: (ZZ); (YL)
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, United States of America
- * E-mail: (ZZ); (YL)
| |
Collapse
|
6
|
Hsiao YY, Fang WH, Lee CC, Chen YP, Yuan HS. Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways. PLoS Biol 2014; 12:e1001803. [PMID: 24594808 PMCID: PMC3942315 DOI: 10.1371/journal.pbio.1001803] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3' end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3' end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3' overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V-dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3'-end processing.
Collapse
Affiliation(s)
- Yu-Yuan Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Woei-Horng Fang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chia-Chia Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hanna S. Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
7
|
Huang W, Zheng J, He Y, Luo C. Tandem repeat modification during double-strand break repair induced by an engineered TAL effector nuclease in zebrafish genome. PLoS One 2013; 8:e84176. [PMID: 24386347 PMCID: PMC3873399 DOI: 10.1371/journal.pone.0084176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022] Open
Abstract
Tandem repeats (TRs) are abundant and widely distributed in eukaryotic genomes. TRs are thought to have various functions in gene transcription, DNA methylation, nucleosome position and chromatin organization. Variation of repeat units in the genome is observed in association with a number of diseases, such as Fragile X Syndrome, Huntington's disease and Friedreich's ataxia. However, the underlying mechanisms involved are poorly understood, largely owing to the technical limitations in modification of TRs at definite sites in the genome in vivo. Transcription activator-like effector nucleases (TALENs) are widely used in recent years in gene targeting for their specific binding to target sequences when engineered in vitro. Here, we show that the repair of a double-strand break (DSB) induced by TALENs adjacent to a TR can produce serial types of mutations in the TR region. Sequencing analysis revealed that there are three types of mutations induced by the DSB repair, including indels only within the TR region or within the flanking TALEN target region or simutaneously within both regions. Therefore, desired TR mutant types can be conveniently obtained by using engineered TALENs. These results demonstrate that TALENs can serve as a convenient tool for modifying TRs in the genome in studying the functions of TRs.
Collapse
Affiliation(s)
- Wanxu Huang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianbo Zheng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying He
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Luo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
8
|
Kuroda K, Hibi D, Ishii Y, Takasu S, Kijima A, Matsushita K, Masumura KI, Watanabe M, Sugita-Konishi Y, Sakai H, Yanai T, Nohmi T, Ogawa K, Umemura T. Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats. Mutagenesis 2013; 29:27-36. [DOI: 10.1093/mutage/get054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Bourn RL, De Biase I, Pinto RM, Sandi C, Al-Mahdawi S, Pook MA, Bidichandani SI. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues. PLoS One 2012; 7:e47085. [PMID: 23071719 PMCID: PMC3469490 DOI: 10.1371/journal.pone.0047085] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 09/12/2012] [Indexed: 11/21/2022] Open
Abstract
Expanded trinucleotide repeat sequences are the cause of several inherited neurodegenerative diseases. Disease pathogenesis is correlated with several features of somatic instability of these sequences, including further large expansions in postmitotic tissues. The presence of somatic expansions in postmitotic tissues is consistent with DNA repair being a major determinant of somatic instability. Indeed, proteins in the mismatch repair (MMR) pathway are required for instability of the expanded (CAG·CTG)(n) sequence, likely via recognition of intrastrand hairpins by MutSβ. It is not clear if or how MMR would affect instability of disease-causing expanded trinucleotide repeat sequences that adopt secondary structures other than hairpins, such as the triplex/R-loop forming (GAA·TTC)(n) sequence that causes Friedreich ataxia. We analyzed somatic instability in transgenic mice that carry an expanded (GAA·TTC)(n) sequence in the context of the human FXN locus and lack the individual MMR proteins Msh2, Msh6 or Pms2. The absence of Msh2 or Msh6 resulted in a dramatic reduction in somatic mutations, indicating that mammalian MMR promotes instability of the (GAA·TTC)(n) sequence via MutSα. The absence of Pms2 resulted in increased accumulation of large expansions in the nervous system (cerebellum, cerebrum, and dorsal root ganglia) but not in non-neuronal tissues (heart and kidney), without affecting the prevalence of contractions. Pms2 suppressed large expansions specifically in tissues showing MutSα-dependent somatic instability, suggesting that they may act on the same lesion or structure associated with the expanded (GAA·TTC)(n) sequence. We conclude that Pms2 specifically suppresses large expansions of a pathogenic trinucleotide repeat sequence in neuronal tissues, possibly acting independently of the canonical MMR pathway.
Collapse
Affiliation(s)
- Rebecka L. Bourn
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Irene De Biase
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Ricardo Mouro Pinto
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Chiranjeevi Sandi
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Sahar Al-Mahdawi
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Mark A. Pook
- Biosciences Division, School of Health Sciences and Social Care, Brunel University, Uxbridge, United Kingdom
| | - Sanjay I. Bidichandani
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
10
|
Du J, Campau E, Soragni E, Ku S, Puckett JW, Dervan PB, Gottesfeld JM. Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem 2012; 287:29861-72. [PMID: 22798143 PMCID: PMC3436184 DOI: 10.1074/jbc.m112.391961] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/12/2012] [Indexed: 12/29/2022] Open
Abstract
The genetic mutation in Friedreich ataxia (FRDA) is a hyperexpansion of the triplet-repeat sequence GAA·TTC within the first intron of the FXN gene. Although yeast and reporter construct models for GAA·TTC triplet-repeat expansion have been reported, studies on FRDA pathogenesis and therapeutic development are limited by the availability of an appropriate cell model in which to study the mechanism of instability of the GAA·TTC triplet repeats in the human genome. Herein, induced pluripotent stem cells (iPSCs) were generated from FRDA patient fibroblasts after transduction with the four transcription factors Oct4, Sox2, Klf4, and c-Myc. These cells were differentiated into neurospheres and neuronal precursors in vitro, providing a valuable cell model for FRDA. During propagation of the iPSCs, GAA·TTC triplet repeats expanded at a rate of about two GAA·TTC triplet repeats/replication. However, GAA·TTC triplet repeats were stable in FRDA fibroblasts and neuronal stem cells. The mismatch repair enzymes MSH2, MSH3, and MSH6, implicated in repeat instability in other triplet-repeat diseases, were highly expressed in pluripotent stem cells compared with fibroblasts and neuronal stem cells and occupied FXN intron 1. In addition, shRNA silencing of MSH2 and MSH6 impeded GAA·TTC triplet-repeat expansion. A specific pyrrole-imidazole polyamide targeting GAA·TTC triplet-repeat DNA partially blocked repeat expansion by displacing MSH2 from FXN intron 1 in FRDA iPSCs. These studies suggest that in FRDA, GAA·TTC triplet-repeat instability occurs in embryonic cells and involves the highly active mismatch repair system.
Collapse
Affiliation(s)
- Jintang Du
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Erica Campau
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Elisabetta Soragni
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Sherman Ku
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - James W. Puckett
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Peter B. Dervan
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Joel M. Gottesfeld
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|
11
|
|
12
|
Rindler PM, Bidichandani SI. Role of transcript and interplay between transcription and replication in triplet-repeat instability in mammalian cells. Nucleic Acids Res 2010; 39:526-35. [PMID: 20843782 PMCID: PMC3025579 DOI: 10.1093/nar/gkq788] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Triplet-repeat expansions cause several inherited human diseases. Expanded triplet-repeats are unstable in somatic cells, and tissue-specific somatic instability contributes to disease pathogenesis. In mammalian cells instability of triplet-repeats is dependent on the location of the origin of replication relative to the repeat tract, supporting the ‘fork-shift’ model of repeat instability. Disease-causing triplet-repeats are transcribed, but how this influences instability remains unclear. We examined instability of the expanded (GAA•TTC)n sequence in mammalian cells by analyzing individual replication events directed by the SV40 origin from five different locations, in the presence and absence of doxycycline-induced transcription. Depending on the location of the SV40 origin, either no instability was observed, instability was caused by replication with no further increase due to transcription, or instability required transcription. Whereas contractions accounted for most of the observed instability, one construct showed expansions upon induction of transcription. These expansions disappeared when transcript stability was reduced via removal or mutation of a spliceable intron. These results reveal a complex interrelationship of transcription and replication in the etiology of repeat instability. While both processes may not be sufficient for the initiation of instability, transcription and/or transcript stability seem to further modulate the fork-shift model of triplet-repeat instability.
Collapse
Affiliation(s)
- Paul M Rindler
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
13
|
Zhao J, Bacolla A, Wang G, Vasquez KM. Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 2010; 67:43-62. [PMID: 19727556 PMCID: PMC3017512 DOI: 10.1007/s00018-009-0131-2] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/22/2009] [Accepted: 08/11/2009] [Indexed: 11/26/2022]
Abstract
Repetitive DNA motifs are abundant in the genomes of various species and have the capacity to adopt non-canonical (i.e., non-B) DNA structures. Several non-B DNA structures, including cruciforms, slipped structures, triplexes, G-quadruplexes, and Z-DNA, have been shown to cause mutations, such as deletions, expansions, and translocations in both prokaryotes and eukaryotes. Their distributions in genomes are not random and often co-localize with sites of chromosomal breakage associated with genetic diseases. Current genome-wide sequence analyses suggest that the genomic instabilities induced by non-B DNA structure-forming sequences not only result in predisposition to disease, but also contribute to rapid evolutionary changes, particularly in genes associated with development and regulatory functions. In this review, we describe the occurrence of non-B DNA-forming sequences in various species, the classes of genes enriched in non-B DNA-forming sequences, and recent mechanistic studies on DNA structure-induced genomic instability to highlight their importance in genomes.
Collapse
Affiliation(s)
- Junhua Zhao
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Albino Bacolla
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Guliang Wang
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| | - Karen M. Vasquez
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M.D. Anderson Cancer Center, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957 USA
| |
Collapse
|
14
|
Ditch S, Sammarco MC, Banerjee A, Grabczyk E. Progressive GAA.TTC repeat expansion in human cell lines. PLoS Genet 2009; 5:e1000704. [PMID: 19876374 PMCID: PMC2760145 DOI: 10.1371/journal.pgen.1000704] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/28/2009] [Indexed: 12/24/2022] Open
Abstract
Trinucleotide repeat expansion is the genetic basis for a sizeable group of inherited neurological and neuromuscular disorders. Friedreich ataxia (FRDA) is a relentlessly progressive neurodegenerative disorder caused by GAA.TTC repeat expansion in the first intron of the FXN gene. The expanded repeat reduces FXN mRNA expression and the length of the repeat tract is proportional to disease severity. Somatic expansion of the GAA.TTC repeat sequence in disease-relevant tissues is thought to contribute to the progression of disease severity during patient aging. Previous models of GAA.TTC instability have not been able to produce substantial levels of expansion within an experimentally useful time frame, which has limited our understanding of the molecular basis for this expansion. Here, we present a novel model for studying GAA.TTC expansion in human cells. In our model system, uninterrupted GAA.TTC repeat sequences display high levels of genomic instability, with an overall tendency towards progressive expansion. Using this model, we characterize the relationship between repeat length and expansion. We identify the interval between 88 and 176 repeats as being an important length threshold where expansion rates dramatically increase. We show that expansion levels are affected by both the purity and orientation of the repeat tract within the genomic context. We further demonstrate that GAA.TTC expansion in our model is independent of cell division. Using unique reporter constructs, we identify transcription through the repeat tract as a major contributor to GAA.TTC expansion. Our findings provide novel insight into the mechanisms responsible for GAA.TTC expansion in human cells.
Collapse
Affiliation(s)
- Scott Ditch
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Mimi C. Sammarco
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ayan Banerjee
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Ed Grabczyk
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Wang G, Vasquez KM. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog 2009; 48:286-98. [PMID: 19123200 PMCID: PMC2766916 DOI: 10.1002/mc.20508] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
16
|
Bourn RL, Rindler PM, Pollard LM, Bidichandani SI. E. coli mismatch repair acts downstream of replication fork stalling to stabilize the expanded (GAA.TTC)(n) sequence. Mutat Res 2009; 661:71-7. [PMID: 19046977 PMCID: PMC2637364 DOI: 10.1016/j.mrfmmm.2008.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 05/27/2023]
Abstract
Expanded triplet repeat sequences are known to cause at least 16 inherited neuromuscular diseases. In addition to short-length changes, expanded triplet repeat tracts frequently undergo large changes, often amounting to hundreds of base-pairs. Such changes might occur when template or primer slipping creates insertion/deletion loops (IDLs), which are normally repaired by the mismatch repair system (MMR). However, in prokaryotes and eukaryotes, MMR promotes large changes in the length of (CTG.CAG)(n) sequences, the motif most commonly associated with human disease. We tested the effect of MMR on instability of the expanded (GAA.TTC)(n) sequence, which causes Friedreich ataxia, by comparing repeat instability in wild-type and MMR-deficient strains of Escherichia coli. As expected, the prevalence of small mutations increased in the MMR-deficient strains. However, the prevalence of large contractions increased in the MMR mutants specifically when GAA was the lagging strand template, the orientation in which replication fork stalling is known to occur. After hydroxyurea-induced stalling, both orientations of replication showed significantly more large contractions in MMR mutants than in the wild-type, suggesting that fork stalling may be responsible for the large contractions. Deficiency of MMR promoted large contractions independently of RecA status, a known determinant of (GAA.TTC)(n) instability. These data suggest that two independent mechanisms act in response to replication stalling to prevent instability of the (GAA.TTC)(n) sequence in E. coli, when GAA serves as the lagging strand template: one that is dependent on RecA-mediated restart of stalled forks, and another that is dependent on MMR-mediated repair of IDLs. While MMR destabilizes the (CTG.CAG)(n) sequence, it is involved in stabilization of the (GAA.TTC)(n) sequence. The role of MMR in triplet repeat instability therefore depends on the repeat sequence and the orientation of replication.
Collapse
Affiliation(s)
- Rebecka L. Bourn
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Paul M. Rindler
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Laura M. Pollard
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sanjay I. Bidichandani
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
17
|
Soragni E, Herman D, Dent SYR, Gottesfeld JM, Wells RD, Napierala M. Long intronic GAA*TTC repeats induce epigenetic changes and reporter gene silencing in a molecular model of Friedreich ataxia. Nucleic Acids Res 2008; 36:6056-65. [PMID: 18820300 PMCID: PMC2577344 DOI: 10.1093/nar/gkn604] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/05/2008] [Accepted: 09/05/2008] [Indexed: 12/25/2022] Open
Abstract
Friedreich ataxia (FRDA) is caused by hyperexpansion of GAA*TTC repeats located in the first intron of the FXN gene, which inhibits transcription leading to the deficiency of frataxin. The FXN gene is an excellent target for therapeutic intervention since (i) 98% of patients carry the same type of mutation, (ii) the mutation is intronic, thus leaving the FXN coding sequence unaffected and (iii) heterozygous GAA*TTC expansion carriers with approximately 50% decrease of the frataxin are asymptomatic. The discovery of therapeutic strategies for FRDA is hampered by a lack of appropriate molecular models of the disease. Herein, we present the development of a new cell line as a molecular model of FRDA by inserting 560 GAA*TTC repeats into an intron of a GFP reporter minigene. The GFP_(GAA*TTC)(560) minigene recapitulates the molecular hallmarks of the mutated FXN gene, i.e. inhibition of transcription of the reporter gene, decreased levels of the reporter protein and hypoacetylation and hypermethylation of histones in the vicinity of the repeats. Additionally, selected histone deacetylase inhibitors, known to stimulate the FXN gene expression, increase the expression of the GFP_(GAA*TTC)(560) reporter. This FRDA model can be adapted to high-throughput analyses in a search for new therapeutics for the disease.
Collapse
Affiliation(s)
- E. Soragni
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - D. Herman
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - S. Y. R. Dent
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - J. M. Gottesfeld
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - R. D. Wells
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - M. Napierala
- Center for Genome Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 West Holcombe Blvd., Houston, TX, 77030, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, CA, 92037 and University of Texas M. D. Anderson Cancer Center, Department of Biochemistry and Molecular Biology and Center for Cancer Epigenetics, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|