1
|
Unal G, Fussenegger M. At the crossroads of biology and electronics. Curr Opin Biotechnol 2025; 91:103249. [PMID: 39788045 DOI: 10.1016/j.copbio.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
All cells are innately equipped with systems to detect and respond to electrical inputs in the form of reactive oxygen species, redox signaling, or membrane depolarization through ion exchange. Electrogenetics aims to leverage these cellular systems to create interfaces between biology and electronics, in order to achieve levels of precision in spatiotemporal control of gene and protein expression that are not possible with chemo-, opto-, or thermogenetics. In this review, we discuss the impact, challenges, and prospects of electrogenetics in the context of recent cutting-edge applications.
Collapse
Affiliation(s)
- Gokberk Unal
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Schanzenstrasse 48, CH-4056 Basel, Switzerland; University of Basel, Faculty of Science, Schanzenstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
2
|
Galvan S, Teixeira AP, Fussenegger M. Enhancing cell-based therapies with synthetic gene circuits responsive to molecular stimuli. Biotechnol Bioeng 2024; 121:2987-3000. [PMID: 38867466 DOI: 10.1002/bit.28770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies. Here, we review recent developments in synthetic gene switches responsive to molecular stimuli, spanning regulatory mechanisms acting at the transcriptional, translational, and posttranslational levels. We also discuss current challenges facing clinical translation of cell-based therapies employing these devices.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Huang J, Xue S, Buchmann P, Teixeira AP, Fussenegger M. An electrogenetic interface to program mammalian gene expression by direct current. Nat Metab 2023; 5:1395-1407. [PMID: 37524785 PMCID: PMC10447240 DOI: 10.1038/s42255-023-00850-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023]
Abstract
Wearable electronic devices are playing a rapidly expanding role in the acquisition of individuals' health data for personalized medical interventions; however, wearables cannot yet directly program gene-based therapies because of the lack of a direct electrogenetic interface. Here we provide the missing link by developing an electrogenetic interface that we call direct current (DC)-actuated regulation technology (DART), which enables electrode-mediated, time- and voltage-dependent transgene expression in human cells using DC from batteries. DART utilizes a DC supply to generate non-toxic levels of reactive oxygen species that act via a biosensor to reversibly fine-tune synthetic promoters. In a proof-of-concept study in a type 1 diabetic male mouse model, a once-daily transdermal stimulation of subcutaneously implanted microencapsulated engineered human cells by energized acupuncture needles (4.5 V DC for 10 s) stimulated insulin release and restored normoglycemia. We believe this technology will enable wearable electronic devices to directly program metabolic interventions.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Guha Ray P, Maity D, Huang J, Zulewski H, Fussenegger M. A versatile bioelectronic interface programmed for hormone sensing. Nat Commun 2023; 14:3151. [PMID: 37258547 DOI: 10.1038/s41467-023-39015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
Precision medicine requires smart, ultrasensitive, real-time profiling of bio-analytes using interconnected miniaturized devices to achieve individually optimized healthcare. Here, we report a versatile bioelectronic interface (VIBE) that senses signaling-cascade-guided receptor-ligand interactions via an electronic interface. We show that VIBE offers a low detection limit down to sub-nanomolar range characterised by an output current that decreases significantly, leading to precise profiling of these peptide hormones throughout the physiologically relevant concentration ranges. In a proof-of-concept application, we demonstrate that the VIBE platform differentiates insulin and GLP-1 levels in serum samples of wild-type mice from type-1 and type-2 diabetic mice. Evaluation of human serum samples shows that the bioelectronic device can differentiate between samples from different individuals and report differences in their metabolic states. As the target analyte can be changed simply by introducing engineered cells overexpressing the appropriate receptor, the VIBE interface has many potential applications for point-of-care diagnostics and personalized medicine via the internet of things.
Collapse
Affiliation(s)
- Preetam Guha Ray
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Debasis Maity
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Jinbo Huang
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Henryk Zulewski
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland
- Division of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Petersgraben 4, CH-4031, Basel, Switzerland
- Division of Endocrinology and Diabetes, Stadtspital Triemli, Birmensdorferstrasse 497, CH-8063, Zurich, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, CH-4058, Basel, Switzerland.
- Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
5
|
Galvan S, Madderson O, Xue S, Teixeira AP, Fussenegger M. Regulation of Transgene Expression by the Natural Sweetener Xylose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203193. [PMID: 36316222 PMCID: PMC9731693 DOI: 10.1002/advs.202203193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Next-generation gene and engineered-cell therapies benefit from incorporating synthetic gene networks that can precisely regulate the therapeutic output in response to externally administered signal inputs that are safe, readily bioavailable and pleasant to take. To enable such therapeutic control, a mammalian gene switch is designed to be responsive to the natural sweetener xylose and its functionality is assessed in mouse studies. The gene switch consists of the bacterial transcription regulator XylR fused to a mammalian transactivator, which binds to an optimized promoter in the presence of xylose, thereby allowing dose-dependent transgene expression. The sensitivity of SWEET (sweetener-inducible expression of transgene) is improved by coexpressing a xylose transporter. Mice implanted with encapsulated SWEET-engineered cells show increased blood levels of cargo protein when taking xylose-sweetened water or coffee, or highly concentrated apple extract, while they do not respond to intake of a usual amount of carrots, which contain xylose. In a proof-of-concept therapeutic application study, type-1 diabetic mice engineered with insulin-expressing SWEET show lowered glycemia and increased insulin levels when administered this fairly diabetic-compliant sweetener, compared to untreated mice. A SWEET-based therapy appears to have the potential to integrate seamlessly into patients' life-style and food habits in the move toward personalized medicine.
Collapse
Affiliation(s)
- Silvia Galvan
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Oliver Madderson
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Shuai Xue
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Ana P. Teixeira
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26BaselCH‐4058Switzerland
- Faculty of Life ScienceUniversity of BaselMattenstrasse 26BaselCH‐4058Switzerland
| |
Collapse
|
6
|
Stefanov B, Teixeira AP, Mansouri M, Bertschi A, Krawczyk K, Hamri GC, Xue S, Fussenegger M. Genetically Encoded Protein Thermometer Enables Precise Electrothermal Control of Transgene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101813. [PMID: 34496151 PMCID: PMC8564464 DOI: 10.1002/advs.202101813] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/05/2021] [Indexed: 05/25/2023]
Abstract
Body temperature is maintained at around 37 °C in humans, but may rise to 40 °C or more during high-grade fever, which occurs in most adults who are seriously ill. However, endogenous temperature sensors, such as ion channels and heat-shock promoters, are fully activated only at noxious temperatures above this range, making them unsuitable for medical applications. Here, a genetically encoded protein thermometer (human enhanced gene activation thermometer; HEAT) is designed that can trigger transgene expression in the range of 37-40 °C by linking a mutant coiled-coil temperature-responsive protein sensor to a synthetic transcription factor. To validate the construct, a HEAT-transgenic monoclonal human cell line, FeverSense, is generated and it is confirmed that it works as a fever sensor that can temperature- and exposure-time-dependently trigger reporter gene expression in vitro and in vivo. For translational proof of concept, microencapsulated designer cells stably expressing a HEAT-controlled insulin production cassette in a mouse model of type-1 diabetes are subcutaneously implanted and topical heating patches are used to apply heat corresponding to a warm sensation in humans. Insulin release is induced, restoring normoglycemia. Thus, HEAT appears to be suitable for practical electrothermal control of cell-based therapy, and may also have potential for next-generation treatment of fever-associated medical conditions.
Collapse
Affiliation(s)
| | - Ana P. Teixeira
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Maysam Mansouri
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Adrian Bertschi
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Krzysztof Krawczyk
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | | | - Shuai Xue
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
| | - Martin Fussenegger
- ETH ZürichDepartment of Biosystems Science and EngineeringMattenstrasse 26Basel4058Switzerland
- University of BaselFaculty of Life ScienceBasel4056Switzerland
| |
Collapse
|
7
|
Haellman V, Saxena P, Jiang Y, Fussenegger M. Rational design and optimization of synthetic gene switches for controlling cell-fate decisions in pluripotent stem cells. Metab Eng 2021; 65:99-110. [PMID: 33744461 DOI: 10.1016/j.ymben.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Advances in synthetic biology have enabled robust control of cell behavior by using tunable genetic circuits to regulate gene expression in a ligand-dependent manner. Such circuits can be used to direct the differentiation of pluripotent stem cells (PSCs) towards desired cell types, but rational design of synthetic gene circuits in PSCs is challenging due to the variable intracellular environment. Here, we provide a framework for implementing synthetic gene switches in PSCs based on combinations of tunable transcriptional, structural, and posttranslational elements that can be engineered as required, using the vanillic acid-controlled transcriptional activator (VanA) as a model system. We further show that the VanA system can be multiplexed with the well-established reverse tetracycline-controlled transcriptional activator (rtTA) system to enable independent control of the expression of different transcription factors in human induced PSCs in order to enhance lineage specification towards early pancreatic progenitors. This work represents a first step towards standardizing the design and construction of synthetic gene switches for building robust gene-regulatory networks to guide stem cell differentiation towards a desired cell fate.
Collapse
Affiliation(s)
- Viktor Haellman
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Yanrui Jiang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH, 4058, Basel, Switzerland.
| |
Collapse
|
8
|
Doshi A, Sadeghi F, Varadarajan N, Cirino PC. Small-molecule inducible transcriptional control in mammalian cells. Crit Rev Biotechnol 2020; 40:1131-1150. [PMID: 32862714 DOI: 10.1080/07388551.2020.1808583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tools for tuning transcription in mammalian cells have broad applications, from basic biological discovery to human gene therapy. While precise control over target gene transcription via dosing with small molecules (drugs) is highly sought, the design of such inducible systems that meets required performance metrics poses a great challenge in mammalian cell synthetic biology. Important characteristics include tight and tunable gene expression with a low background, minimal drug toxicity, and orthogonality. Here, we review small-molecule-inducible transcriptional control devices that have demonstrated success in mammalian cells and mouse models. Most of these systems employ natural or designed ligand-binding protein domains to directly or indirectly communicate with transcription machinery at a target sequence, via carefully constructed fusions. Example fusions include those to transcription activator-like effectors (TALEs), DNA-targeting proteins (e.g. dCas systems) fused to transactivating domains, and recombinases. Similar to the architecture of Type I nuclear receptors, many of the systems are designed such that the transcriptional controller is excluded from the nucleus in the absence of an inducer. Techniques that use ligand-induced proteolysis and antibody-based chemically induced dimerizers are also described. Collectively, these transcriptional control devices take advantage of a variety of recently developed molecular biology tools and cell biology insights and represent both proof of concept (e.g. targeting reporter gene expression) and disease-targeting studies.
Collapse
Affiliation(s)
- Aarti Doshi
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Patrick C Cirino
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
9
|
Cella F, Siciliano V. Protein-based parts and devices that respond to intracellular and extracellular signals in mammalian cells. Curr Opin Chem Biol 2019; 52:47-53. [PMID: 31158655 DOI: 10.1016/j.cbpa.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/14/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023]
Abstract
Synthetic biology aims to rewire cellular activities and functionality by implementing genetic circuits with high biocomputing capabilities. Recent efforts led to the development of smart sensing interfaces which integrate multiple inputs to activate desired outputs in a highly specific and sensitive manner. In this review, we highlight protein-based interfaces that sense intracellular or extracellular cues providing information about dynamic environmental changes and cellular state. We will also discuss different mechanisms of regulation of gene expression connected to the sensors to develop diagnostic and therapeutic devices. We conclude discussing challenges and opportunities for biomedical applications of synthetic mammalian protein-based devices.
Collapse
Affiliation(s)
- Federica Cella
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, Naples, Italy; University of Genoa, Genoa, Italy
| | - Velia Siciliano
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, Naples, Italy.
| |
Collapse
|
10
|
Engineering modular intracellular protein sensor-actuator devices. Nat Commun 2018; 9:1881. [PMID: 29760420 PMCID: PMC5951936 DOI: 10.1038/s41467-018-03984-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Understanding and reshaping cellular behaviors with synthetic gene networks requires the ability to sense and respond to changes in the intracellular environment. Intracellular proteins are involved in almost all cellular processes, and thus can provide important information about changes in cellular conditions such as infections, mutations, or disease states. Here we report the design of a modular platform for intrabody-based protein sensing-actuation devices with transcriptional output triggered by detection of intracellular proteins in mammalian cells. We demonstrate reporter activation response (fluorescence, apoptotic gene) to proteins involved in hepatitis C virus (HCV) infection, human immunodeficiency virus (HIV) infection, and Huntington’s disease, and show sensor-based interference with HIV-1 downregulation of HLA-I in infected T cells. Our method provides a means to link varying cellular conditions with robust control of cellular behavior for scientific and therapeutic applications. Synthetic biology principles are often used to design circuits that tune gene expression in response to changes in intracellular environments. Here the authors design a modular platform for intracellular protein sensing devices with transcriptional output.
Collapse
|
11
|
Müller M, Ausländer S, Spinnler A, Ausländer D, Sikorski J, Folcher M, Fussenegger M. Designed cell consortia as fragrance-programmable analog-to-digital converters. Nat Chem Biol 2017; 13:309-316. [DOI: 10.1038/nchembio.2281] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023]
|
12
|
Fliervoet LAL, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev 2016; 106:63-72. [PMID: 27129442 DOI: 10.1016/j.addr.2016.04.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
Abstract
The field of drug delivery has grown tremendously in the past few decades by developing a wide range of advanced drug delivery systems. An interesting category is cell-based drug delivery, which includes encapsulation of drugs inside cells or attached to the surface and subsequent transportation through the body. Another approach involves genetic engineering of cells to secrete therapeutic molecules in a controlled way. The next-generation systems integrate expertise from synthetic biology to generate therapeutic gene networks for highly advanced sensory and output devices. These developments are very exciting for the drug delivery field and could radically change the way we administer biological medicines to chronically ill patients. This review is covering the use of living cells, either as transport system or production-unit, to deliver therapeutic molecules and bioactive proteins inside the body. It describes a wide range of approaches in cell-based drug delivery and highlights exceptional examples.
Collapse
Affiliation(s)
- Lies A L Fliervoet
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
13
|
Schwarz KA, Leonard JN. Engineering cell-based therapies to interface robustly with host physiology. Adv Drug Deliv Rev 2016; 105:55-65. [PMID: 27266446 DOI: 10.1016/j.addr.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Engineered cell-based therapies comprise a rapidly growing clinical technology for treating disease by leveraging the natural capabilities of cells, including migration, information transduction, and biosynthesis and secretion. There now exists a substantial portfolio of intracellular and extracellular sensors that enable bioengineers to program cells to execute defined responses to specific changes in state or environmental cues. As our capability to construct more sophisticated cellular programs increases, assessing and improving the degree to which cell-based therapies perform as desired in vivo will become an increasingly important consideration and opportunity for technological advancement. In this review, we seek to describe both current capabilities and potential needs for building cell-based therapies that interface with host physiology in a manner that is robust - a phrase we use in this context to describe the achievement of therapeutic efficacy across a range of patients and implementations. We first review the portfolio of sensors and outputs currently available for use in cell-based therapies by highlighting key advancements and current gaps. Then, we propose a conceptual framework for evaluating and pursuing robust clinical performance of engineered cell-based therapies.
Collapse
|
14
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
15
|
Chen X, Li T, Wang X, Du Z, Liu R, Yang Y. Synthetic dual-input mammalian genetic circuits enable tunable and stringent transcription control by chemical and light. Nucleic Acids Res 2015; 44:2677-90. [PMID: 26673714 PMCID: PMC4824083 DOI: 10.1093/nar/gkv1343] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Programmable transcription factors can enable precise control of gene expression triggered by a chemical inducer or light. To obtain versatile transgene system with combined benefits of a chemical inducer and light inducer, we created various chimeric promoters through the assembly of different copies of the tet operator and Gal4 operator module, which simultaneously responded to a tetracycline-responsive transcription factor and a light-switchable transactivator. The activities of these chimeric promoters can be regulated by tetracycline and blue light synergistically or antagonistically. Further studies of the antagonistic genetic circuit exhibited high spatiotemporal resolution and extremely low leaky expression, which therefore could be used to spatially and stringently control the expression of highly toxic protein Diphtheria toxin A for light regulated gene therapy. When transferring plasmids engineered for the gene switch-driven expression of a firefly luciferase (Fluc) into mice, the Fluc expression levels of the treated animals directly correlated with the tetracycline and light input program. We suggest that dual-input genetic circuits using TET and light that serve as triggers to achieve expression profiles may enable the design of robust therapeutic gene circuits for gene- and cell-based therapies.
Collapse
Affiliation(s)
- Xianjun Chen
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Ting Li
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xue Wang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Zengmin Du
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Renmei Liu
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Optogenetics & Molecular Imaging Interdisciplinary Research Center, CAS Center for Excellence in Brain Science, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China Collaborative Innovation Center of Genetics and Development, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
16
|
Wang H, Ye H, Xie M, Daoud El-Baba M, Fussenegger M. Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res 2015; 43:e91. [PMID: 25943548 PMCID: PMC4538802 DOI: 10.1093/nar/gkv326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, 200241 Shanghai, China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie, F-69622 Villeurbanne Cedex, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
17
|
Daringer N, Dudek RM, Schwarz KA, Leonard JN. Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth Biol 2014; 3:892-902. [PMID: 24611683 PMCID: PMC4161666 DOI: 10.1021/sb400128g] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Indexed: 12/31/2022]
Abstract
Engineering mammalian cell-based devices that monitor and therapeutically modulate human physiology is a promising and emerging frontier in clinical synthetic biology. However, realizing this vision will require new technologies enabling engineered circuitry to sense and respond to physiologically relevant cues. No existing technology enables an engineered cell to sense exclusively extracellular ligands, including proteins and pathogens, without relying upon native cellular receptors or signal transduction pathways that may be subject to crosstalk with native cellular components. To address this need, we here report a technology we term a Modular Extracellular Sensor Architecture (MESA). This self-contained receptor and signal transduction platform is maximally orthogonal to native cellular processes and comprises independent, tunable protein modules that enable performance optimization and straightforward engineering of novel MESA that recognize novel ligands. We demonstrate ligand-inducible activation of MESA signaling, optimization of receptor performance using design-based approaches, and generation of MESA biosensors that produce outputs in the form of either transcriptional regulation or transcription-independent reconstitution of enzymatic activity. This systematic, quantitative platform characterization provides a framework for engineering MESA to recognize novel ligands and for integrating these sensors into diverse mammalian synthetic biology applications.
Collapse
Affiliation(s)
- Nichole
M. Daringer
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Rachel M. Dudek
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kelly A. Schwarz
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua N. Leonard
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United
States
- Member, Robert H.
Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Xie M, Ye H, Hamri GCE, Fussenegger M. Antagonistic control of a dual-input mammalian gene switch by food additives. Nucleic Acids Res 2014; 42:e116. [PMID: 25030908 PMCID: PMC4132709 DOI: 10.1093/nar/gku545] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies.
Collapse
Affiliation(s)
- Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
19
|
Rössger K, Charpin-El-Hamri G, Fussenegger M. Bile acid-controlled transgene expression in mammalian cells and mice. Metab Eng 2013; 21:81-90. [PMID: 24280297 DOI: 10.1016/j.ymben.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/08/2013] [Accepted: 11/11/2013] [Indexed: 12/27/2022]
Abstract
In recent years, using trigger-inducible mammalian gene switches to design sophisticated transcription-control networks has become standard practice in synthetic biology. These switches provide unprecedented precision, complexity and reliability when programming novel mammalian cell functions. Metabolite-responsive repressors of human-pathogenic bacteria are particularly attractive for use in these orthogonal synthetic mammalian gene switches because the trigger compound sensitivity often matches the human physiological range. We have designed both a bile acid-repressible (BEAROFF) as well as a bile-acid-inducible (BEARON) gene switch by capitalizing on components that have evolved to manage bile acid resistance in Campylobacter jejuni, the leading causative agent of human food-borne enteritis. We have shown that both of these switches enable bile acid-adjustable transgene expression in different mammalian cell lines as well as in mice. For the BEAROFF device, the C. jejuni repressor CmeR was fused to the VP16 transactivation domain to create a synthetic transactivator that activates minimal promoters containing tandem operator modules (Ocme) in a bile acid-repressible manner. Fusion of CmeR to a transsilencing domain resulted in an artificial transsilencer that binds and represses a constitutive Ocme-containing promoter until it is released by addition of bile acid (BEARON). A tailored multi-step tuning program for the inducible gene switch, which included the optimization of individual component performance, control of their relative abundances, the choice of the cell line and trigger compound, resulted in a BEARON device with significantly improved bile acid-responsive control characteristics. Synthetic metabolite-triggered gene switches that are able to interface with host metabolism may foster advances in future gene and cell-based therapies.
Collapse
Affiliation(s)
- Katrin Rössger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Ghislaine Charpin-El-Hamri
- Département Génie Biologique, Institut Universitaire de Technologie (IUTA), F-69622 Villeurbanne Cedex, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
20
|
Design and Application of Synthetic Biology Devices for Therapy. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Rutkowska A, Schultz C. Protein Tango: The Toolbox to Capture Interacting Partners. Angew Chem Int Ed Engl 2012; 51:8166-76. [DOI: 10.1002/anie.201201717] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Indexed: 11/07/2022]
|
22
|
|
23
|
Ausländer S, Wieland M, Fussenegger M. Smart medication through combination of synthetic biology and cell microencapsulation. Metab Eng 2012; 14:252-60. [DOI: 10.1016/j.ymben.2011.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/11/2011] [Accepted: 06/09/2011] [Indexed: 01/05/2023]
|
24
|
Botezatu L, Sievers S, Gama-Norton L, Schucht R, Hauser H, Wirth D. Genetic aspects of cell line development from a synthetic biology perspective. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2012; 127:251-284. [PMID: 22068842 DOI: 10.1007/10_2011_117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Animal cells can be regarded as factories for the production of relevant proteins. The advances described in this chapter towards the development of cell lines with higher productivity capacities, certain metabolic and proliferation properties, reduced apoptosis and other features must be regarded in an integrative perspective. The systematic application of systems biology approaches in combination with a synthetic arsenal for targeted modification of endogenous networks are proposed to lead towards the achievement of a predictable and technologically advanced cell system with high biotechnological impact.
Collapse
Affiliation(s)
- L Botezatu
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Gitzinger M, Kemmer C, Fluri DA, El-Baba MD, Weber W, Fussenegger M. The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res 2011; 40:e37. [PMID: 22187155 PMCID: PMC3300003 DOI: 10.1093/nar/gkr1251] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.
Collapse
Affiliation(s)
- Marc Gitzinger
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Tigges M, Fussenegger M. Recent advances in mammalian synthetic biology-design of synthetic transgene control networks. Curr Opin Biotechnol 2009; 20:449-60. [PMID: 19762224 DOI: 10.1016/j.copbio.2009.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 10/20/2022]
Abstract
Capitalizing on an era of functional genomic research, systems biology offers a systematic quantitative analysis of existing biological systems thereby providing the molecular inventory of biological parts that are currently being used for rational synthesis and engineering of complex biological systems with novel and potentially useful functions-an emerging discipline known as synthetic biology. During the past decade synthetic biology has rapidly developed from simple control devices fine-tuning the activity of single genes and proteins to multi-gene/protein-based transcription and signaling networks providing new insight into global control and molecular reaction dynamics, thereby enabling the design of novel drug-synthesis pathways as well as genetic devices with unmatched biological functions. While pioneering synthetic devices have first been designed as test, toy, and teaser systems for use in prokaryotes and lower eukaryotes, first examples of a systematic assembly of synthetic gene networks in mammalian cells has sketched the full potential of synthetic biology: foster novel therapeutic opportunities in gene and cell-based therapies. Here we provide a concise overview on the latest advances in mammalian synthetic biology.
Collapse
Affiliation(s)
- Marcel Tigges
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | | |
Collapse
|
28
|
Controlling transgene expression in subcutaneous implants using a skin lotion containing the apple metabolite phloretin. Proc Natl Acad Sci U S A 2009; 106:10638-43. [PMID: 19549857 DOI: 10.1073/pnas.0901501106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adjustable control of therapeutic transgenes in engineered cell implants after transdermal and topical delivery of nontoxic trigger molecules would increase convenience, patient compliance, and elimination of hepatic first-pass effect in future therapies. Pseudomonas putida DOT-T1E has evolved the flavonoid-triggered TtgR operon, which controls expression of a multisubstrate-specific efflux pump (TtgABC) to resist plant-derived defense metabolites in its rhizosphere habitat. Taking advantage of the TtgR operon, we have engineered a hybrid P. putida-mammalian genetic unit responsive to phloretin. This flavonoid is contained in apples, and, as such, or as dietary supplement, regularly consumed by humans. The engineered mammalian phloretin-adjustable control element (PEACE) enabled adjustable and reversible transgene expression in different mammalian cell lines and primary cells. Due to the short half-life of phloretin in culture, PEACE could also be used to program expression of difficult-to-produce protein therapeutics during standard bioreactor operation. When formulated in skin lotions and applied to the skin of mice harboring transgenic cell implants, phloretin was able to fine-tune target genes and adjust heterologous protein levels in the bloodstream of treated mice. PEACE-controlled target gene expression could foster advances in biopharmaceutical manufacturing as well as gene- and cell-based therapies.
Collapse
|
29
|
Abstract
The current paradigm for tuning synthetic biological systems is through re-engineering system components. Biological systems designed with the inherent ability to be tuned by external stimuli will be more versatile. We engineered Escherichia coli cells to behave as an externally tunable band-pass filter for enzyme activity and small molecules. The band's location can be positioned within a range of 4 orders of magnitude simply by the addition of compounds to the growth medium. Inclusion in the genetic network of an enzyme-substrate pair that functions as an attenuator is a generalizable strategy that enables this tunability. The genetic circuit enabled bacteria growth to be patterned in response to chemical gradients in nonintuitive ways and facilitated the isolation of engineered allosteric enzymes. The application of this strategy to other biological systems will increase their utility for biotechnological applications and their usefulness as a tool for gaining insight into nature's underlying design principles.
Collapse
|
30
|
|
31
|
Corson TW, Aberle N, Crews CM. Design and Applications of Bifunctional Small Molecules: Why Two Heads Are Better Than One. ACS Chem Biol 2008; 3:677-692. [PMID: 19112665 DOI: 10.1021/cb8001792] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Induction of protein--protein interactions is a daunting challenge, but recent studies show promise for small molecules that specifically bring two or more protein molecules together for enhanced or novel biological effect. The first such bifunctional molecules were the rapamycin- and FK506-based "chemical inducers of dimerization", but the field has since expanded with new molecules and new applications in chemical genetics and cell biology. Examples include coumermycin-mediated gyrase B dimerization, proteolysis targeting chimeric molecules (PROTACs), drug hybrids, and strategies for exploiting multivalency in toxin binding and antibody recruitment. This Review discusses these and other advances in the design and use of bifunctional small molecules and potential strategies for future systems.
Collapse
Affiliation(s)
| | | | - Craig M. Crews
- Department of Molecular, Cellular & Developmental Biology
- Departments of Chemistry and Pharmacology, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
32
|
Hartner FS, Ruth C, Langenegger D, Johnson SN, Hyka P, Lin-Cereghino GP, Lin-Cereghino J, Kovar K, Cregg JM, Glieder A. Promoter library designed for fine-tuned gene expression in Pichia pastoris. Nucleic Acids Res 2008; 36:e76. [PMID: 18539608 PMCID: PMC2475614 DOI: 10.1093/nar/gkn369] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Although frequently used as protein production host, there is only a limited set of promoters available to drive the expression of recombinant proteins in Pichia pastoris. Fine-tuning of gene expression is often needed to maximize product yield and quality. However, for efficient knowledge-based engineering, a better understanding of promoter function is indispensable. Consequently, we created a promoter library by deletion and duplication of putative transcription factor-binding sites within the AOX1 promoter (PAOX1) sequence. This first library initially spanned an activity range between ∼6% and >160% of the wild-type promoter activity. After characterization of the promoter library employing a green fluorescent protein (GFP) variant, the new regulatory toolbox was successfully utilized in a ‘real case’, i.e. the expression of industrial enzymes. Characterization of the library under repressing, derepressing and inducing conditions displayed at least 12 cis-acting elements involved in PAOX1-driven high-level expression. Based on this deletion analysis, novel short artificial promoter variants were constructed by combining cis-acting elements with basal promoter. In addition to improving yields and quality of heterologous protein production, the new PAOX1 synthetic promoter library constitutes a basic toolbox to fine-tune gene expression in metabolic engineering and sequential induction of protein expression in synthetic biology.
Collapse
Affiliation(s)
- Franz S Hartner
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Eibl R, Eibl D. Application of Disposable Bag Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [DOI: 10.1007/10_2008_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Inducible product gene expression technology tailored to bioprocess engineering. Curr Opin Biotechnol 2007; 18:399-410. [PMID: 17933507 DOI: 10.1016/j.copbio.2007.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/05/2007] [Indexed: 02/01/2023]
Abstract
Bioprocess engineering has developed as a discipline to design optimal culture conditions and bioreactor operation protocols for production cell lines engineered for constitutive expression of desired protein pharmaceuticals. With the advent of heterologous gene regulation systems it has become possible to fine-tune expression of difficult-to-produce protein pharmaceuticals to optimal levels and to conditionally engineer cell metabolism for the best production performance. However, most of the small-molecules used to trigger expression of product or metabolic engineering product genes are incompatible with downstream processing regulations or process economics. Recent progress in product gene control design has resulted in the development of bioprocess-compatible regulation systems, which are responsive to physical parameters such as temperature or physiologic trigger molecules that are either an inherent part of host cell metabolism or intrinsic components of licensed protein-free cell culture media, such as redox status, vitamin H and gaseous acetaldehyde. While all of these systems have been shown to fine-tune product gene expression independent of the host cell metabolism some of them can be plugged into metabolic networks to capture critical physiologic parameters and convert them into an optimal production response. Assembly of individual product gene control modalities into synthetic networks has recently enabled construction of autonomously regulated time-delay or cell density-sensitive gene circuits, which trigger population-wide induction of product gene expression at a predefined time or culture density. We provide a comprehensive overview on the latest developments in the design of bioprocess-compatible product gene control systems.
Collapse
|