1
|
Touge C, Nakatsu M, Sugimoto M, Takamura E, Sakamoto H. A Biochemical Corrosion Monitoring Sensor with a Silver/Carbon Comb Structure for the Detection of Living Escherichia coli. ACS OMEGA 2023; 8:43511-43520. [PMID: 38027348 PMCID: PMC10666268 DOI: 10.1021/acsomega.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
For the detection and monitoring of live bacteria, we propose a biochemical corrosion monitoring (BCM) sensor that measures galvanic current by using a Ag/C sensor comprising silver and carbon comb electrodes. The deposition of an Escherichia coli suspension containing an LB liquid medium on the Ag/C sensor increased the galvanic current. The time required for the current to reach 20 nA is defined as T20. T20 tends to decrease as the initial number of E. coli in the E. coli solution increases. A linear relationship was obtained between the logarithm of the E. coli count and T20 in a bacterial count range of 1-108 cfu/mL under culture conditions in which the growth rate of the bacteria was constant. Hence, the number of live E. coli could be determined from T20. Ag2S precipitation was observed on the surface of the Ag electrode of the Ag/C sensor, where an increase in the current was observed. This generation of galvanic current was attributed to the reaction between a small amount of free H2S metabolized by E. coli in the bacterial solution during its growth process and Ag-the sensor anode. The Ag/C sensor can detect a free H2S concentration of 0.041 μM in the E. coli solution. This novel biochemical sensor can monitor the growth behavior of living organisms without damaging them.
Collapse
Affiliation(s)
- Chiyako Touge
- Industrial
Technology Center of Fukui Prefecture, 10-61, Kawaiwashizuka,Fukui 910-0102, Japan
| | - Michiyo Nakatsu
- Industrial
Technology Center of Fukui Prefecture, 10-61, Kawaiwashizuka,Fukui 910-0102, Japan
| | - Mai Sugimoto
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| | - Eiichiro Takamura
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| | - Hiroaki Sakamoto
- Department
of Frontier Fiber and Technology and Science, Graduate School of Engineering, University of Fukui, Bunkyo 3-9-1,Fukui 910-8507, Japan
| |
Collapse
|
2
|
Rizzi G, Lee JR, Dahl C, Guldberg P, Dufva M, Wang SX, Hansen MF. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array. ACS NANO 2017; 11:8864-8870. [PMID: 28832112 PMCID: PMC5810360 DOI: 10.1021/acsnano.7b03053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
Collapse
Affiliation(s)
- Giovanni Rizzi
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, ELTEC College of Engineering, Ewha Womans University, Seoul 03760, South Korea
- Department of Materials Science and Engineering, Stanford University, Stanford, California 93405, United States
| | - Christina Dahl
- Danish Cancer Society Research Center, Copenhagen, DK 2100, Denmark
| | - Per Guldberg
- Danish Cancer Society Research Center, Copenhagen, DK 2100, Denmark
| | - Martin Dufva
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
| | - Shan X. Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 93405, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 93405, United States
- Corresponding Authors:.
| | - Mikkel F. Hansen
- Department of Micro- and Nanotechnology DTU Nanotech, Technical University of Denmark, Building 345B, Kongens Lyngby, DK 2800, Denmark
- Corresponding Authors:.
| |
Collapse
|
3
|
Rizzi G, Lee JR, Guldberg P, Dufva M, Wang SX, Hansen MF. Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array. Biosens Bioelectron 2017; 93:155-160. [DOI: 10.1016/j.bios.2016.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 01/08/2023]
|
4
|
Rizzi G, Dufva M, Hansen MF. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor. LAB ON A CHIP 2017; 17:2256-2263. [PMID: 28593203 DOI: 10.1039/c7lc00485k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a microfluidic system and its use to measure DNA denaturation curves by varying the temperature or salt (Na+) concentration. The readout is based on real-time measurements of DNA hybridization using magnetoresistive sensors and magnetic nanoparticles (MNPs) as labels. We report the first melting curves of DNA hybrids measured as a function of continuously decreasing salt concentration at fixed temperature and compare them to the corresponding curves obtained vs. temperature at fixed salt concentration. The magnetoresistive sensor platform provided reliable results under varying temperature as well as salt concentration. The salt concentration melting curves were found to be more reliable than temperature melting curves. We performed a two-dimensional mapping of the melting profiles of a target to probes targeting its wild type (WT) and mutant type (MT) variants in the temperature-salt concentration plane. This map clearly showed a region of optimum ability to differentiate between the two variants. We finally demonstrated single nucleotide polymorphysm (SNP) genotyping using both denaturation methods on both separate sensors but also using a differential measurement on a single sensor. The results demonstrate that concentration melting provides an attractive alternative to temperature melting in on-chip DNA denaturation experiments and further show that the magnetoresistive platform is attractive due to its low cross-sensitivity to temperature and liquid composition.
Collapse
Affiliation(s)
- Giovanni Rizzi
- Department of Micro- and Nanotechnology, DTU Nanotech, Building 345B, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | | | | |
Collapse
|
5
|
Matsishin MJ, Ushenin IV, Rachkov AE, Solatkin AP. SPR Detection and Discrimination of the Oligonucleotides Related to the Normal and the Hybrid bcr-abl Genes by Two Stringency Control Strategies. NANOSCALE RESEARCH LETTERS 2016; 11:19. [PMID: 26759355 PMCID: PMC4710624 DOI: 10.1186/s11671-016-1226-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/05/2016] [Indexed: 05/29/2023]
Abstract
In this study, we applied two stringency control strategies for surface plasmon resonance (SPR) detection of DNA hybridization and discrimination of completely and partially complementary 24-mer sequences. These sequences are specific to the human normal bcr and the hybrid bcr-abl genes, protein products of which are responsible for some leukemia. SPR sensors based on resonance phenomena in nanoscale gold films are well suited for label-free, real-time investigations of the macromolecule interactions. Thermodynamic parameters obtained using the web server DINAMelt allowed supposing the possibility for realization (a) stringency control based on the ionic strength of the hybridization buffer and (b) stringency control based on the temperature elevation. The first one resulted in that the discrimination index of completely complementary and partially complementary oligonucleotides depending on the target concentration varied from 1.3 to 1.8 in 2 × SSC and from 2.0 to 2.9 in 0.5 × SSC. For implementation of the second stringency control strategy, SPR spectrometer measuring flow cell with built-in high-precision temperature control and regulation as well as corresponding software was created. It is shown that the duplexes formed by the immobilized probes mod-Ph and completely complementary oligonucleotides P1 remained without significant changes until ~50 °C, while the duplexes formed with partially complementary oligonucleotide Bcrex14 almost entirely disrupted at 40 °C. Thus, the absolutely effective thermodiscrimination of this pair of oligonucleotides was achieved in this temperature range (40-50 °C).
Collapse
Affiliation(s)
- M J Matsishin
- Institute of High Technologies, Taras Shevchenko Kyiv National University, 64 Volodymyrska Str., 01003, Kyiv, Ukraine.
- Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680, Kyiv, Ukraine.
| | - Iu V Ushenin
- V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41, Prospect Nauki, Kyiv, 03028, Ukraine
| | - A E Rachkov
- Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680, Kyiv, Ukraine
| | - A P Solatkin
- Institute of High Technologies, Taras Shevchenko Kyiv National University, 64 Volodymyrska Str., 01003, Kyiv, Ukraine
- Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680, Kyiv, Ukraine
| |
Collapse
|
6
|
Microfluidic bead-based assay for microRNAs using quantum dots as labels and enzymatic amplification. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1372-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Watanabe K, Kuwata N, Sakamoto H, Amano Y, Satomura T, Suye SI. A smart DNA sensing system for detecting methicillin-resistant Staphylococcus aureus using modified nanoparticle probes. Biosens Bioelectron 2014; 67:419-23. [PMID: 25223553 DOI: 10.1016/j.bios.2014.08.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/09/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common causes of hospital-acquired infections. To prevent epidemics, a quick and simple detection method is required. In this study, we developed a novel electrochemical DNA detection method that does not rely upon polymerase chain reaction (PCR) and may be used in point-of-care facilities. The electrochemical DNA sensing system presented here is based on the chronoamperometric detection of ferrocene-labeled probes that were conjugated to gold nanoparticles (AuNPs). This DNA sensor system employed magnetic nanoparticle (MNP)-modified probes allowing easy sample DNA recovery. AuNP nanoparticles with ferrocene-labeled probes enabled the generation of an electric signal, and MNP/DNA/AuNP conjugates were formed by hybridization. Following hybridization, the MNP/DNA/AuNP hybridization complex is magnetically separated, and electrochemical current responses could be obtained because of the AuNP-ferrocene complexes. To construct a highly sensitive system, dye-linked L-proline dehydrogenase (L-proDH) was employed to amplify current responses following a catalytic reaction with L-proline. Rapid catalytic reaction of L-proDH and substrate was able to amplify the oxidation of ferrocene. Target DNA from MRSA could be quantified over a range of 10-166pM, and this sensing system could also distinguish MRSA from S. aureus.
Collapse
Affiliation(s)
- Kazuya Watanabe
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Noriaki Kuwata
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Hiroaki Sakamoto
- Tenure-Track Program for Innovation Research, University of Fukui, Japan.
| | - Yoshihisa Amano
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Takenori Satomura
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan.
| | - Shin-ichiro Suye
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, Fukui, Japan; Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, Fukui, Japan.
| |
Collapse
|
8
|
Jiang X, Shao N, Jing W, Tao S, Liu S, Sui G. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta 2014; 122:246-50. [DOI: 10.1016/j.talanta.2014.01.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
|
9
|
Rizzi G, Westergaard Østerberg F, Dufva M, Fougt Hansen M. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping. Biosens Bioelectron 2014; 52:445-51. [DOI: 10.1016/j.bios.2013.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 12/17/2022]
|
10
|
Rachkov A, Patskovsky S, Soldatkin A, Meunier M. Discrimination of single base mismatched oligonucleotides related to the rpoB gene of Mycobacterium tuberculosis using a surface plasmon resonance biosensor. Biotechnol Appl Biochem 2013; 60:453-8. [PMID: 23654350 DOI: 10.1002/bab.1101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/14/2013] [Indexed: 01/27/2023]
Abstract
Single base mismatched oligonucleotides related to the rpoB gene of Mycobacterium tuberculosis, the mutations of which cause drug resistance of the infectious agent, were detected and discriminated using a surface plasmon resonance biosensor system. Thiol-modified oligonucleotides of the selected sequence (the probe) and 1-mercapto-6-hexanol were immobilized on a gold sensor surface. Hybridization between immobilized probe P2 and perfectly matched target T2 as well as a single base mismatched target TN was investigated in buffer solutions of various stringencies. Discrimination of perfectly matched and single base mismatched targets is achieved due to a difference in the level of their hybridization with the immobilized probe depending on stringency of the buffer solution. In 0.5×SSC buffer solution (7.5 mM sodium citrate, pH 7, containing 75 mM NaCl), sensor response at T2 injection into the measuring sensor cell was 16 times that at TN injection. The experimental results on surface hybridization between the studied oligonucleotides demonstrated a good correlation with theoretical calculations of thermodynamic parameters of these interactions in the solution. The described approach could be proposed as a basis for creating a biosensor for real-time label-free diagnostics of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- A Rachkov
- Laser Processing and Plasmonics Laboratory, École Polytechnique de Montréal, Montréal, Canada
| | | | | | | |
Collapse
|
11
|
Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels. Anal Chim Acta 2013; 779:64-71. [DOI: 10.1016/j.aca.2013.03.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 11/17/2022]
|
12
|
Singh I, Wendeln C, Clark AW, Cooper JM, Ravoo BJ, Burley GA. Sequence-Selective Detection of Double-Stranded DNA Sequences Using Pyrrole–Imidazole Polyamide Microarrays. J Am Chem Soc 2013; 135:3449-57. [DOI: 10.1021/ja309677h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ishwar Singh
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Christian Wendeln
- Organic Chemistry Institute
and Centre for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Correnstrasse
40, 48149 Münster, Germany
| | - Alasdair W. Clark
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Jonathan M. Cooper
- Division of Biomedical Engineering,
School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
| | - Bart Jan Ravoo
- Organic Chemistry Institute
and Centre for Nanotechnology (CeNTech), Westfälische Wilhelms-Universität Münster, Correnstrasse
40, 48149 Münster, Germany
| | - Glenn A. Burley
- Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| |
Collapse
|
13
|
Microfluidic bead-based enzymatic primer extension for single-nucleotide discrimination using quantum dots as labels. Anal Biochem 2012; 426:30-9. [PMID: 22487314 DOI: 10.1016/j.ab.2012.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 11/21/2022]
Abstract
This study reports the development of an on-chip enzyme-mediated primer extension process based on a microfluidic device with microbeads array for single-nucleotide discrimination using quantum dots as labels. The functionalized microbeads were independently introduced into the arrayed chambers using the loading chip slab. A single channel was used to generate weir structures to confine the microbeads and make the beads array accessible by microfluidics. The applied allele-specific primer extension method employed a nucleotide-degrading enzyme (apyrase) to achieve specific single-nucleotide detection. Based on the apyrase-mediated allele-specific primer extension with quantum dots as labels, on-chip single-nucleotide discrimination was demonstrated with high discrimination specificity and sensitivity (0.5 pM, signal/noise > 3) using synthesized target DNA. The chip-based signal enhancement for single-nucleotide discrimination resulted in 200 times higher sensitivity than that of an off-chip test. This microfluidic device successfully achieved simultaneous detection of two disease-associated single-nucleotide polymorphism sites using polymerase chain reaction products as target. This apyrase-mediated microfluidic primer extension approach combines the rapid binding kinetics of homogeneous assays of suspended microbeads array, the liquid handling capability of microfluidics, and the fluorescence detection sensitivity of quantum dots to provide a platform for single-base analysis with small reagent consumption, short assay time, and parallel detection.
Collapse
|
14
|
Søe MJ, Okkels F, Sabourin D, Alberti M, Holmstrøm K, Dufva M. HistoFlex--a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations. LAB ON A CHIP 2011; 11:3896-3907. [PMID: 21964811 DOI: 10.1039/c1lc20748b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A microfluidic device (the HistoFlex) designed to perform and monitor molecular biological assays under dynamic flow conditions on microscope slide-substrates, with special emphasis on analyzing histological tissue sections, is presented. Microscope slides were reversibly sealed onto a cast polydimethylsiloxane (PDMS) insert, patterned with distribution channels and reaction chambers. Topology optimization was used to design reaction chambers with uniform flow conditions. The HistoFlex provided uniform hybridization conditions, across the reaction chamber, as determined by hybridization to microscope slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay for performing in the HistoFlex. The hybridization step was significantly enhanced using flow based incubations due to improved hybridization efficiency. The HistoFlex device enabled a fast miRNA ISH assay (3 hours) which provided higher hybridization signal intensity compared to using conventional techniques (5 h 40 min). We further demonstrate that the improved hybridization efficiency using the HistoFlex permits more complex assays e.g. those comprising sequential hybridization and detection of two miRNAs to be performed with significantly increased sensitivity. The HistoFlex provides a new histological analysis platform that will allow multiple and sequential assays to be performed under their individual optimum assay conditions. Images can subsequently be recorded either in combination or sequentially through the ability of the HistoFlex to monitor assays without disassembly.
Collapse
|
15
|
Multienzyme-nanoparticles amplification for sensitive virus genotyping in microfluidic microbeads array using Au nanoparticle probes and quantum dots as labels. Biosens Bioelectron 2011; 29:89-96. [DOI: 10.1016/j.bios.2011.07.074] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 01/27/2023]
|
16
|
Poulsen L, Søe MJ, Møller LB, Dufva M. Investigation of parameters that affect the success rate of microarray-based allele-specific hybridization assays. PLoS One 2011; 6:e14777. [PMID: 21445337 PMCID: PMC3062541 DOI: 10.1371/journal.pone.0014777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/21/2010] [Indexed: 11/21/2022] Open
Abstract
Background The development of microarray-based genetic tests for diseases that are caused by known mutations is becoming increasingly important. The key obstacle to developing functional genotyping assays is that such mutations need to be genotyped regardless of their location in genomic regions. These regions include large variations in G+C content, and structural features like hairpins. Methods/Findings We describe a rational, stable method for screening and combining assay conditions for the genetic analysis of 42 Phenylketonuria-associated mutations in the phenylalanine hydroxylase gene. The mutations are located in regions with large variations in G+C content (20–75%). Custom-made microarrays with different lengths of complementary probe sequences and spacers were hybridized with pooled PCR products of 12 exons from each of 38 individual patient DNA samples. The arrays were washed with eight buffers with different stringencies in a custom-made microfluidic system. The data were used to assess which parameters play significant roles in assay development. Conclusions Several assay development methods found suitable probes and assay conditions for a functional test for all investigated mutation sites. Probe length, probe spacer length, and assay stringency sufficed as variable parameters in the search for a functional multiplex assay. We discuss the optimal assay development methods for several different scenarios.
Collapse
Affiliation(s)
- Lena Poulsen
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Martin Jensen Søe
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
| | - Lisbeth Birk Møller
- Department of Applied Human Molecular Genetics, Kennedy Center, Glostrup, Denmark
| | - Martin Dufva
- Department of Micro and Nanotechnology, DTU Nanotech, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
17
|
Williams L, Blair S, Chagovetz A, Fish DJ, Benight AS. The paradox of multiplex DNA melting on a surface. Anal Biochem 2011; 409:150-2. [DOI: 10.1016/j.ab.2010.09.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 10/19/2022]
|
18
|
Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure. Biomed Microdevices 2010; 12:673-81. [PMID: 20336488 DOI: 10.1007/s10544-010-9420-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated the surface for bonding below the glass transition temperature of the bulk PMMA. Functionality and validation of the enclosed PMMA microarrays was demonstrated as 18 patients were correctly genotyped for all eight mutation sites in the HBB gene interrogated. The fabrication process therefore produced probes with desired hybridization properties and sufficient bonding between PMMA layers to allow construction of microfluidic devices. The streamlined fabrication method is suited to the production of low-cost microfluidic microarray-based diagnostic devices and, as such, is equally applicable to the development of diagnostics for both resource rich and resource limited settings.
Collapse
|
19
|
Shiokai S, Kitashiba H, Nishio T. Prediction of the optimum hybridization conditions of dot-blot-SNP analysis using estimated melting temperature of oligonucleotide probes. PLANT CELL REPORTS 2010; 29:829-834. [PMID: 20490503 DOI: 10.1007/s00299-010-0867-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 04/23/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
Although the dot-blot-SNP technique is a simple cost-saving technique suitable for genotyping of many plant individuals, optimization of hybridization and washing conditions for each SNP marker requires much time and labor. For prediction of the optimum hybridization conditions for each probe, we compared T (m) values estimated from nucleotide sequences using the DINAMelt web server, measured T (m) values, and hybridization conditions yielding allele-specific signals. The estimated T (m) values were comparable to the measured T (m) values with small differences of less than 3 degrees C for most of the probes. There were differences of approximately 14 degrees C between the specific signal detection conditions and estimated T (m) values. Change of one level of SSC concentrations of 0.1, 0.2, 0.5, and 1.0x SSC corresponded to a difference of approximately 5 degrees C in optimum signal detection temperature. Increasing the sensitivity of signal detection by shortening the exposure time to X-ray film changed the optimum hybridization condition for specific signal detection. Addition of competitive oligonucleotides to the hybridization mixture increased the suitable hybridization conditions by 1.8. Based on these results, optimum hybridization conditions for newly produced dot-blot-SNP markers will become predictable.
Collapse
Affiliation(s)
- Sachiko Shiokai
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | | | | |
Collapse
|
20
|
Li J, Schachermeyer S, Wang Y, Yin Y, Zhong W. Detection of microRNA by fluorescence amplification based on cation-exchange in nanocrystals. Anal Chem 2010; 81:9723-9. [PMID: 19831385 DOI: 10.1021/ac901983s] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Small RNA molecules are effective regulators of gene expression, and the expression signature of one subgroup of small RNA, the microRNA (miRNA), has been linked to disease development and progression. Therefore, detection of small RNA in biological samples will greatly improve the understanding of their functions and render effective tools to researchers for cellular process control and disease prevention. To solve the challenges in detecting the low-abundance and short strand-length of small RNA molecules, we designed a ligation-assisted binding assay and applied the cation exchange-based fluorescence amplification (CXFluoAmp) method developed in our group for detection. Nonfluorescent, ionic nanocrystals (NCs) of CdSe were conjugated to detection probes and immobilized onto the array surface via ligation with the target small RNA, miR21, which bound to the capture probe complimentarily. Each binding event induced by one target miR21 molecule was then amplified by the release of thousands of Cd2+ from one NC. The free Cd2+ immediately turned on the fluorescence of thousands of fluorogenic Rhod-5N molecules. With such a powerful signal amplification strategy, our assay achieved a limit of detection (LOD) of 35 fM and signals were detectable with analyte concentrations spanning over 7 orders of magnitude. We also identified the differential expression of miR21 in total RNA extracts from healthy breast tissue and diseased cells. Furthermore, our detection scheme demonstrated good specificity in small RNA detection, because significant signal intensity could be observed from small RNAs with one or two nucleotides difference in sequences. Thus, our assay has great application potential for disease diagnosis relying on miRNA biomarkers, or in small RNA expression profiling for new target discovery and functional study.
Collapse
Affiliation(s)
- Jishan Li
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
21
|
Mueckstein U, Leparc GG, Posekany A, Hofacker I, Kreil DP. Hybridization thermodynamics of NimbleGen microarrays. BMC Bioinformatics 2010; 11:35. [PMID: 20085625 PMCID: PMC2823707 DOI: 10.1186/1471-2105-11-35] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 01/19/2010] [Indexed: 12/11/2022] Open
Abstract
Background While microarrays are the predominant method for gene expression profiling, probe signal variation is still an area of active research. Probe signal is sequence dependent and affected by probe-target binding strength and the competing formation of probe-probe dimers and secondary structures in probes and targets. Results We demonstrate the benefits of an improved model for microarray hybridization and assess the relative contributions of the probe-target binding strength and the different competing structures. Remarkably, specific and unspecific hybridization were apparently driven by different energetic contributions: For unspecific hybridization, the melting temperature Tm was the best predictor of signal variation. For specific hybridization, however, the effective interaction energy that fully considered competing structures was twice as powerful a predictor of probe signal variation. We show that this was largely due to the effects of secondary structures in the probe and target molecules. The predictive power of the strength of these intramolecular structures was already comparable to that of the melting temperature or the free energy of the probe-target duplex. Conclusions This analysis illustrates the importance of considering both the effects of probe-target binding strength and the different competing structures. For specific hybridization, the secondary structures of probe and target molecules turn out to be at least as important as the probe-target binding strength for an understanding of the observed microarray signal intensities. Besides their relevance for the design of new arrays, our results demonstrate the value of improving thermodynamic models for the read-out and interpretation of microarray signals.
Collapse
Affiliation(s)
- Ulrike Mueckstein
- WWTF Chair of Bioinformatics, Boku University Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | | | | | | | | |
Collapse
|
22
|
Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies. Anal Bioanal Chem 2009; 395:669-77. [DOI: 10.1007/s00216-009-2848-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
23
|
Petersen J, Poulsen L, Birgens H, Dufva M. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development. PLoS One 2009; 4:e4808. [PMID: 19277213 PMCID: PMC2653225 DOI: 10.1371/journal.pone.0004808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022] Open
Abstract
The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i) the two stringency modulators generated melting curves that could be compared, (ii) both led to increased assay robustness, and (iii) both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.
Collapse
Affiliation(s)
- Jesper Petersen
- Department of Haematology, Copenhagen University Hospital, Herlev, Denmark
| | - Lena Poulsen
- Department of Micro and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik Birgens
- Department of Haematology, Copenhagen University Hospital, Herlev, Denmark
| | - Martin Dufva
- Department of Micro and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail:
| |
Collapse
|
24
|
Blair S, Williams L, Bishop J, Chagovetz A. Microarray temperature optimization using hybridization kinetics. Methods Mol Biol 2009; 529:171-196. [PMID: 19381979 DOI: 10.1007/978-1-59745-538-1_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In any microarray hybridization experiment, there are contributions at each probe spot due to the match and numerous mismatch target species (i.e., cross-hybridizations). One goal of temperature optimization is to minimize the contribution of mismatch species; however, achieving this goal may come at the expense of obtaining equilibrium reaction conditions. We employ two-component thermodynamic and kinetic models to study the trade-offs involved in temperature optimization. These models show that the maximum selectivity is achieved at equilibrium, but that the mismatch species controls the time to equilibrium via the competitive displacement mechanism. Also, selectivity is improved at lower temperatures. However, the time to equilibrium is also extended, so that greater selectivity cannot be achieved in practice. We also employ a two-color real-time microarray reader to experimentally demonstrate these effects by independently monitoring the match and mismatch species during multiplex hybridization. The only universal criterion that can be employed is to optimize temperature based upon attaining equilibrium reaction conditions. This temperature varies from one probe to another, but can be determined empirically using standard microarray experimentation methods.
Collapse
Affiliation(s)
- Steve Blair
- University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
25
|
Poulsen L, Søe MJ, Snakenborg D, Møller LB, Dufva M. Multi-stringency wash of partially hybridized 60-mer probes reveals that the stringency along the probe decreases with distance from the microarray surface. Nucleic Acids Res 2008; 36:e132. [PMID: 18805905 PMCID: PMC2582620 DOI: 10.1093/nar/gkn600] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Here, we describe a multi-parametric study of DNA hybridization to probes with 20–70% G + C content. Probes were designed towards 71 different sites/mutations in the phenylalanine hydroxylase gene. Seven probe lengths, three spacer lengths and six stringencies were systematically varied. The three spacer lengths were obtained by placing the gene-specific sequence in discrete steps along the 60-mer probes. The study was performed using Agilent 8 × 15 000 probes custom-made arrays and a home-built array washer providing different stringencies to each of the eight sub-arrays on the slides. Investigation of hybridization signals, specificity and dissociation curves indicated that probes close to the surface were influenced by an additional stringency provided by the microarray surface. Consistent with this, probes close to the surface required 4 × SSC, while probes placed away from the surface required 0.35 × SSC wash buffers in order to give accurate genotyping results. Multiple step dissociation was frequently observed for probes placed furthest away from surface, but not for probes placed proximal to the surface, which is consistent with the hypothesis that there is different stringency along the 60-mer. The results have impact on design of probes for genotyping, gene expression and comparative genome hybridization analysis.
Collapse
Affiliation(s)
- Lena Poulsen
- DTU Nanotech, Department of Micro and Nanotechnology, Technical University of Denmark, Oersteds Plads, Bld. 345 East, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
26
|
Larsen AV, Poulsen L, Birgens H, Dufva M, Kristensen A. Pinched flow fractionation devices for detection of single nucleotide polymorphisms. LAB ON A CHIP 2008; 8:818-21. [PMID: 18432355 DOI: 10.1039/b802268b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We demonstrate a new and flexible microfluidic based method for genotyping single nucleotide polymorphisms (SNPs). The method relies on size separation of selectively hybridized polystyrene microspheres in a microfluidic pinched flow fractionation (PFF) device. The microfluidic PFF devices with 13 mum deep channels were fabricated by thermal nanoimprint lithography (NIL) in a thin film of cyclic-olefin copolymer (mr-I T85) on a silicon wafer substrate, and the channels were sealed by thermal polymer bonding. Streptavidin coated polystyrene microspheres with a mean diameter of 3.09 microm and 5.6 microm were functionalized with biotin-labeled oligonucleotides for the detection of a mutant (Mt) or wild-type (Wt) DNA sequence in the HBB gene, respectively. Hybridization to functionalized beads was performed with fluorescent targets comprising synthetic DNA oligonucleotides or amplified RNA, synthesized using human DNA samples from individuals with point mutations in the HBB gene. Following a stringent wash, the beads were separated in a PFF device and the fluorescent signal from the beads was analyzed. Patients being wildtypes, heterozygotes or mutated respectively for the investigated mutation could reliably be diagnosed in the PFF device. This indicates that the PFF technique can be used for accurate and fast genotyping of SNPs.
Collapse
Affiliation(s)
- Asger Vig Larsen
- DTU Nanotech-Department of Micro and Nanotechnology, Technical University of Denmark (DTU), Building 345east, Oersted Plads, DK-2800, Lyngby, Denmark
| | | | | | | | | |
Collapse
|