1
|
Imai H, Abe T, Miyoshi T, Nishikawa SI, Ito K, Uchiumi T. The ribosomal stalk protein is crucial for the action of the conserved ATPase ABCE1. Nucleic Acids Res 2019; 46:7820-7830. [PMID: 30010948 PMCID: PMC6125642 DOI: 10.1093/nar/gky619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/28/2018] [Indexed: 01/14/2023] Open
Abstract
The ATP-binding cassette (ABC) protein ABCE1 is an essential factor in ribosome recycling during translation. However, the detailed mechanochemistry of its recruitment to the ribosome, ATPase activation and subunit dissociation remain to be elucidated. Here, we show that the ribosomal stalk protein, which is known to participate in the actions of translational GTPase factors, plays an important role in these events. Biochemical and crystal structural data indicate that the conserved hydrophobic amino acid residues at the C-terminus of the archaeal stalk protein aP1 binds to the nucleotide-binding domain 1 (NBD1) of aABCE1, and that this binding is crucial for ATPase activation of aABCE1 on the ribosome. The functional role of the stalk•ABCE1 interaction in ATPase activation and the subunit dissociation is also investigated using mutagenesis in a yeast system. The data demonstrate that the ribosomal stalk protein likely participates in efficient actions of both archaeal and eukaryotic ABCE1 in ribosome recycling. The results also show that the stalk protein has a role in the function of ATPase as well as GTPase factors in translation.
Collapse
Affiliation(s)
- Hirotatsu Imai
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Takaya Abe
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Tomohiro Miyoshi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Shuh-Ichi Nishikawa
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
2
|
Imai H, Miyoshi T, Murakami R, Ito K, Ishino Y, Uchiumi T. Functional role of the C-terminal tail of the archaeal ribosomal stalk in recruitment of two elongation factors to the sarcin/ricin loop of 23S rRNA. Genes Cells 2015; 20:613-24. [DOI: 10.1111/gtc.12256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/27/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Hirotatsu Imai
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Tomohiro Miyoshi
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Ryo Murakami
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Kosuke Ito
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology; Kyushu University; 6-10-1 Hakozaki Higashi-ku Fukuoka 812-8581 Japan
| | - Toshio Uchiumi
- Department of Biology; Faculty of Science; Niigata University; 8050 Ikarashi 2-no-cho Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
3
|
Besseová I, Réblová K, Leontis NB, Sponer J. Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome. Nucleic Acids Res 2010; 38:6247-64. [PMID: 20507916 PMCID: PMC2952862 DOI: 10.1093/nar/gkq414] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We present extensive explicit solvent molecular dynamics analysis of three RNA three-way junctions (3WJs) from the large ribosomal subunit: the 3WJ formed by Helices 90–92 (H90–H92) of 23S rRNA; the 3WJ formed by H42–H44 organizing the GTPase associated center (GAC) of 23S rRNA; and the 3WJ of 5S rRNA. H92 near the peptidyl transferase center binds the 3′-CCA end of amino-acylated tRNA. The GAC binds protein factors and stimulates GTP hydrolysis driving protein synthesis. The 5S rRNA binds the central protuberance and A-site finger (ASF) involved in bridges with the 30S subunit. The simulations reveal that all three 3WJs possess significant anisotropic hinge-like flexibility between their stacked stems and dynamics within the compact regions of their adjacent stems. The A-site 3WJ dynamics may facilitate accommodation of tRNA, while the 5S 3WJ flexibility appears to be essential for coordinated movements of ASF and 5S rRNA. The GAC 3WJ may support large-scale dynamics of the L7/L12-stalk region. The simulations reveal that H42–H44 rRNA segments are not fully relaxed and in the X-ray structures they are bent towards the large subunit. The bending may be related to L10 binding and is distributed between the 3WJ and the H42–H97 contact.
Collapse
Affiliation(s)
- Ivana Besseová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic
| | | | | | | |
Collapse
|