1
|
Ghosh S, Shuman S. Kinetic and structural insights into the requirement of fungal tRNA ligase for a 2'-phosphate end. RNA (NEW YORK, N.Y.) 2024; 30:1306-1314. [PMID: 39013577 PMCID: PMC11404444 DOI: 10.1261/rna.080120.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Fungal RNA ligase (LIG) is an essential tRNA splicing enzyme that joins 3'-OH,2'-PO4 and 5'-PO4 RNA ends to form a 2'-PO4,3'-5' phosphodiester splice junction. Sealing entails three divalent cation-dependent adenylate transfer steps. First, LIG reacts with ATP to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and displace pyrophosphate. Second, LIG transfers AMP to the 5'-PO4 RNA terminus to form an RNA-adenylate intermediate (A5'pp5'RNA). Third, LIG directs the attack of an RNA 3'-OH on AppRNA to form the splice junction and displace AMP. A defining feature of fungal LIG vis-à-vis canonical polynucleotide ligases is the requirement for a 2'-PO4 to synthesize a 3'-5' phosphodiester bond. Fungal LIG consists of an N-terminal adenylyltransferase domain and a unique C-terminal domain. The C-domain of Chaetomium thermophilum LIG (CthLIG) engages a sulfate anion thought to be a mimetic of the terminal 2'-PO4 Here, we interrogated the contributions of the C-domain and the conserved sulfate ligands (His227, Arg334, Arg337) to ligation of a pRNA2'p substrate. We find that the C-domain is essential for end-joining but dispensable for ligase adenylylation. Mutations H227A, R334A, and R337A slowed the rate of step 2 RNA adenylation by 420-fold, 120-fold, and 60-fold, respectively, vis-à-vis wild-type CthLIG. An R334A-R337A double-mutation slowed step 2 by 580-fold. These results fortify the case for the strictly conserved His-Arg-Arg triad as the enforcer of the 2'-PO4 end-specificity of fungal tRNA ligases and as a target for small molecule interdiction of fungal tRNA splicing.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
2
|
Liu C, Yue Y, Xue Y, Zhou C, Ma Y. CRISPR-Cas9 assisted non-homologous end joining genome editing system of Halomonas bluephagenesis for large DNA fragment deletion. Microb Cell Fact 2023; 22:211. [PMID: 37838676 PMCID: PMC10576340 DOI: 10.1186/s12934-023-02214-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Halophiles possess several unique properties and have broad biotechnological applications including industrial biotechnology production. Halomonas spp., especially Halomonas bluephagenesis, have been engineered to produce various biopolyesters such as polyhydroxyalkanoates (PHA), some proteins, small molecular compounds, organic acids, and has the potential to become a chassis cell for the next-generation of industrial biotechnology (NGIB) owing to its simple culture, fast growth, contamination-resistant, low production cost, and high production value. An efficient genome editing system is the key for its engineering and application. However, the efficiency of the established CRISPR-Cas-homologous recombination (HR) gene editing tool for large DNA fragments was still relatively low. In this study, we firstly report a CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas bluephagenesis. RESULTS Three different NHEJ repair systems were selected and functionally identified in Halomonas bluephagenesis TD01. The NHEJ system from M. tuberculosis H37Rv (Mt-NHEJ) can functionally work in H. bluephagenesis TD01, resulting in base deletion of different lengths for different genes and some random base insertions. Factors affecting knockout efficiencies, such as the number and position of sgRNAs on the DNA double-strands, the Cas9 protein promoter, and the interaction between the HR and the NHEJ repair system, were further investigated. Finally, the optimized CRISPR-Cas9-NHEJ editing system was able to delete DNA fragments up to 50 kb rapidly with high efficiency of 31.3%, when three sgRNAs on the Crick/Watson/Watson DNA double-strands and the arabinose-induced promoter Para for Cas9 were used, along with the background expression of the HR repair system. CONCLUSIONS This was the first report of CRISPR-Cas9 gene editing system combined with a non-homologous end joining (NHEJ) repair system for efficient large DNA fragment deletion in Halomonas spp. These results not only suggest that this editing system is a powerful genome engineering tool for constructing chassis cells in Halomonas, but also extend the application of the NHEJ repair system.
Collapse
Affiliation(s)
- Chunyan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Yue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
- Beijing Key Laboratory for Utilization of Biomass Wastes, Beijing, 100023, China.
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
3
|
Calvo PA, Mateo-Cáceres V, Díaz-Arco S, Redrejo-Rodríguez M, de Vega M. The enterohemorrhagic Escherichia coli insertion sequence-excision enhancer protein is a DNA polymerase with microhomology-mediated end-joining activity. Nucleic Acids Res 2023; 51:1189-1207. [PMID: 36715333 PMCID: PMC9943667 DOI: 10.1093/nar/gkad017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Bacterial genomes contain an abundance of transposable insertion sequence (IS) elements that are essential for genome evolution and fitness. Among them, IS629 is present in most strains of enterohemorrhagic Escherichia coli O157 and accounts for many polymorphisms associated with gene inactivation and/or genomic deletions. The excision of IS629 from the genome is promoted by IS-excision enhancer (IEE) protein. Despite IEE has been identified in the most pathogenic serotypes of E. coli, its biochemical features that could explain its role in IS excision are not yet understood. We show that IEE is present in >30% of all available E. coli genome assemblies, and is highly conserved and very abundant within enterohemorrhagic, enteropathogenic and enterotoxigenic genomes. In vitro analysis of the recombinant protein from E. coli O157:H7 revealed the presence of a Mn2+-dependent error-prone DNA polymerase activity in its N-terminal archaeo-eukaryotic primase (AEP) domain able to promote dislocations of the primer and template strands. Importantly, IEE could efficiently perform in vitro an end-joining reaction of 3'-single-strand DNA overhangs with ≥4 bp of homology requiring both the N-terminal AEP and C-terminal helicase domains. The proposed role for IEE in the novel IS excision mechanism is discussed.
Collapse
Affiliation(s)
- Patricia A Calvo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, Madrid 28049, Spain
| | - Víctor Mateo-Cáceres
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Silvia Díaz-Arco
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, Madrid 28049, Spain
| | - Modesto Redrejo-Rodríguez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Miguel de Vega
- To whom correspondence should be addressed. Tel: +34 911964717; Fax: +34 911964420;
| |
Collapse
|
4
|
Rzoska-Smith E, Stelzer R, Monterio M, Cary SC, Williamson A. DNA repair enzymes of the Antarctic Dry Valley metagenome. Front Microbiol 2023; 14:1156817. [PMID: 37125210 PMCID: PMC10140301 DOI: 10.3389/fmicb.2023.1156817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microbiota inhabiting the Dry Valleys of Antarctica are subjected to multiple stressors that can damage deoxyribonucleic acid (DNA) such as desiccation, high ultraviolet light (UV) and multiple freeze-thaw cycles. To identify novel or highly-divergent DNA-processing enzymes that may enable effective DNA repair, we have sequenced metagenomes from 30 sample-sites which are part of the most extensive Antarctic biodiversity survey undertaken to date. We then used these to construct wide-ranging sequence similarity networks from protein-coding sequences and identified candidate genes involved in specialized repair processes including unique nucleases as well as a diverse range of adenosine triphosphate (ATP) -dependent DNA ligases implicated in stationary-phase DNA repair processes. In one of the first direct investigations of enzyme function from these unique samples, we have heterologously expressed and assayed a number of these enzymes, providing insight into the mechanisms that may enable resident microbes to survive these threats to their genomic integrity.
Collapse
Affiliation(s)
- Elizabeth Rzoska-Smith
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Ronja Stelzer
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
| | - Maria Monterio
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Stephen C. Cary
- Thermophile Research Unit, School of Science, University of Waikato, Hamilton, New Zealand
| | - Adele Williamson
- Proteins and Microbes Laboratory, School of Science, University of Waikato, Hamilton, New Zealand
- *Correspondence: Adele Williamson,
| |
Collapse
|
5
|
Sowa DJ, Warner MM, Tetenych A, Koechlin L, Balari P, Rascon Perez JP, Caba C, Andres SN. The Mycobacterium tuberculosis Ku C-terminus is a multi-purpose arm for binding DNA and LigD and stimulating ligation. Nucleic Acids Res 2022; 50:11040-11057. [PMID: 36250639 PMCID: PMC9638933 DOI: 10.1093/nar/gkac906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/20/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial non-homologous end joining requires the ligase, LigD and Ku. Ku finds the break site, recruits LigD, and then assists LigD to seal the phosphodiester backbone. Bacterial Ku contains a core domain conserved with eukaryotes but has a unique C-terminus that can be divided into a minimal C-terminal region that is conserved and an extended C-terminal region that varies in sequence and length between species. Here, we examine the role of Mycobacterium tuberculosis Ku C-terminal variants, where we removed either the extended or entire C-terminus to investigate the effects on Ku–DNA binding, rates of Ku-stimulated ligation, and binding affinity of a direct Ku–LigD interaction. We find that the extended C-terminus limits DNA binding and identify key amino acids that contribute to this effect through alanine-scanning mutagenesis. The minimal C-terminus is sufficient to stimulate ligation of double-stranded DNA, but the Ku core domain also contributes to stimulating ligation. We further show that wildtype Ku and the Ku core domain alone directly bind both ligase and polymerase domains of LigD. Our results suggest that Ku-stimulated ligation involves direct interactions between the Ku core domain and the LigD ligase domain, in addition to the extended Ku C-terminus and the LigD polymerase domain.
Collapse
Affiliation(s)
- Dana J Sowa
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Monica M Warner
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Andriana Tetenych
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Lucas Koechlin
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Pardis Balari
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Jose Pablo Rascon Perez
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Cody Caba
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Sara N Andres
- Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
6
|
Amare B, Mo A, Khan N, Sowa DJ, Warner MM, Tetenych A, Andres SN. LigD: A Structural Guide to the Multi-Tool of Bacterial Non-Homologous End Joining. Front Mol Biosci 2021; 8:787709. [PMID: 34901162 PMCID: PMC8656161 DOI: 10.3389/fmolb.2021.787709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
DNA double-strand breaks are the most lethal form of damage for living organisms. The non-homologous end joining (NHEJ) pathway can repair these breaks without the use of a DNA template, making it a critical repair mechanism when DNA is not replicating, but also a threat to genome integrity. NHEJ requires proteins to anchor the DNA double-strand break, recruit additional repair proteins, and then depending on the damage at the DNA ends, fill in nucleotide gaps or add or remove phosphate groups before final ligation. In eukaryotes, NHEJ uses a multitude of proteins to carry out processing and ligation of the DNA double-strand break. Bacterial NHEJ, though, accomplishes repair primarily with only two proteins-Ku and LigD. While Ku binds the initial break and recruits LigD, it is LigD that is the primary DNA end processing machinery. Up to three enzymatic domains reside within LigD, dependent on the bacterial species. These domains are a polymerase domain, to fill in nucleotide gaps with a preference for ribonucleotide addition; a phosphoesterase domain, to generate a 3'-hydroxyl DNA end; and the ligase domain, to seal the phosphodiester backbone. To date, there are no experimental structures of wild-type LigD, but there are x-ray and nuclear magnetic resonance structures of the individual enzymatic domains from different bacteria and archaea, along with structural predictions of wild-type LigD via AlphaFold. In this review, we will examine the structures of the independent domains of LigD from different bacterial species and the contributions these structures have made to understanding the NHEJ repair mechanism. We will then examine how the experimental structures of the individual LigD enzymatic domains combine with structural predictions of LigD from different bacterial species and postulate how LigD coordinates multiple enzymatic activities to carry out DNA double-strand break repair in bacteria.
Collapse
Affiliation(s)
- Benhur Amare
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Anthea Mo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Noorisah Khan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Dana J. Sowa
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Monica M. Warner
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Andriana Tetenych
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sara N. Andres
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Dupuy P, Sauviac L, Bruand C. Stress-inducible NHEJ in bacteria: function in DNA repair and acquisition of heterologous DNA. Nucleic Acids Res 2019; 47:1335-1349. [PMID: 30517704 PMCID: PMC6379672 DOI: 10.1093/nar/gky1212] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks (DSB) in bacteria can be repaired by non-homologous end-joining (NHEJ), a two-component system relying on Ku and LigD. While performing a genetic characterization of NHEJ in Sinorhizobium meliloti, a representative of bacterial species encoding several Ku and LigD orthologues, we found that at least two distinct functional NHEJ repair pathways co-exist: one is dependent on Ku2 and LigD2, while the other depends on Ku3, Ku4 and LigD4. Whereas Ku2 likely acts as canonical bacterial Ku homodimers, genetic evidences suggest that Ku3-Ku4 form eukaryotic-like heterodimers. Strikingly, we found that the efficiency of both NHEJ systems increases under stress conditions, including heat and nutrient starvation. We found that this stimulation results from the transcriptional up-regulation of the ku and/or ligD genes, and that some of these genes are controlled by the general stress response regulator RpoE2. Finally, we provided evidence that NHEJ not only repairs DSBs, but can also capture heterologous DNA fragments into genomic breaks. Our data therefore suggest that NHEJ could participate to horizontal gene transfer from distantly related species, bypassing the need of homology to integrate exogenous DNA. This supports the hypothesis that NHEJ contributes to evolution and adaptation of bacteria under adverse environmental conditions.
Collapse
Affiliation(s)
- Pierre Dupuy
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Laurent Sauviac
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Claude Bruand
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
8
|
Unciuleac MC, Goldgur Y, Shuman S. Structures of ATP-bound DNA ligase D in a closed domain conformation reveal a network of amino acid and metal contacts to the ATP phosphates. J Biol Chem 2019; 294:5094-5104. [PMID: 30718283 PMCID: PMC6442053 DOI: 10.1074/jbc.ra119.007445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/01/2019] [Indexed: 01/07/2023] Open
Abstract
DNA ligases are the sine qua non of genome integrity and essential for DNA replication and repair in all organisms. DNA ligases join 3'-OH and 5'-PO4 ends via a series of three nucleotidyl transfer steps. In step 1, ligase reacts with ATP or NAD+ to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and release pyrophosphate (PPi) or nicotinamide mononucleotide. In step 2, AMP is transferred from ligase-adenylate to the 5'-PO4 DNA end to form a DNA-adenylate intermediate (AppDNA). In step 3, ligase catalyzes attack by a DNA 3'-OH on the DNA-adenylate to seal the two ends via a phosphodiester bond and release AMP. Eukaryal, archaeal, and many bacterial and viral DNA ligases are ATP-dependent. The catalytic core of ATP-dependent DNA ligases consists of an N-terminal nucleotidyltransferase domain fused to a C-terminal OB domain. Here we report crystal structures at 1.4-1.8 Å resolution of Mycobacterium tuberculosis LigD, an ATP-dependent DNA ligase dedicated to nonhomologous end joining, in complexes with ATP that highlight large movements of the OB domain (∼50 Å), from a closed conformation in the ATP complex to an open conformation in the covalent ligase-AMP intermediate. The LigD·ATP structures revealed a network of amino acid contacts to the ATP phosphates that stabilize the transition state and orient the PPi leaving group. A complex with ATP and magnesium suggested a two-metal mechanism of lysine adenylylation driven by a catalytic Mg2+ that engages the ATP α phosphate and a second metal that bridges the ATP β and γ phosphates.
Collapse
Affiliation(s)
| | - Yehuda Goldgur
- Structural Biology Programs, Sloan Kettering Institute, New York, New York 10065
| | - Stewart Shuman
- From the Molecular Biology and , To whom correspondence should be addressed:
Molecular Biology Program, Sloan Kettering Institute, 1275 York Ave., New York, NY 10065. E-mail:
| |
Collapse
|
9
|
Bertrand C, Thibessard A, Bruand C, Lecointe F, Leblond P. Bacterial NHEJ: a never ending story. Mol Microbiol 2019; 111:1139-1151. [PMID: 30746801 DOI: 10.1111/mmi.14218] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/30/2022]
Abstract
Double-strand breaks (DSBs) are the most detrimental DNA damage encountered by bacterial cells. DBSs can be repaired by homologous recombination thanks to the availability of an intact DNA template or by Non-Homologous End Joining (NHEJ) when no intact template is available. Bacterial NHEJ is performed by sets of proteins of growing complexity from Bacillus subtilis and Mycobacterium tuberculosis to Streptomyces and Sinorhizobium meliloti. Here, we discuss the contribution of these models to the understanding of the bacterial NHEJ repair mechanism as well as the involvement of NHEJ partners in other DNA repair pathways. The importance of NHEJ and of its complexity is discussed in the perspective of regulation through the biological cycle of the bacteria and in response to environmental stimuli. Finally, we consider the role of NHEJ in genome evolution, notably in horizontal gene transfer.
Collapse
Affiliation(s)
- Claire Bertrand
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| | | | - Claude Bruand
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - François Lecointe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Pierre Leblond
- Université de Lorraine, INRA, DynAMic, Nancy, F-54000, France
| |
Collapse
|
10
|
Uson ML, Carl A, Goldgur Y, Shuman S. Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and 5' exonuclease activities. Nucleic Acids Res 2018; 46:4164-4175. [PMID: 29635474 PMCID: PMC5934675 DOI: 10.1093/nar/gky238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 02/02/2023] Open
Abstract
Mycobacterium smegmatis FenA is a nucleic acid phosphodiesterase with flap endonuclease and 5' exonuclease activities. The 1.8 Å crystal structure of FenA reported here highlights as its closest homologs bacterial FEN-family enzymes ExoIX, the Pol1 exonuclease domain and phage T5 Fen. Mycobacterial FenA assimilates three active site manganese ions (M1, M2, M3) that are coordinated, directly and via waters, to a constellation of eight carboxylate side chains. We find via mutagenesis that the carboxylate contacts to all three manganese ions are essential for FenA's activities. Structures of nuclease-dead FenA mutants D125N, D148N and D208N reveal how they fail to bind one of the three active site Mn2+ ions, in a distinctive fashion for each Asn change. The structure of FenA D208N with a phosphate anion engaged by M1 and M2 in a state mimetic of a product complex suggests a mechanism for metal-catalyzed phosphodiester hydrolysis similar to that proposed for human Exo1. A distinctive feature of FenA is that it does not have the helical arch module found in many other FEN/FEN-like enzymes. Instead, this segment of FenA adopts a unique structure comprising a short 310 helix and surface β-loop that coordinates a fourth manganese ion (M4).
Collapse
Affiliation(s)
- Maria Loressa Uson
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Ayala Carl
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
11
|
The DNA Repair Repertoire of Mycobacterium smegmatis FenA Includes the Incision of DNA 5' Flaps and the Removal of 5' Adenylylated Products of Aborted Nick Ligation. J Bacteriol 2017. [PMID: 28630124 DOI: 10.1128/jb.00304-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We characterize Mycobacterium smegmatis FenA as a manganese-dependent 5'-flap endonuclease homologous to the 5'-exonuclease of DNA polymerase I. FenA incises a nicked 5' flap between the first and second nucleotides of the duplex segment to yield a 1-nucleotide gapped DNA, which is then further resected in dinucleotide steps. Initial FenA cleavage at a Y-flap or nick occurs between the first and second nucleotides of the duplex. However, when the template 3' single strand is eliminated to create a 5'-tailed duplex, FenA incision shifts to between the second and third nucleotides. A double-flap substrate with a mobile junction (mimicking limited strand displacement synthesis during gap repair) is preferentially incised as the 1-nucleotide 3'-flap isomer, with the scissile phosphodiester shifted by one nucleotide versus a static double flap. FenA efficiently removes the 5' App(dN) terminus of an aborted nick ligation reaction intermediate, thereby highlighting FenA as an agent of repair of such lesions, which are formed under a variety of circumstances by bacterial NAD+-dependent DNA ligases and especially by mycobacterial DNA ligases D and C.IMPORTANCE Structure-specific DNA endonucleases are implicated in bacterial DNA replication, repair, and recombination, yet there is scant knowledge of the roster and catalytic repertoire of such nucleases in Mycobacteria This study identifies M. smegmatis FenA as a stand-alone endonuclease homologous to the 5'-exonuclease domain of mycobacterial DNA polymerase 1. FenA incises 5' flaps, 5' nicks, and 5' App(dN) intermediates of aborted nick ligation. The isolated N-terminal domain of M. smegmatis Pol1 is also shown to be a flap endonuclease.
Collapse
|
12
|
Phaeocystis globosa Virus DNA Polymerase X: a "Swiss Army knife", Multifunctional DNA polymerase-lyase-ligase for Base Excision Repair. Sci Rep 2017; 7:6907. [PMID: 28761124 PMCID: PMC5537341 DOI: 10.1038/s41598-017-07378-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 01/04/2023] Open
Abstract
Phaeocystis globosa virus 16T is a giant virus that belongs to the so-called nucleo-cytoplasmic large DNA virus (NCLDV) group. Its linear dsDNA genome contains an almost full complement of genes required to participate in viral base excision repair (BER). Among them is a gene coding for a bimodular protein consisting of an N-terminal Polβ-like core fused to a C-terminal domain (PgVPolX), which shows homology with NAD+-dependent DNA ligases. Analysis of the biochemical features of the purified enzyme revealed that PgVPolX is a multifunctional protein that could act as a “Swiss army knife” enzyme during BER since it is endowed with: 1) a template-directed DNA polymerization activity, preferentially acting on DNA structures containing gaps; 2) 5′-deoxyribose-5-phosphate (dRP) and abasic (AP) site lyase activities; and 3) an NAD+-dependent DNA ligase activity. We show how the three activities act in concert to efficiently repair BER intermediates, leading us to suggest that PgVPolX may constitute, together with the viral AP-endonuclease, a BER pathway. This is the first time that this type of protein fusion has been demonstrated to be functional.
Collapse
|
13
|
Hoff G, Bertrand C, Zhang L, Piotrowski E, Chipot L, Bontemps C, Confalonieri F, McGovern S, Lecointe F, Thibessard A, Leblond P. Multiple and Variable NHEJ-Like Genes Are Involved in Resistance to DNA Damage in Streptomyces ambofaciens. Front Microbiol 2016; 7:1901. [PMID: 27965636 PMCID: PMC5124664 DOI: 10.3389/fmicb.2016.01901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/14/2016] [Indexed: 11/26/2022] Open
Abstract
Non-homologous end-joining (NHEJ) is a double strand break (DSB) repair pathway which does not require any homologous template and can ligate two DNA ends together. The basic bacterial NHEJ machinery involves two partners: the Ku protein, a DNA end binding protein for DSB recognition and the multifunctional LigD protein composed a ligase, a nuclease and a polymerase domain, for end processing and ligation of the broken ends. In silico analyses performed in the 38 sequenced genomes of Streptomyces species revealed the existence of a large panel of NHEJ-like genes. Indeed, ku genes or ligD domain homologues are scattered throughout the genome in multiple copies and can be distinguished in two categories: the “core” NHEJ gene set constituted of conserved loci and the “variable” NHEJ gene set constituted of NHEJ-like genes present in only a part of the species. In Streptomyces ambofaciens ATCC23877, not only the deletion of “core” genes but also that of “variable” genes led to an increased sensitivity to DNA damage induced by electron beam irradiation. Multiple mutants of ku, ligase or polymerase encoding genes showed an aggravated phenotype compared to single mutants. Biochemical assays revealed the ability of Ku-like proteins to protect and to stimulate ligation of DNA ends. RT-qPCR and GFP fusion experiments suggested that ku-like genes show a growth phase dependent expression profile consistent with their involvement in DNA repair during spores formation and/or germination.
Collapse
Affiliation(s)
- Grégory Hoff
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Claire Bertrand
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Lingli Zhang
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Emilie Piotrowski
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Ludovic Chipot
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Cyril Bontemps
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, Centre National de la Recherche Scientifique, Université Paris-Sud Orsay, France
| | - Stephen McGovern
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - François Lecointe
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Annabelle Thibessard
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| | - Pierre Leblond
- UMR 1128, Dynamique des Génomes et Adaptation Microbienne, Université de LorraineVandœuvre-lès-Nancy, France; UMR 1128, Institut National de la Recherche Agronomique, Dynamique des Génomes et Adaptation MicrobienneVandœuvre-lès-Nancy, France
| |
Collapse
|
14
|
Pergolizzi G, Wagner GK, Bowater RP. Biochemical and Structural Characterisation of DNA Ligases from Bacteria and Archaea. Biosci Rep 2016; 36:00391. [PMID: 27582505 PMCID: PMC5052709 DOI: 10.1042/bsr20160003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterisation. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5'-phosphate of the DNA end that will ultimately be joined to the 3'-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use nicotinamide adenine dinucleotide ( β -NAD+) as their co-factor whereas those that are essential in other cells use adenosine-5'-triphosphate (ATP) as their co-factor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of β -NAD+ affords multiple opportunities for chemical modification. Several recent studies have synthesised novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes.
Collapse
Affiliation(s)
- Giulia Pergolizzi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, N/A, United Kingdom
| | - Gerd K Wagner
- Department of Chemistry, King's College London, Faculty of Natural & Mathematical Sciences, Britannia House, 7 Trinity Street, London, N/A, United Kingdom
| | - Richard Peter Bowater
- School of Biological Sciences, University of East Anglia, Norwich, N/A, NR4 7TJ, United Kingdom
| |
Collapse
|
15
|
de Ory A, Nagler K, Carrasco B, Raguse M, Zafra O, Moeller R, de Vega M. Identification of a conserved 5'-dRP lyase activity in bacterial DNA repair ligase D and its potential role in base excision repair. Nucleic Acids Res 2016; 44:1833-44. [PMID: 26826709 PMCID: PMC4770248 DOI: 10.1093/nar/gkw054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/14/2022] Open
Abstract
Bacillus subtilis is one of the bacterial members provided with a nonhomologous end joining (NHEJ) system constituted by the DNA-binding Ku homodimer that recruits the ATP-dependent DNA Ligase D (BsuLigD) to the double-stranded DNA breaks (DSBs) ends. BsuLigD has inherent polymerization and ligase activities that allow it to fill the short gaps that can arise after realignment of the broken ends and to seal the resulting nicks, contributing to genome stability during the stationary phase and germination of spores. Here we show that BsuLigD also has an intrinsic 5'-2-deoxyribose-5-phosphate (dRP) lyase activity located at the N-terminal ligase domain that in coordination with the polymerization and ligase activities allows efficient repairing of 2'-deoxyuridine-containing DNA in an in vitro reconstituted Base Excision Repair (BER) reaction. The requirement of a polymerization, a dRP removal and a final sealing step in BER, together with the joint participation of BsuLigD with the spore specific AP endonuclease in conferring spore resistance to ultrahigh vacuum desiccation suggest that BsuLigD could actively participate in this pathway. We demonstrate the presence of the dRP lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa, allowing us to expand our results to other bacterial LigDs.
Collapse
Affiliation(s)
- Ana de Ory
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Katja Nagler
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Begoña Carrasco
- Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Darwin 3, 28049 Madrid, Spain
| | - Marina Raguse
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Olga Zafra
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, D-51147 Cologne, Germany
| | - Miguel de Vega
- Centro de Biología Molecular 'Severo Ochoa' (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
16
|
Williamson A, Hjerde E, Kahlke T. Analysis of the distribution and evolution of the ATP-dependent DNA ligases of bacteria delineates a distinct phylogenetic group 'Lig E'. Mol Microbiol 2015; 99:274-90. [PMID: 26412580 DOI: 10.1111/mmi.13229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 12/01/2022]
Abstract
Prior to the discovery of a minimal ATP-dependent DNA ligase in Haemophilus influenzae, bacteria were thought to only possess a NAD-dependent ligase, which was involved in sealing of Okazaki fragments. We now know that a diverse range of bacterial species possess up to six of these accessory bacterial ATP-dependent DNA ligases (b-ADLs), which vary in size and enzymatic domain associations. Here we compare the domain structure of different types of b-ADLs and investigate their distribution among the bacterial domain to describe possible evolutionary trajectories that gave rise to the sequence and structural diversity of these enzymes. Previous biochemical and genetic analyses have delineated three main classes of these enzymes: Lig B, Lig C and Lig D, which appear to have descended from a common ancestor within the bacterial domain. In the present study, we delineate a fourth group of b-ADLs, Lig E, which possesses a number of unique features at the primary and tertiary structural levels. The biochemical characteristics, domain structure and inferred extracellular location sets this group apart from the other b-ADLs. The results presented here indicate that the Lig E type ligases were horizontally transferred into bacteria in a separate event from other b-ADLs possibly from a bacteriophage.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Erik Hjerde
- Department of Chemistry, University of Tromsø, N-9019, Tromsø, Norway
| | - Tim Kahlke
- CSIRO Oceans and Atmosphere Flagship, Castray Esplanade, Hobart, TAS, 7000, Australia
| |
Collapse
|
17
|
de Ory A, Zafra O, de Vega M. Efficient processing of abasic sites by bacterial nonhomologous end-joining Ku proteins. Nucleic Acids Res 2014; 42:13082-95. [PMID: 25355514 PMCID: PMC4245934 DOI: 10.1093/nar/gku1029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023] Open
Abstract
Intracellular reactive oxygen species as well as the exposure to harsh environmental conditions can cause, in the single chromosome of Bacillus subtilis spores, the formation of apurinic/apyrimidinic (AP) sites and strand breaks whose repair during outgrowth is crucial to guarantee cell viability. Whereas double-stranded breaks are mended by the nonhomologous end joining (NHEJ) system composed of an ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku, repair of AP sites would rely on an AP endonuclease or an AP-lyase, a polymerase and a ligase. Here we show that B. subtilis Ku (BsuKu), along with its pivotal role in allowing joining of two broken ends by B. subtilis LigD (BsuLigD), is endowed with an AP/deoxyribose 5'-phosphate (5'-dRP)-lyase activity that can act on ssDNA, nicked molecules and DNA molecules without ends, suggesting a potential role in BER during spore outgrowth. Coordination with BsuLigD makes possible the efficient joining of DNA ends with near terminal abasic sites. The role of this new enzymatic activity of Ku and its potential importance in the NHEJ pathway is discussed. The presence of an AP-lyase activity also in the homolog protein from the distantly related bacterium Pseudomonas aeruginosa allows us to expand our results to other bacterial Ku proteins.
Collapse
Affiliation(s)
- Ana de Ory
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM). Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Olga Zafra
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM). Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| | - Miguel de Vega
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM). Nicolás Cabrera 1, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Williamson A, Rothweiler U, Leiros HKS. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface. ACTA ACUST UNITED AC 2014; 70:3043-56. [PMID: 25372693 PMCID: PMC4220977 DOI: 10.1107/s1399004714021099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022]
Abstract
The enzyme–adenylate structure of a bacterial ATP-dependent DNA ligase (ADL), which does not have any additional DNA-binding domains, is similar to minimal viral ADLs that comprise only the core catalytic domains. The bacterial ADL also lacks the unstructured loops which are involved in DNA binding in the viral ADLs, implying that it must instead use short well structured motifs of the core domains to engage its substrate. DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme–adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.
Collapse
Affiliation(s)
- Adele Williamson
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ulli Rothweiler
- NorStruct, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | | |
Collapse
|
19
|
DNA ligase C1 mediates the LigD-independent nonhomologous end-joining pathway of Mycobacterium smegmatis. J Bacteriol 2014; 196:3366-76. [PMID: 24957619 DOI: 10.1128/jb.01832-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nonhomologous end joining (NHEJ) is a recently described bacterial DNA double-strand break (DSB) repair pathway that has been best characterized for mycobacteria. NHEJ can religate transformed linear plasmids, repair ionizing radiation (IR)-induced DSBs in nonreplicating cells, and seal I-SceI-induced chromosomal DSBs. The core components of the mycobacterial NHEJ machinery are the DNA end binding protein Ku and the polyfunctional DNA ligase LigD. LigD has three autonomous enzymatic modules: ATP-dependent DNA ligase (LIG), DNA/RNA polymerase (POL), and 3' phosphoesterase (PE). Although genetic ablation of ku or ligD abolishes NHEJ and sensitizes nonreplicating cells to ionizing radiation, selective ablation of the ligase activity of LigD in vivo only mildly impairs NHEJ of linearized plasmids, indicating that an additional DNA ligase can support NHEJ. Additionally, the in vivo role of the POL and PE domains in NHEJ is unclear. Here we define a LigD ligase-independent NHEJ pathway in Mycobacterium smegmatis that requires the ATP-dependent DNA ligase LigC1 and the POL domain of LigD. Mycobacterium tuberculosis LigC can also support this backup NHEJ pathway. We also demonstrate that, although dispensable for efficient plasmid NHEJ, the activities of the POL and PE domains are required for repair of IR-induced DSBs in nonreplicating cells. These findings define the genetic requirements for a LigD-independent NHEJ pathway in mycobacteria and demonstrate that all enzymatic functions of the LigD protein participate in NHEJ in vivo.
Collapse
|
20
|
Williamson A, Pedersen H. Recombinant expression and purification of an ATP-dependent DNA ligase from Aliivibrio salmonicida. Protein Expr Purif 2014; 97:29-36. [DOI: 10.1016/j.pep.2014.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
21
|
de Vega M. The minimal Bacillus subtilis nonhomologous end joining repair machinery. PLoS One 2013; 8:e64232. [PMID: 23691176 PMCID: PMC3656841 DOI: 10.1371/journal.pone.0064232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
It is widely accepted that repair of double-strand breaks in bacteria that either sporulate or that undergo extended periods of stationary phase relies not only on homologous recombination but also on a minimal nonhomologous end joining (NHEJ) system consisting of a dedicated multifunctional ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku. Bacillus subtilis is one of the bacterial members with a NHEJ system that contributes to genome stability during the stationary phase and germination of spores, having been characterized exclusively in vivo. Here, the in vitro analysis of the functional properties of the purified B. subtilis LigD (BsuLigD) and Ku (BsuKu) proteins is presented. The results show that the essential biochemical signatures exhibited by BsuLigD agree with its proposed function in NHEJ: i) inherent polymerization activity showing preferential insertion of NMPs, ii) specific recognition of the phosphate group at the downstream 5′ end, iii) intrinsic ligase activity, iv) ability to promote realignments of the template and primer strands during elongation of mispaired 3′ ends, and v) it is recruited to DNA by BsuKu that stimulates the inherent polymerization and ligase activities of the enzyme allowing it to deal with and to hold different and unstable DNA realignments.
Collapse
Affiliation(s)
- Miguel de Vega
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain.
| |
Collapse
|
22
|
Unciuleac MC, Shuman S. Distinctive effects of domain deletions on the manganese-dependent DNA polymerase and DNA phosphorylase activities of Mycobacterium smegmatis polynucleotide phosphorylase. Biochemistry 2013; 52:2967-81. [PMID: 23560592 DOI: 10.1021/bi400281w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polynucleotide phosphorylase (PNPase) plays synthetic and degradative roles in bacterial RNA metabolism; it is also suggested to participate in bacterial DNA transactions. Here we characterize and compare the RNA and DNA modifying activities of Mycobacterium smegmatis PNPase. The full-length (763-aa) M. smegmatis PNPase is a homotrimeric enzyme with Mg(2+)•PO(4)-dependent RNA 3'-phosphorylase and Mg(2+)•ADP-dependent RNA polymerase activities. We find that the enzyme is also a Mn(2+)•dADP-dependent DNA polymerase and a Mn(2+)•PO(4)-dependent DNA 3'-phosphorylase. The Mn(2+)•DNA and Mg(2+)•RNA end modifying activities of mycobacterial PNPase are coordinately ablated by mutating the putative manganese ligand Asp526, signifying that both metals likely bind to the same site on PNPase. Deletions of the C-terminal S1 and KH domains of mycobacterial PNPase exert opposite effects on the RNA and DNA modifying activities. Subtracting the S1 domain diminishes RNA phosphorylase and polymerase activity; simultaneous deletion of the S1 and KH domains further cripples the enzyme with respect to RNA substrates. By contrast, the S1 and KH domain deletions enhance the DNA polymerase and phosphorylase activity of mycobacterial PNPase. We observe two distinct modes of nucleic acid binding by mycobacterial PNPase: (i) metal-independent RNA-specific binding via the S1 domain, and (ii) metal-dependent binding to RNA or DNA that is optimal when the S1 domain is deleted. These findings add a new dimension to our understanding of PNPase specificity, whereby the C-terminal modules serve a dual purpose: (i) to help capture an RNA polynucleotide substrate for processive 3' end additions or resections, and (ii) to provide a specificity filter that selects against a DNA polynucleotide substrate.
Collapse
|
23
|
Zhu H, Bhattarai H, Yan HG, Shuman S, Glickman MS. Characterization of Mycobacterium smegmatis PolD2 and PolD1 as RNA/DNA polymerases homologous to the POL domain of bacterial DNA ligase D. Biochemistry 2012. [PMID: 23198659 DOI: 10.1021/bi301202e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycobacteria exploit nonhomologous end-joining (NHEJ) to repair DNA double-strand breaks. The core NHEJ machinery comprises the homodimeric DNA end-binding protein Ku and DNA ligase D (LigD), a modular enzyme composed of a C-terminal ATP-dependent ligase domain (LIG), a central 3'-phosphoesterase domain (PE), and an N-terminal polymerase domain (POL). LigD POL is proficient at adding templated and nontemplated deoxynucleotides and ribonucleotides to DNA ends in vitro and is the catalyst in vivo of unfaithful NHEJ events involving nontemplated single-nucleotide additions to blunt DSB ends. Here, we identify two mycobacterial proteins, PolD1 and PolD2, as stand-alone homologues of the LigD POL domain. Biochemical characterization of PolD1 and PolD2 shows that they resemble LigD POL in their monomeric quaternary structures, their ability to add templated and nontemplated nucleotides to primer-templates and blunt ends, and their preference for rNTPs versus dNTPs. Deletion of polD1, polD2, or both from a Mycobacterium smegmatis strain carrying an inactivating mutation in LigD POL failed to reveal a role for PolD1 or PolD2 in templated nucleotide additions during NHEJ of 5'-overhang DSBs or in clastogen resistance. Whereas our results document the existence and characteristics of new stand-alone members of the LigD POL family of RNA/DNA polymerases, they imply that other polymerases can perform fill-in synthesis during mycobacterial NHEJ.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
24
|
Natarajan A, Dutta K, Temel DB, Nair PA, Shuman S, Ghose R. Solution structure and DNA-binding properties of the phosphoesterase domain of DNA ligase D. Nucleic Acids Res 2011; 40:2076-88. [PMID: 22084199 PMCID: PMC3300020 DOI: 10.1093/nar/gkr950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3′-phosphomonoesterase and 3′-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using solution NMR methodology. PaePE has a disordered N-terminus and a well-folded core that differs in instructive ways from the crystal structure of a PaePE•Mn2+• sulfate complex, especially at the active site that is found to be conformationally dynamic. Chemical shift perturbations in the presence of primer-template duplexes with 3′-deoxynucleotide, 3′-deoxynucleotide 3′-phosphate, or 3′ ribonucleotide termini reveal the surface used by PaePE to bind substrate DNA and suggest a more efficient engagement in the presence of a 3′-ribonucleotide. Spectral perturbations measured in the presence of weakly catalytic (Cd2+) and inhibitory (Zn2+) metals provide evidence for significant conformational changes at and near the active site, compared to the relatively modest changes elicited by Mn2+.
Collapse
Affiliation(s)
- Aswin Natarajan
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | | | | | | | | | |
Collapse
|
25
|
Das U, Smith P, Shuman S. Structural insights to the metal specificity of an archaeal member of the LigD 3'-phosphoesterase DNA repair enzyme family. Nucleic Acids Res 2011; 40:828-36. [PMID: 21965539 PMCID: PMC3258152 DOI: 10.1093/nar/gkr767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
LigD 3′-phosphoesterase (PE) enzymes perform end-healing reactions at DNA breaks. Here we characterize the 3′-ribonucleoside-resecting activity of Candidatus Korarchaeum PE. CkoPE prefers a single-stranded substrate versus a primer–template. Activity is abolished by vanadate (10 mM), but is less sensitive to phosphate (IC50 50 mM) or chloride (IC50 150 mM). The metal requirement is satisfied by manganese, cobalt, copper or cadmium, but not magnesium, calcium, nickel or zinc. Insights to CkoPE metal specificity were gained by solving new 1.5 Å crystal structures of CkoPE in complexes with Co2+ and Zn2+. His9, His15 and Asp17 coordinate cobalt in an octahedral complex that includes a phosphate anion, which is in turn coordinated by Arg19 and His51. The cobalt and phosphate positions and the atomic contacts in the active site are virtually identical to those in the CkoPE·Mn2+ structure. By contrast, Zn2+ binds in the active site in a tetrahedral complex, wherein the position, orientation and atomic contacts of the phosphate are shifted and its interaction with His51 is lost. We conclude that: (i) PE selectively binds to ‘soft’ metals in either productive or non-productive modes and (ii) PE catalysis depends acutely on proper metal and scissile phosphate geometry.
Collapse
Affiliation(s)
- Ushati Das
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
26
|
Kapusta A, Matsuda A, Marmignon A, Ku M, Silve A, Meyer E, Forney JD, Malinsky S, Bétermier M. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining. PLoS Genet 2011; 7:e1002049. [PMID: 21533177 PMCID: PMC3077386 DOI: 10.1371/journal.pgen.1002049] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 02/25/2011] [Indexed: 01/09/2023] Open
Abstract
During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5′ overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi–mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5′-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3′ ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a “cut-and-close” mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics. Double-strand breaks (DSBs) are among the most deleterious lesions that may occur on DNA. Some physiological processes, however, involve the introduction of DSBs and their subsequent repair. In the ciliate Paramecium, programmed DSBs initiate the extensive genome rearrangements that take place at each sexual cycle, during the development of the somatic nucleus. In particular, short intervening germline sequences (one every 1–2 kb along the genome) are spliced out from coding and non-coding regions. In this study, we present evidence that this process is a two-step mechanism and involves DNA cleavage at both ends of each excised sequence, followed by DSB repair. We demonstrate that cellular end-joining proteins, Ligase IV and its partner, Xrcc4p, are essential for the closure of broken excision sites, which has to be precise at the nucleotide level to allow the assembly of functional genes. This precision stands in sharp contrast to the notion that end joining is an error-prone DSB repair pathway. Therefore, Paramecium provides an excellent model for analysis of an intrinsically precise end joining pathway that has been recruited for genome-wide DSB repair.
Collapse
Affiliation(s)
- Aurélie Kapusta
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris 11, Département de Biologie, Orsay, France
- CNRS FRC3115, Centre de Recherches de Gif–sur-Yvette, Gif-sur-Yvette, France
| | - Atsushi Matsuda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Antoine Marmignon
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris 11, Département de Biologie, Orsay, France
- CNRS FRC3115, Centre de Recherches de Gif–sur-Yvette, Gif-sur-Yvette, France
| | - Michael Ku
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Aude Silve
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
| | - Eric Meyer
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
| | - James D. Forney
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Sophie Malinsky
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Paris, France
- Université Paris Diderot – Paris 7, UFR des Sciences du Vivant, Paris, France
| | - Mireille Bétermier
- CNRS UPR3404, Centre de Génétique Moléculaire, Gif-sur-Yvette, France
- Université Paris 11, Département de Biologie, Orsay, France
- CNRS FRC3115, Centre de Recherches de Gif–sur-Yvette, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
27
|
Smith P, Nair PA, Das U, Zhu H, Shuman S. Structures and activities of archaeal members of the LigD 3'-phosphoesterase DNA repair enzyme superfamily. Nucleic Acids Res 2011; 39:3310-20. [PMID: 21208981 PMCID: PMC3082917 DOI: 10.1093/nar/gkq1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
LigD 3′-phosphoesterase (PE) is a component of the bacterial NHEJ apparatus that performs 3′-end-healing reactions at DNA breaks. The tertiary structure, active site and substrate specificity of bacterial PE are unique vis–à-vis other end-healing enzymes. PE homologs are present in archaea, but their properties are uncharted. Here, we demonstrate the end-healing activities of two archaeal PEs—Candidatus Korarchaeum cryptofilum PE (CkoPE; 117 amino acids) and Methanosarcina barkeri PE (MbaPE; 151 amino acids)—and we report their atomic structures at 1.1 and 2.1 Å, respectively. Archaeal PEs are minimized versions of bacterial PE, consisting of an eight-stranded β barrel and a 310 helix. Their active sites are located in a crescent-shaped groove on the barrel’s outer surface, wherein two histidines and an aspartate coordinate manganese in an octahedral complex that includes two waters and a phosphate anion. The phosphate is in turn coordinated by arginine and histidine side chains. The conservation of active site architecture in bacterial and archaeal PEs, and the concordant effects of active site mutations, underscore a common catalytic mechanism, entailing transition state stabilization by manganese and the phosphate-binding arginine and histidine. Our results fortify the proposal that PEs comprise a DNA repair superfamily distributed widely among taxa.
Collapse
Affiliation(s)
- Paul Smith
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
28
|
Wright D, DeBeaux A, Shi R, Doherty AJ, Harrison L. Characterization of the roles of the catalytic domains of Mycobacterium tuberculosis ligase D in Ku-dependent error-prone DNA end joining. Mutagenesis 2010; 25:473-81. [PMID: 20530153 PMCID: PMC2925156 DOI: 10.1093/mutage/geq029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/13/2010] [Accepted: 05/10/2010] [Indexed: 11/13/2022] Open
Abstract
We previously established an Escherichia coli strain capable of re-circularizing linear plasmid DNA by expressing the Mycobacterium tuberculosis Ku (Mt-Ku) and Mycobacterium tuberculosis ligase D (Mt-LigD) proteins from the E.coli chromosome. Repair was predominately mutagenic due to deletions at the termini. We hypothesized that these deletions could be due to a nuclease activity of Mt-LigD that was previously detected in vitro. Mt-LigD has three domains: an N-terminal polymerase domain (PolDom), a central domain with 3'-phosphoesterase and nuclease activity and a C-terminal ligase domain (LigDom). We generated bacterial strains expressing Mt-Ku and mutant versions of Mt-LigD. Plasmid re-circularization experiments in bacteria showed that the PolDom alone had no re-circularization activity. However, an increase in the total and accurate repair was found when the central domain was deleted. This provides further evidence that this central domain does have nuclease activity that can generate deletions during repair. Deletion of only the PolDom of Mt-LigD resulted in a complete loss of accurate repair and a significant reduction in total repair. This is in agreement with published in vitro work indicating that the PolDom is the major Mt-Ku-binding site. Interestingly, the LigDom alone was able to re-circularize plasmid DNA but only in an Mt-Ku-dependent manner, suggesting a potential second site for Ku-LigD interaction. This work has increased our understanding of the mutagenic repair by Mt-Ku and Mt-LigD and has extended the in vitro biochemical experiments by examining the importance of the Mt-LigD domains during repair in bacteria.
Collapse
Affiliation(s)
| | | | - Runhua Shi
- Department of Medicine and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Aidan J. Doherty
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Lynn Harrison
- To whom correspondence should be addressed. Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA. Tel: +1 318 675 4213; Fax: +1 318 675 6005;
| |
Collapse
|
29
|
Structure of bacterial LigD 3'-phosphoesterase unveils a DNA repair superfamily. Proc Natl Acad Sci U S A 2010; 107:12822-7. [PMID: 20616014 DOI: 10.1073/pnas.1005830107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA ligase D (LigD) 3'-phosphoesterase (PE) module is a conserved component of the bacterial nonhomologous end-joining (NHEJ) apparatus that performs 3' end-healing reactions at DNA double-strand breaks. Here we report the 1.9 A crystal structure of Pseudomonas aeruginosa PE, which reveals that PE exemplifies a unique class of DNA repair enzyme. PE has a distinctive fold in which an eight stranded beta barrel with a hydrophobic interior supports a crescent-shaped hydrophilic active site on its outer surface. Six essential side chains coordinate manganese and a sulfate mimetic of the scissile phosphate. The PE active site and mechanism are unique vis à vis other end-healing enzymes. We find PE homologs in archaeal and eukaryal proteomes, signifying that PEs comprise a DNA repair superfamily.
Collapse
|
30
|
Zhu H, Shuman S. Gap filling activities of Pseudomonas DNA ligase D (LigD) polymerase and functional interactions of LigD with the DNA end-binding Ku protein. J Biol Chem 2009; 285:4815-25. [PMID: 20018881 DOI: 10.1074/jbc.m109.073874] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many bacterial pathogens, including Pseudomonas aeruginosa, have a nonhomologous end joining (NHEJ) system of DNA double strand break (DSB) repair driven by Ku and DNA ligase D (LigD). LigD is a multifunctional enzyme composed of a ligase domain fused to an autonomous polymerase module (POL) that adds ribonucleotides or deoxyribonucleotides to DSB ends and primer-templates. LigD POL and the eukaryal NHEJ polymerase lambda are thought to bridge broken DNA ends via contacts with a duplex DNA segment downstream of the primer terminus, a scenario analogous to gap repair. Here, we characterized the gap repair activity of Pseudomonas LigD POL, which is more efficient than simple templated primer extension and relies on a 5'-phosphate group on the distal gap strand end to confer apparent processivity in filling gaps of 3 or 4 nucleotides. Mutations of the His-553, Arg-556, and Lys-566 side chains implicated in DNA 5'-phosphate binding eliminate the preferential filling of 5'-phosphate gaps. Mutating Phe-603, which is imputed to stack on the nucleobase of the template strand that includes the 1st bp of the downstream gap duplex segment, selectively affects incorporation of the final gap-closing nucleotide. We find that Pseudomonas Ku stimulates POL-catalyzed ribonucleotide addition to a plasmid DSB end and promotes plasmid end joining by full-length Pseudomonas LigD. A series of incremental truncations from the C terminus of the 293-amino acid Ku polypeptide identifies Ku-(1-229) as sufficient for homodimerization and LigD stimulation. The slightly longer Ku-(1-253) homodimer forms stable complexes at both ends of linear plasmid DNA that protect the DSBs from digestion by 5'- and 3'-exonucleases.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
31
|
Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus. J Bacteriol 2008; 191:1439-45. [PMID: 19074379 DOI: 10.1128/jb.01513-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of chromatin has a major impact on cellular activities, such as gene expression. For bacteria, it was suggested that the spatial organization of the genetic material correlates with transcriptional levels, implying a specific architecture of the chromosome within the cytoplasm. Accordingly, recent technological advances have emphasized the organization of the genetic material within nucleoid structures. Gemmata obscuriglobus, a member of the phylum Planctomycetes, exhibits a distinctive nucleoid structure in which chromatin is encapsulated within a discrete membrane-bound compartment. Here, we show that this soil and freshwater bacterium tolerates high doses of UV and ionizing radiation. Cryoelectron tomography of frozen hydrated sections and electron microscopy of freeze-substituted cells have indicated a more highly ordered condensed-chromatin organization in actively dividing and stationary-phase G. obscuriglobus cells. These three-dimensional analyses revealed a complex network of double membranes that engulf the condensed DNA. Bioinformatics analysis has revealed the existence of a putative component involved in nonhomologous DNA end joining that presumably plays a role in maintaining chromatin integrity within the bacterium. Thus, our observations further support the notion that packed chromatin organization enhances radiation tolerance.
Collapse
|
32
|
Abstract
Ligases are essential actors in DNA replication, recombination, and repair by virtue of their ability to seal breaks in the phosphodiester backbone. Ligation proceeds through a nicked DNA-adenylate intermediate (AppDNA), which must be sealed quickly to avoid creating a potentially toxic lesion. Here, we take advantage of ligase-catalyzed AMP-dependent incision of a single supercoiled DNA molecule to observe the step of phosphodiester synthesis in real time. An exponentially distributed number of supercoils was relaxed per successful incision-resealing event, from which we deduce the torque-dependent ligation probability per DNA swivel. Premature dissociation of ligase from nicked DNA-adenylate accounted for approximately 10% of the observed events. The ability of ligase to form a C-shaped protein clamp around DNA is a key determinant of ligation probability per turn and the stability of the ligase-AppDNA intermediate. The estimated rate of phosphodiester synthesis by DNA ligase (400 s(-1)) is similar to the high rates of phosphodiester synthesis by replicative DNA polymerases.
Collapse
|
33
|
Aniukwu J, Glickman MS, Shuman S. The pathways and outcomes of mycobacterial NHEJ depend on the structure of the broken DNA ends. Genes Dev 2008; 22:512-27. [PMID: 18281464 DOI: 10.1101/gad.1631908] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mycobacteria can repair DNA double-strand breaks (DSBs) via a nonhomologous end-joining (NHEJ) system that includes a dedicated DNA ligase (LigD) and the DNA end-binding protein Ku. Here we exploit an improved plasmid-based NHEJ assay and a collection of Mycobacterium smegmatis strains bearing deletions or mutations in Ku or the DNA ligases to interrogate the contributions of LigD's three catalytic activities (polymerase, ligase, and 3' phosphoesterase) and structural domains (POL, LIG, and PE) to the efficiency and molecular outcomes of NHEJ in vivo. By analyzing in parallel the repair of blunt, 5' overhang, and 3' overhang DSBs, we discovered a novel end-joining pathway specific to breaks with 3' overhangs that is Ku- and LigD-independent and perfectly faithful. This 3' overhang NHEJ pathway is independent of ligases B and C; we surmise that it relies on NAD(+)-dependent LigA, the essential replicative ligase. We find that efficient repair of blunt and 5' overhang DSBs depends stringently on Ku and the LigD POL domain, but not on the LigD polymerase activity, which mainly serves to promote NHEJ infidelity. The lack of an effect of PE-inactivating LigD mutations on NHEJ outcomes, especially the balance between deletions and insertions at blunt or 5' overhang breaks, argues against LigD being the catalyst of deletion formation. Ligase-inactivating LigD mutations (or deletion of the LIG domain) have a modest impact on the efficiency of blunt and 5' overhang DSB repair, because the strand sealing activity can be provided in trans by one of the other resident ATP-dependent ligases (likely LigC). Reliance on the backup ligase is accompanied by a drastic loss of fidelity during blunt end and 5' overhang DSB repair. We conclude that the mechanisms of mycobacterial NHEJ are many and the outcomes depend on the initial structures of the DSBs and the available ensemble of end-processing and end-sealing components, which are not limited to Ku and LigD.
Collapse
Affiliation(s)
- Jideofor Aniukwu
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
34
|
Gu J, Lieber MR. Mechanistic flexibility as a conserved theme across 3 billion years of nonhomologous DNA end-joining. Genes Dev 2008; 22:411-5. [PMID: 18281457 DOI: 10.1101/gad.1646608] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jiafeng Gu
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California 90089, USA
| | | |
Collapse
|
35
|
Zhu H, Shuman S. Bacterial nonhomologous end joining ligases preferentially seal breaks with a 3'-OH monoribonucleotide. J Biol Chem 2008; 283:8331-9. [PMID: 18203718 DOI: 10.1074/jbc.m705476200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many bacterial species have a nonhomologous end joining system of DNA repair driven by dedicated DNA ligases (LigD and LigC). LigD is a multifunctional enzyme composed of a ligase domain fused to two other catalytic modules: a polymerase that preferentially adds ribonucleotides to double-strand break ends and a phosphoesterase that trims 3'-oligoribonucleotide tracts until only a single 3'-ribonucleotide remains. LigD and LigC have a feeble capacity to seal 3'-OH/5'-PO(4) DNA nicks. Here, we report that nick sealing by LigD and LigC enzymes is stimulated by the presence of a single ribonucleotide at the broken 3'-OH end. The ribonucleotide effect on LigD and LigC is specific for the 3'-terminal nucleotide and is either diminished or abolished when additional vicinal ribonucleotides are present. No such 3'-ribonucleotide effect is observed for bacterial LigA or Chlorella virus ligase. We found that in vitro repair of a double-strand break by Pseudomonas LigD requires the polymerase module and results in incorporation of an alkali-labile ribonucleotide at the repair junction. These results illuminate an underlying logic for the domain organization of LigD, whereby the polymerase and phosphoesterase domains can heal the broken 3'-end to generate the monoribonucleotide terminus favored by the nonhomologous end joining ligases.
Collapse
Affiliation(s)
- Hui Zhu
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
36
|
Kobayashi H, Simmons LA, Yuan DS, Broughton WJ, Walker GC. Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of Sinorhizobium meliloti. Mol Microbiol 2007; 67:350-63. [PMID: 18067541 DOI: 10.1111/j.1365-2958.2007.06036.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The bacterial non-homologous end-joining (NHEJ) apparatus is a two-component system that uses Ku and LigD to repair DNA double-strand breaks. Although the reaction mechanism has been extensively studied, much less is known about the physiological role of bacterial NHEJ. Recent studies suggest that NHEJ acts under conditions where DNA replication is reduced or absent (such as in a spore or stationary phase). Interestingly, genes encoding Ku and LigD have been identified in a wide range of bacteria that can chronically infect eukaryotic hosts. Strikingly, Sinohizobium meliloti, an intracellular symbiont of legume plants, carries four genes encoding Ku homologues (sku1 to sku4). Deletion analysis of the sku genes indicated that all Ku homologues are functional. One of these genes, sku2, is strongly expressed in free-living cells, as well as in bacteroid cells residing inside of the host plant. To visualize the NHEJ apparatus in vivo, SKu2 protein was fused to yellow fluorescent protein (YFP). Ionizing radiation (IR) induced focus formation of SKu2-YFP in free-living cells in a dosage-dependent manner. Moreover, SKu2-YFP foci formed in response to IR in non-dividing bacteroids, indicating that NHEJ system is functional even during the chronic infection phase of symbiosis.
Collapse
Affiliation(s)
- Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
The capacity to rectify DNA double-strand breaks (DSBs) is crucial for the survival of all species. DSBs can be repaired either by homologous recombination (HR) or non-homologous end joining (NHEJ). The long-standing notion that bacteria rely solely on HR for DSB repair has been overturned by evidence that mycobacteria and other genera have an NHEJ system that depends on a dedicated DNA ligase, LigD, and the DNA-end-binding protein Ku. Recent studies have illuminated the role of NHEJ in protecting the bacterial chromosome against DSBs and other clastogenic stresses. There is also emerging evidence of functional crosstalk between bacterial NHEJ proteins and components of other DNA-repair pathways. Although still a young field, bacterial NHEJ promises to teach us a great deal about the nexus of DNA repair and bacterial pathogenesis.
Collapse
Affiliation(s)
- Stewart Shuman
- Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021, USA.
| | | |
Collapse
|