1
|
Chen S, Zeng H, Qiu H, Yin A, Shen F, Li Y, Xiao Y, Hai J, Xu B. Regulation mechanism of nitrite degradation in Lactobacillus plantarum WU14 mediated by Fnr. Arch Microbiol 2024; 206:455. [PMID: 39495382 DOI: 10.1007/s00203-024-04183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Fumarate and nitrate reduction regulatory protein (Fnr)-a global transcriptional regulator-can directly or indirectly regulate many genes in different metabolic pathways at the top of the bacterial transcription regulation network. The present study explored the regulatory mechanism of Fnr-mediated nitrite degradation in Lactobacillus plantarum WU14 through gene transcription and expression analysis of oxygen sensing and nir operon expression regulation by Fnr. The interaction and the mechanism of transcriptional regulation between Fnr and GlnR were also examined under nitrite stress. After Fnr and GlnR purification by glutathione S-transferase tags, they were successfully expressed in Escherichia coli by constructing an expression vector. The results of electrophoresis mobility shift assay and qRT-PCR indicated that Fnr specifically bound to the PglnR and Pnir promoters and regulated the expression of nitrite reductase (Nir) and GlnR. After 6-12 h of culture, the expressions of fnr and nir under anaerobic conditions were higher than under aerobic conditions; the expression of these two genes increased with sodium nitrite (NaNO2) addition during aerobic culture. Overall, the present study indicated that Fnr not only directly participated in the expression of Nir and GlnR but also indirectly regulated the expression of Nir through GlnR regulation.
Collapse
Affiliation(s)
- Shaoxian Chen
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hao Zeng
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hulin Qiu
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Aiguo Yin
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Fengfei Shen
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Ying Li
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Yunyi Xiao
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Jinping Hai
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Bo Xu
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| |
Collapse
|
2
|
Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. THE NEW PHYTOLOGIST 2018; 218:219-231. [PMID: 29364524 PMCID: PMC5873253 DOI: 10.1111/nph.14977] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/25/2017] [Indexed: 05/19/2023]
Abstract
Plants modify their development to adapt to their environment, protecting themselves from detrimental conditions such as chilling stress by triggering a variety of signaling pathways; however, little is known about how plants coordinate developmental patterns and stress responses at the molecular level. Here, we demonstrate that interacting transcription factors OsMADS57 and OsTB1 directly target the defense gene OsWRKY94 and the organogenesis gene D14 to trade off the functions controlling/moderating rice tolerance to cold. Overexpression of OsMADS57 maintains rice tiller growth under chilling stress. OsMADS57 binds directly to the promoter of OsWRKY94, activating its transcription for the cold stress response, while suppressing its activity under normal temperatures. In addition, OsWRKY94 was directly targeted and suppressed by OsTB1 under both normal and chilling temperatures. However, D14 transcription was directly promoted by OsMADS57 for suppressing tillering under the chilling treatment, whereas D14 was repressed for enhancing tillering under normal condition.We demonstrated that OsMADS57 and OsTB1 conversely affect rice chilling tolerance via targeting OsWRKY94. Our findings highlight a molecular genetic mechanism coordinating organogenesis and chilling tolerance in rice, which supports and extends recent work suggesting that chilling stress environments influence organ differentiation.
Collapse
Affiliation(s)
- Liping Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuan Zhao
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shujuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Zeyong Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Jingyu Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Kang Chong
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
- National Center for Plant Gene ResearchBeijing100093China
| |
Collapse
|
3
|
Wang L, Yan J, Yan J, Xu H, Zhang D, Wang X, Sheng J. Expression and purification of the human epidermal growth factor receptor extracellular domain. Protein Expr Purif 2018; 144:33-38. [DOI: 10.1016/j.pep.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 01/22/2023]
|
4
|
Peacock J, Jaynes JB. Using competition assays to quantitatively model cooperative binding by transcription factors and other ligands. Biochim Biophys Acta Gen Subj 2017; 1861:2789-2801. [PMID: 28774855 PMCID: PMC5623634 DOI: 10.1016/j.bbagen.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/27/2017] [Accepted: 07/29/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND The affinities of DNA binding proteins for target sites can be used to model the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity. However, current methods for measuring cooperativity do not provide the means to accurately predict binding behavior over a wide range of concentrations. METHODS We use standard computational and mathematical methods, and develop novel methods as described in Results. RESULTS We explore some complexities of cooperative binding, and develop an improved method for relating in vitro measurements to in vivo function, based on ternary complex formation. We derive expressions for the equilibria among the various complexes, and explore the limitations of binding experiments that model the system using a single parameter. We describe how to use single-ligand binding and ternary complex formation in tandem to determine parameters that have thermodynamic relevance. We develop an improved method for finding both single-ligand dissociation constants and concentrations simultaneously. We show how the cooperativity factor can be found when only one of the single-ligand dissociation constants can be measured. CONCLUSIONS The methods that we develop constitute an optimized approach to accurately model cooperative binding. GENERAL SIGNIFICANCE The expressions and methods we develop for modeling and analyzing DNA binding and cooperativity are applicable to most cases where multiple ligands bind to distinct sites on a common substrate. The parameters determined using these methods can be fed into models of higher-order cooperativity to increase their predictive power.
Collapse
Affiliation(s)
- Jacob Peacock
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - James B Jaynes
- Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
5
|
Inhibitors Alter the Stochasticity of Regulatory Proteins to Force Cells to Switch to the Other State in the Bistable System. Sci Rep 2017; 7:4413. [PMID: 28667253 PMCID: PMC5493615 DOI: 10.1038/s41598-017-04596-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
The cellular behaviors under the control of genetic circuits are subject to stochastic fluctuations, or noise. The stochasticity in gene regulation, far from a nuisance, has been gradually appreciated for its unusual function in cellular activities. In this work, with Chemical Master Equation (CME), we discovered that the addition of inhibitors altered the stochasticity of regulatory proteins. For a bistable system of a mutually inhibitory network, such a change of noise led to the migration of cells in the bimodal distribution. We proposed that the consumption of regulatory protein caused by the addition of inhibitor is not the only reason for pushing cells to the specific state; the change of the intracellular stochasticity is also the main cause for the redistribution. For the level of the inhibitor capable of driving 99% of cells, if there is no consumption of regulatory protein, 88% of cells were guided to the specific state. It implied that cells were pushed, by the inhibitor, to the specific state due to the change of stochasticity.
Collapse
|
6
|
Nitzan M, Shimoni Y, Rosolio O, Margalit H, Biham O. Stochastic analysis of bistability in coherent mixed feedback loops combining transcriptional and posttranscriptional regulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052706. [PMID: 26066198 DOI: 10.1103/physreve.91.052706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Mixed feedback loops combining transcriptional and posttranscriptional regulations are common in cellular regulatory networks. They consist of two genes, encoding a transcription factor and a small noncoding RNA (sRNA), which mutually regulate each other's expression. We present a theoretical and numerical study of coherent mixed feedback loops of this type, in which both regulations are negative. Under suitable conditions, these feedback loops are expected to exhibit bistability, namely, two stable states, one dominated by the transcriptional repressor and the other dominated by the sRNA. We use deterministic methods based on rate equation models, in order to identify the range of parameters in which bistability takes place. However, the deterministic models do not account for the finite lifetimes of the bistable states and the spontaneous, fluctuation-driven transitions between them. Therefore, we use stochastic methods to calculate the average lifetimes of the two states. It is found that these lifetimes strongly depend on rate coefficients such as the transcription rates of the transcriptional repressor and the sRNA. In particular, we show that the fraction of time the system spends in the sRNA-dominated state follows a monotonically decreasing sigmoid function of the transcriptional repressor transcription rate. The biological relevance of these results is discussed in the context of such mixed feedback loops in Escherichia coli. It is shown that the fluctuation-driven transitions and the dependence of some rate coefficients on the biological conditions enable the cells to switch to the state which is better suited for the existing conditions and to remain in that state as long as these conditions persist.
Collapse
Affiliation(s)
- Mor Nitzan
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yishai Shimoni
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York 10027, USA
| | - Oded Rosolio
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Ofer Biham
- Racah Institute of Physics, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
7
|
An improved method for surface immobilisation of RNA: application to small non-coding RNA-mRNA pairing. PLoS One 2013; 8:e79142. [PMID: 24244437 PMCID: PMC3828260 DOI: 10.1371/journal.pone.0079142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/18/2013] [Indexed: 12/26/2022] Open
Abstract
Characterisation of RNA and its intermolecular interactions is increasing in importance as the inventory of known RNA functions continues to expand. RNA-RNA interactions are central to post-transcriptional gene regulation mechanisms in bacteria, and the interactions of bacterial small non-coding RNAs (sRNAs) with their mRNA targets are the subject of much current research. The technology of surface plasmon resonance (SPR) is an attractive approach to studying these interactions since it is highly sensitive, and allows interaction measurements to be recorded in real-time. Whilst a number of approaches exist to label RNAs for surface-immobilisation, the method documented here is simple, quick, efficient, and utilises the high-affinity streptavidin-biotin interaction. Specifically, we ligate a biotinylated nucleotide to the 3′ end of RNA using T4 RNA ligase. Although this is a previously recognised approach, we have optimised the method by our discovery that the incorporation of four or more adenine nucleotides at the 3′ end of the RNA (a poly-A-tail) is required in order to achieve high ligation efficiencies. We use this method within the context of investigating small non-coding RNA (sRNA) - mRNA interactions through the application of surface technologies, including quantitative SPR assays. We first focus on validating the method using the recently characterised Escherichia coli sRNA-mRNA pair, MicA-ompA, specifically demonstrating that the addition of the poly-A-tail to either RNA does not affect its subsequent binding interactions with partner molecules. We then apply this method to investigate the novel interactions of a Vibrio cholerae Qrr sRNA with partner mRNAs, hapR and vca0939; RNA-RNA pairings that are important in mediating pathogenic virulence. The calculated binding parameters allow insights to be drawn regarding sRNA-mRNA interaction mechanisms.
Collapse
|
8
|
Abstract
The band-shift assay using polyacrylamide gel electrophoresis is a powerful technique used to investigate DNA-protein interactions. The basis of the method is the separation of free DNA from DNA-protein complexes by virtue of differences in charge, size, and shape. The band-shift assay can be used to determine thermodynamic and kinetic binding constants and also to analyze the composition and stoichiometries of DNA-protein complexes.
Collapse
Affiliation(s)
- Lynn Powell
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Advances in the study of protein-DNA interaction. Amino Acids 2012; 43:1141-6. [PMID: 22842750 DOI: 10.1007/s00726-012-1377-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 07/20/2012] [Indexed: 02/07/2023]
Abstract
Protein-DNA interaction plays an important role in many biological processes. The classical methods and the novel technologies advanced have been developed for the interaction of protein-DNA. Recent developments of these methods and research achievements have been reviewed in this paper.
Collapse
|
10
|
Joubert MK, Kinsley N, Capovilla A, Sewell BT, Jaffer MA, Khati M. A Modeled Structure of an Aptamer−gp120 Complex Provides Insight into the Mechanism of HIV-1 Neutralization. Biochemistry 2010; 49:5880-90. [DOI: 10.1021/bi100301k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Nichole Kinsley
- Elevation Biotech, 8 Blackwood Avenue, Parktown, Johannesburg 2193, South Africa
| | - Alexio Capovilla
- Elevation Biotech, 8 Blackwood Avenue, Parktown, Johannesburg 2193, South Africa
- Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - B. Trevor Sewell
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Mohamed A. Jaffer
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, South Africa
| | - Makobetsa Khati
- CSIR Biosciences, P.O. Box 395, Pretoria 0001, South Africa
- Department of Medicine, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
11
|
Shimoni Y, Altuvia S, Margalit H, Biham O. Stochastic analysis of the SOS response in Escherichia coli. PLoS One 2009; 4:e5363. [PMID: 19424504 PMCID: PMC2675100 DOI: 10.1371/journal.pone.0005363] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/22/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND DNA damage in Escherichia coli evokes a response mechanism called the SOS response. The genetic circuit of this mechanism includes the genes recA and lexA, which regulate each other via a mixed feedback loop involving transcriptional regulation and protein-protein interaction. Under normal conditions, recA is transcriptionally repressed by LexA, which also functions as an auto-repressor. In presence of DNA damage, RecA proteins recognize stalled replication forks and participate in the DNA repair process. Under these conditions, RecA marks LexA for fast degradation. Generally, such mixed feedback loops are known to exhibit either bi-stability or a single steady state. However, when the dynamics of the SOS system following DNA damage was recently studied in single cells, ordered peaks were observed in the promoter activity of both genes (Friedman et al., 2005, PLoS Biol. 3(7):e238). This surprising phenomenon was masked in previous studies of cell populations. Previous attempts to explain these results harnessed additional genes to the system and deployed complex deterministic mathematical models that were only partially successful in explaining the results. METHODOLOGY/PRINCIPAL FINDINGS Here we apply stochastic methods, which are better suited for dynamic simulations of single cells. We show that a simple model, involving only the basic components of the circuit, is sufficient to explain the peaks in the promoter activities of recA and lexA. Notably, deterministic simulations of the same model do not produce peaks in the promoter activities. CONCLUSION/SIGNIFICANCE We conclude that the double negative mixed feedback loop with auto-repression accounts for the experimentally observed peaks in the promoter activities. In addition to explaining the experimental results, this result shows that including additional regulations in a mixed feedback loop may dramatically change the dynamic functionality of this regulatory module. Furthermore, our results suggests that stochastic fluctuations strongly affect the qualitative behavior of important regulatory modules even under biologically relevant conditions, thus emphasizing the importance of stochastic analysis of regulatory circuits.
Collapse
Affiliation(s)
- Yishai Shimoni
- Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | | | | | | |
Collapse
|
12
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy. Appl Biochem Biotechnol 2008; 158:631-41. [DOI: 10.1007/s12010-008-8348-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
14
|
Su X, Neo SJ, Peh WY, Thomsen JS. A two-step antibody strategy for surface plasmon resonance spectroscopy detection of protein–DNA interactions in nuclear extracts. Anal Biochem 2008; 376:137-43. [DOI: 10.1016/j.ab.2008.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 11/25/2022]
|
15
|
Ahlgren-Berg A, Henriksson-Peltola P, Sehlén W, Haggård-Ljungquist E. A comparison of the DNA binding and bending capacities and the oligomeric states of the immunity repressors of heteroimmune coliphages P2 and WPhi. Nucleic Acids Res 2007; 35:3167-80. [PMID: 17485481 PMCID: PMC1904263 DOI: 10.1093/nar/gkm171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacteriophages P2 and WPhi are heteroimmune members of the P2-like family of temperate Escherichia coli phages. Temperate phages can grow lytically or form lysogeny after infection. A transcriptional switch that contains two con-vergent promoters, Pe and Pc, and two repressors regulate what life mode to enter. The immunity repressor C is the first gene of the lysogenic operon, and it blocks the early Pe promoter. In this work, some characteristics of the C proteins of P2 and WPhi are compared. An in vivo genetic analysis shows that WPhi C, like P2 C, has a strong dimerization activity in the absence of its DNA target. Both C proteins recognize two directly repeated sequences, termed half-sites and a strong bending is induced in the respective DNA target upon binding. P2 C is unable to bind to one half-site as opposed to WPhi, but both half-sites are required for repression of WPhi Pe. A reduction from three to two helical turns between the centers of the half-sites in WPhi has no significant effect on the capacity to repress Pe. However, the protein-DNA complexes formed differ, as determined by electrophoretic mobility shift experiments. A difference in spontaneous phage production is observed in isogenic lysogens.
Collapse
|